Nordhaus—Gaddum Results for Open
Irredundance

E.J. Cockayne

Department of Mathematics and Statistics
University of Victoria
BC, Canada,

Abstract

It is shown that for n > 16, the sum of cardinalities of open irre-
dundant sets in an n—vertex graph and its complement is at most
3n/4.
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1 Introduction

Let G = (V, E) be a simple n—vertex graph and v € X C V. The vertex
is called an X-self private neighbour (abbreviated X-spn) if z is isolated in
the subgraph of G[X] of G induced by X, and t € V — X is an X—external
private neighbour (X-epn) of z if N(t) N X = {z}. It is well-known that
X is an irredundant set if for each £ € X, z is an X-spn or x has at least
one X-epn. Alternatively, X is irredundant if for each z € X,

Niz] - NIX - {z}] # &.

Since each neighbourhood here is closed, such an X has also been called
CC-irredundant [2].

Irredundance is the property which makes a dominating set minimal.
This fact, together with applications has stimulated many authors to con-
tribute to an intriguing theory of irredundant sets (see [11]). For a graph
parameter 7(G), results which bound the sum 7(G) + n(G) or the prod-
uct 9(G)n(G) (where G is the complement of G) are known as Nordhaus-
Gaddum results due to the work of these authors on chromatic numbers
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[13]. Such results for CC-irredundance were established in [5] together
with a characterisation of the extremal graphs.

It is the purpose of this work to establish analogous results for open irre-
dundance, which was introduced in [7] and applied to broadcast networks.
The set X is open irredundant if each £ € X has at least one X-epn.
Equivalently, X is open irredundant if for each z € X,

N(z) - NIX — {z}] # ¢.

Since the neighbourhoods in this characterisation are open and closed, such
sets have also been called OC-irredundant in (2, 10].

Let 0ir(G) and OIR(G) denote the smallest and largest cardinalities
among the maximal open irredundant set of G. Various inequalities re-
lating these parameters to the domination number and CC-irredundant
parameters were established in {7, 8, 9, 12]. In [1] it was shown that any
isolate—free graph has an open irredundant minimum dominating set. An
algorithm for computing OIR(T)) for a tree T was presented in [6]. In [4]
a lower bound for 0ir(G) was obtained when G is an isolate-free n ver-
tex graph with maximum degree A. The extremal graphs for this bound
were characterised. The concepts of CC- and OC-irredundance have been
embedded in larger classes of irredundance models in [2, 3, 10].

In Section 