Redundance of Complete Grid
Graphs

David R. Guichard

August 26, 2002

Abstract

The redundance R(G) of a graph G is the minimum, over all
dominating sets S, of 3 .5 1+deg(v), where deg(v) is the degree of
vertex v. We use some dynamic programming algorithms to compute
the redundance of complete grid graphs Gp,» for 1 < m < 21 and all
n, and to establish good upper and lower bounds on the redundance
for larger m. We conjecture that the upper bound is the redundance
when m > 21.

1 Preliminaries

A dominating set S for a graph G is a subset of the vertices of G that either
contains or is adjacent to every vertex of G. The domination number of
G, 7(G@), is the minimum size of a dominating set, or equivalently the
minimum, over all dominating sets S, of }°,.s1. The redundance of a
graph G, R(G), is the minimum, over all dominating sets S, of I(S) =
2ves 1+deg(v), where deg(v) is the degree of vertex v; I(S) is the influence
of S. For an introduction to the domination number and redundance, see

[3]-

Let P, denote the path on n vertices; the complete grid graph G, , is
the product P, x P,. “Grid graph” usually denotes a subgraph of a com-
plete grid graph; here we use “grid graph” to mean complete grid graph
for simplicity. The domination number of grid graphs has been the sub-
ject of previous work; here we adapt the most successful algorithms for
the computation of the domination number of grid graphs to compute the
redundance of all such graphs G, , with m < 21, and to compute upper
and lower bounds for the redundance of all grid graphs. Figure 1 shows a

JCMCC 47 (2003), pp. 201-212

dominating set of the 14 x 14 grid graph that realizes both the domination
number and the redundance.

Figure 1: The 14 x 14 grid graph has vy = 47 and R = 215.

Fisher [1, 2] developed a fast dynamic programming algorithm to com-
pute the domination number of grid graphs; we describe a modification of
the algorithm that will allow us to compute the redundance. (The two
papers by Fisher cover essentially the same ground in somewhat different
ways. Both papers are unpublished; our treatment here is closer to [1] than
the other.)

2 Computing Exact Values of R

Imagine a grid graph with a designated subset S of the vertices, as in
Figure 1. We describe a column (a copy of P,) in such a diagram by a
state vector s, in which s; is 0 if vertex number j on the path is in §, 1 if
vertex j is adjacent to a member of S in G, 5, and 2 otherwise. The vertices
coded 0 or 1 are those that are dominated by S. For example, the rightmost
column in Figure 1 has state vector (0,1,0,1,0,1,1,0,1,1,1,0,1,1); since
S is a dominating set, there are no entries of 2 in any state vectors for this
diagram. Note that no state vector can ever have a 0 adjacent to a 2.

We partially order the state vectors by defining t > s if for all j, t; < sj;
think of the column with state t as being “more dominated” than that with
state s.

An ezact s-domination of Gp, , is a subset S of the vertices that dom-
inates the first n — 1 columns and for which the state vector of the final
column is s. An s-domination is any exact t-domination with t > s.

Let Ry, n(s) be the minimum influence of any exact s-domination of

202

G, and Ry, n(s) = mingss Rm,a(t), that is, the minimum influence of
any s-domination. The algorithm computes Ry, »(s) for fixed m and all
n < N and all s incrementally, computing all values R, »(s) after the
values Ry n—1(s). The redundance of Gy, 5 is then Ry, »—1(1), where 1 is
the vector all of whose entries are 1.

The computation of Ry, n(s) from Ry, n—1(s) is complicated by the fact
that the degree of a vertex in column n — 1 changes when column = is
added. To account for this, we compute R}, . (s), in which the contribution
of a vertex in column n includes the degree of the vertex in Gy 5n+1. From
R} ._1(s) we then compute both R}, ,(s) and Ry, n(s). More precisely, for
S C V(Gm,n), denote by |S,| the number of 0 entries in the state vector for
column n of S. Then R}, .(s) is the minimum of I(S) +|Sy| taken over all

s-dominations S, and an,n (s) is the minimum over all exact s-dominations

S.

When n = 1 and n = 2, there exist s for which no exact s-domination
exists, for example, 1 and 2, respectively. In such cases, we set R and B
to oo. Note that for every s and every n > 1 there is an s-domination,
because 0 > s.

For a particular state s, some states cannot occur in column n — 1 if
column n is to have state at least s. Fisher [1] defines

2 if Sj = 0,
p(s); =40 ifs;=1,8;-1 >0, and s;4; >0,
1 otherwise.

(Let s = sm4+1 = 1 to avoid special cases.) Suppose t is the state of
column n — 1 in G n—1 for subset S. Given a state vector s, suppose we
add a column n to the grid, and add elements to S corresponding to the
0 entries in s. Then t and s will not necessarily be the state vectors for
columns n — 1 and n—new state vectors for these columns will be induced.
(Note, however, that the new state vectors can differ from the old only
by containing entries equal to 1 in place of entries equal to 2.) Fisher [1]
defines u(t, s) to be the state vector induced on column 7 provided the state
vector induced on column n — 1 is at least 1; u(t, s) is undefined otherwise.
Fisher [1] proves the following lemma and its corollary.

Lemma 1 u(t,s) > s if and only if t > p(s).

Corollary 2 {t|3s'|s| =|s|As' > sAu(t,s’)=s"}={t|t>p(s)}.

203

Suppose s is the state of column n, and let e be the number of endpoints
of the column in S, that is, the number of 0 entries in positions 1 and m of
s. The “contribution” that column n makes to I(S) + |S,] is

lsll = 4s|—e ifn=1,
"7 \5ls|-e ifn>1.

Finally, as in Fisher [1], define s’ > s if for some j, s'; =s;—1,and s'; =s;
otherwise. The next theorem is the basis of the algorithm.

Theorem 3 Define Ry, o(s) = R;’o(s) =0 if s < 1, and oo otherwise.
Then forn>1

B}, n(8) = min(lllln + R oy (p(5)), min R (6"))
Bonn(s) = min(lslln — Is] + B sy (2(6)), 2 Bon,n(5").

Proof. This proof is nearly identical to Fisher’s corresponding proof
for domination number. Also, the proofs of the two parts of this theorem
are essentially identical, so we present only the first. The proof uses a very
limited amount of arithmetic involving the values of R and R which can
be 00; to make sense of these statements we adopt the conventlon that
z + 00 = 00.

We first prove “<”. If s’ > s then R}, ,.(s) < R}, ,.(s') because each is
a minimum over a set, and the set correspondmg to R n(s') is a subset of
the one corresponding to R}, .(s). So Rf, ,(s) < mingys RY, .(s').

Next note that

R} .(s) = mmRm a(s) < lnlnn Ry ('),
8 >8
because the second minimum is taken over a subset of the set used in the
first minimum. Then

Bon@ S it Fra) = pin, (161t i a9

s'>s s >s
—i—
= "S”n min m,n—l(t)

|s| u(t,s’)=s’
s '>8

= lislln + B3, o1 (p(s)).-

204

The last equality relies on Lemma 1 and its corollary.

Now we prove “>”. Suppose that R} (s) = R, n(s") for some s" > s.

Then for some s’ > s, s” > ', and so R;',',m(s) = _;"n,n(") 2 Rf, .(8"), so
R}, .(s) > ming,s RY, ,.(s').

Suppose instead that for all s' > s, R}, .(s) < Ry, R .(s"), so R} .(s) =
R, .(s). Then there is a t > p(s) with u(t,s) = s and

R}, o(8) = R u(5) = llslla + B a1 (8) > llslln + B oy (p(s))-

We are now prepared to describe the algorithm to compute R}, ,, and
Ry for fixedmand 1 <n < N,

Let ¢, be the number of state vectors of length m. Number the state
vectors from 0 to ¢, — 1, giving vector s number i, so that t > s implies
it < is. (Thus, the largest vector 0 is numbered 0, and 2 is numbered
cm —1.)

1. Initialization. Set Ry o(s) = R;,o(s) =0if s < 1, and oo other-
wise.

2. Tteration. Suppose that Rmn—1(s) and R}, | _,(s) have been com-
puted for all s, and R a(t) and R}, (t) have been computed for all
t with iy < 5. Then by Theorem 3 we may set

R}, o(s) = min(|lslln + By, _y (2(s)), min Ry (s")

Bonyn(s) = min(lslln = [s] + B oy (2(5)), min Ren,n(s').
since all quantities in the right hand expressions have already been
computed.

3. Redundance. The final values of interest, namely the redundance
of the grid graphs Gy, 5, for fixed m and 1 < n < N, are the values

Rpn,n(1).

3 Computation of R, , for all n

Fisher discovered that in the case of the domination number of grid graphs,
the vectors corresponding to our R, eventually form an arithmetic se-
quence, and it seems not unreasonable to hope that the same might hap-
pen here. That is, for fixed m, we say that the sequence of vectors R, ,, is

205

eventually arithmetic if there exist NV, p and ¢ so that for all n > N and
all s

Rm,n(s) = Rm,n-p(s) +4q.

If Ry, is eventually arithmetic then we can determine R(Gm,n) for fixed
m and all n. This indeed turns out to be the case.

Since the values R n and R}, are determined by the valuesof R}, ,_,,

it is not hard to prove that if for all s, R}, y(s) = R}, y_,(s) + g, then for
alln > N and for all s Ry n(s) = Rm,,,_,,(s) +q.

For fixed m, define the vector J, by Ju(s) = R}, y_,(0) — R} y__(s).
The values J,,(s) are bounded above by 5m, so by the pigeonhole principle,
there are N and p with JN = JN-p. With g=R}, y(0)-R (0), this

;"-I,N—p
implies R, N(s) R, N_p(s) + g for all s.

Now if we run the algonthm until we find 0 < j < k such that for some
gand alls, R k(s) (s) + g, we will be able to write down a formula
for R(Gm,n) for (at least) n> j. Namely, if p=k—j,a=[(n—j—1)/p],
and b= (n — j — 1) mod p, then for n > j, R(Gmn) = aqg + R(Gm,j+1+b),
taking R(Gpm, j+1) through R(Gm «) as constants. In practice, the formulas
so obtained also work for some values of n < j.

The existence of N, after which the values of Ry, , are arithmetic, de-
pends on the pigeonhole principle applied to a very large number of pigeon-
holes. Fortunately, for 1 < m < 21, N is quite small: always less than 128
and usually much less.

For 1 < m < 13 we get 13 separate formulas for R(Gp, n), which are
not very enlightening. For 14 < m < 21, a single formula suffices, and we
conjecture that this gives the value of R(Gp) for all larger m as well.

Theorem 4 For 14 < m <21 and n > m, R(Gm) = g(m,n) where

g(m,n) =mn + |[6m/5+6n/5—1/5] — 15 + Crm mod 5,n mod 5

and
01021
11011
C=10 0 2 2 0
21 2 01
11011

206

4 An upper bound

For m,n > 22, we can show that g(m,n) is an upper bound on the re-
dundance. Figure 2 shows the same dominating set on a 14 by 14 grid
as Figure 1, with two rectangles surrounding groups of five rows and five
columns.

F===="

Figure 2: The 14 x 14 grid graph.

It is easy to check that if columns 5 through 9 are repeated as a block
any number of times, then the resulting set of vertices marked by large dots
is still a dominating set. If in this new grid, rows 5 through 9 are likewise
repeated, the result is a dominating set in a larger grid. Suppose we first
add ¢ new copies of the columns, then r new copies of the rows; let us
compute the influence.

The original set S shown in Figure 2, with m = n = 14, has influence
g9(m,n). The contribution of the vertices in the vertical rectangle is 76 =
5m + 6, so the contribution of the new copies of these columns is 5gm + 64.
The new grid has m rows and n’ = n + 5¢ columns, with influence

g(m,n)+5gm+6g = m(n+5q)+|6m/5+6(n+5q)/5—1/5] —14 = g(m,n').

The contribution of the original five rows in the horizontal rectangle to the
influence is 76 = 5n + 6; the contribution of the same rows in the expanded
grid is 5n + 6 + 25¢ = 5(n + 5¢) + 6 = 5n' + 6, since there are five points of
S in the intersection of the rectangles. When these five rows are replicated
T times, we get a grid with m’ = m + 5r rows. The new rows add 5n'r + 6r

207

to the influence, giving a total of
g(m,n')+5n'r+6r = (m+5r)n'+|6(m+5r)/5+6n'/5—1/5|—14 = g(m',n').

Thus, for any m' > 14, n' > 14, m' = 4 (mod 5), and n' = 4 (mod 5),
R(Gm n) < g(m',n'). To verify this upper bound for all m,n > 22, we
need to repeat the argument starting with small grid graphs representing all
possible combinations of m mod 5 and n mod 5. By symmetry, it is enough
to use grids with dimensions 14 x 15, 14 x 16, 14 x 17, 14 x 18, 15 x 15,
15 x 16, 15 x 17, 15 x 18, 16 x 16, 16 x 17, 16 x 18, 17 x 17, 17 x 18, and
18 x 18.

Let us list carefully what must be checked for each starting grid and its
associated dominating set S:

1. There are five rows and five columns whose replication leads to a
dominating set. To see that rows ¢,...,i + 4 replicate properly, we
need only check that row i + 4 contains a vertex of S every place that
row i — 1 does, and that row i contains a vertex of S every place that
row i + 5 does. Columns are similar.

2. The contribution of the rows to be replicated to the influence is 5n+6,
and the contribution of the columns is 5m + 6.

3. The vertices common to the rows and columns that will be replicated
contain precisely 5 elements of S.

It is a bit tedious to identify the candidate rows and columns and then
check conditions 1 through 3. Fortunately, it is easy to write a computer
program to find the rows and columns and perform the checks. We have
done this, and have in addition checked conditions 1 through 3 by hand.

The hardest part, of course, is discovering the dominating sets for the
starting grid graphs. This would be daunting by hand, but a simple modifi-
cation of the program used to compute redundance will produce a dominat-
ing set realizing the redundance. We did this to generate the needed grids,
and in some cases tweaked the results by hand to enhance the pattern that
is apparent in the resulting dominating sets. Note that since we are inves-
tigating an upper bound, it is not necessary to know that the dominating
sets are optimal. Once the dominating sets and blocks of rows and columns
have been found, the proof of the upper bound can be verified entirely by
hand.

208

5 A Lower bound

It appears that the redundance exceeds the number of vertices due to “edge
effects” in the grid graphs. This suggests that we might discover a good
lower bound for the redundance by investigating a strip of constant width
around the edge of a grid graph.

Define the excess domination v.(G) = R(G) — |[V(G)| = R(G) —mn. It
is not hard to see that

7e(G) =min) (NN S| + 1),

vEG

taking the minimum over dominating sets S. Here a—b = max(a—b,0) and
N[v] denotes the closed neighborhood of v. If S is any subset of V/(G) (that
is, not necessarily a dominating set), let Eg(S) = }_,¢q (IN[v] N S| = 1).

|
I
I
I
I
- - T - - - -=-=-=-=-=-=== 11 G2
I
!
i
|

|
|
|
|
G4|l _________________
|
|
|
|

Figure 3: Partitioned grid graph.

Suppose a grid graph G is partitioned into five subgraphs as shown in
Figure 3 and that S is a dominating set for G. Let S; = SN V(G;). Then

5 4
E(S) 2) Eci(S:) 2) Eai(S:).
i=1 i=1

Note that G; is a grid graph and that S; is a set that dominates all the
vertices of G; except possibly the vertices in one row and one column on
the boundary. Let us say that a set that dominates a grid graph G, except
possibly the vertices in the first row and the last column, elmost dominates
G. Suppose H = G; j; what we would like to know is the value of

mgnEH(S),

209

taking the minimum over sets S that almost dominate H. If we can compute
this minimum for fixed i and any j, we can apply this to G; through G4
and get a lower bound on 7.. Ideally, we want to choose i so that the
resulting lower bound is close to the upper bound, i is small enough to give
us a bound on 7.(Gm,nn) for m,n > 22, and computing the minimum is
computationally feasible. Using i = 10 satisfies all of these criteria, giving
a small constant difference between the upper and lower bounds.

We want to compute the minimum possible values of Eg, ; as we did
R, namely, by incrementing j and looking for a point at which the values
become arithmetic. Unfortunately, we have not been able to discover a
result analogous to Theorem 3, so we resort to a similar but less efficient
algorithm. (The problem is that when adding a new column to the grid,
the amount by which to increment the value of E depends on exactly what
column is chosen to precede it.)

An s-almost-domination of G 5 is a subset S of the vertices that dom-
inates the first n — 1 columns, except possibly vertices in the first row, and
for which the state vector of the final column is s. Let

Epn(s) = msin Eg,, .(S),

taking the minimum over all s-almost-dominations of Gmm n. Suppose that
t is the state of column n — 1 in Gy, n—1 for subset S, and that a column
n is added, with state vector s. Let (t,s) be the state vector induced on
column n, provided that the state vector induced on column n —1 is at least
(2,1,1,...,1), that is, that column n — 1 is dominated, except (possibly)
the first vertex; 4 is undefined otherwise. Now

Epn(s) = (mi;1= . (incr(t,s) + Em n-1(t)),

a(t,s

where incr(t, s) is computed as follows, assuming that i(t,s) = s and that
S is the associated almost-dominating set in Gy, n. Number the vertices in
Gm n in the obvious way: v;;,1<i<m,1<j<n.

1. Set i =0.

2. For each k € {1,...,m} for which sy =0 and t; <1, add 1 to i.

3. Foreach k € {1,...,m}, let j = |[N[vg,n] N S| = 1, and add i to i.

4. The value of i is incr(t, s).

The algorithm is now straightforward:

210

1. Initialization. Set B, o(s) =0 if s = 1, and oo otherwise.

2. Iteration. Suppose that Ep, n—1(s) has been computed for all s.
Then set

Emn(s) = 1.‘(rtng; . (incr(t,s) + Ep n-1(t)) .

3. The final values of interest are the values ming E,; ,(s), taking the
minimum over all s, since we do not require that the rightmost column
be dominated.

We have not been able to prove that the sequence of vectors Ep, , be-
comes arithmetic, but it is easy to see that once E, v = Em N—p+¢, Emn
is indeed arithmetic for n > N. We can thus start the algorithm and hope
that we discover By, v = Ep n-p for small N. This does in fact happen
for m = 10.

Performing this calculation with m = 10, we find that
min Eyo,i(s) = |(3¢ — 4)/5),1 2 7.
Then the desired lower bound is given by
Eg(S) 2 2min E1o,m-10(8) + 2 min Ejo,n-10(5)
> 2|(3(m — 10) — 4)/5] + 2| (3(n — 10) - 4)/5},

for m,n > 22. Finally, combining this with the upper bound, we have the
following theorem.

Theorem 5 Let {(m,n) = mn + 2 [Sms— 4 +2 3n5— 4 - 24. When

m,n > 22, {(m,n) < R(Gm,n) < g(m’n) and g(man) - e(m:n) <16.

We conjecture that the redundance of the grid graphs is equal to the
upper bound when m,n > 22.

An implementation of the Algorithm. We used three main pro-
grams to get the results presented here: a program to compute the redun-
dance, a program to produce examples of optimal dominating sets, and
a program to compute E; ,. The second of these is a straightforward
modification of the first; it keeps additional information that allows us to
identify a sequence of state vectors that provide the minimum redundance.

211

As noted above, the third program uses a different algorithm; while similar
to the first it is actually simpler to program.

A few points are worthy of discussion. The obvious way to check for the
point at which the values become arithmetic is to keep the values R}, .(s)
for all » and s. The principal drawback here is space: the amount of storage
required increases rapidly with m, and becomes prohibitively large on the
machines available to us when m is around 16.

A substantial reduction in storage can be achieved at what turns out
to be a modest cost in running time. Instead of keeping R} (s) for all
previous values of n, we keep the values for only one value of n at a time.
Each time we compute a new set of values R}, (s), we compare them to
the values R}, ,(s), and periodically we increase the value of . To ensure
that we eventually detect the arithmetic nature of the sequence, we must
make sure that r increases and also that we check for ever larger intervals.
We use powers of 2 for r so that, for example, »r = 8 for n = 9,...,186,
r =16 for n = 17,...,32, and so on. Every time we check R,*,'m(s) against
R}, .(s), we actually gain some time over the old method, which would have
us compare Ry, (s) to (typically) all previous values R}, ;(s), i < n. On
the other hand, we detect the arithmetic property later, which means we
compute R}, .(s) for more values of n, and this slows the program down.
For example, Rf, 5,(s) — R 24(s) is constant, but we do not detect the
constant difference until Rf, 3;(s) — R, 3,(s).

We can further minimize storage by reducing the storage required for a
single value R}, |.(s). Instead of allocating a 32 bit integer (an “int” in C)
or even a 16 bit integer (a “short”), we allocate only 8 bits, as an “unsigned
char”. This means we can store values up to 255. To make this work, we
normalize the values R}, .. (s) by subtracting the minimum over all s, which
is always the value R}, /(2). This also means that the check for a constant
difference becomes a check for equality, which is more efficient. These two
improvements in storage efficiency were used by Fisher [2].

The programs, written in C++, are available from the author; send
email to guichard@whitman.edu.

References

[1] D. C. FisHER, The domination number of complete grid graphs.
manuscript.

[2] ——, The domination number of complete grid graphs. preprint.

[3] T. W. HAYNES, S. T. HEDETNIEMI, AND P. J. SLATER, Fundamentals
of Domination in Graphs, New York: Marcel Dekker, Inc., 1998.

212

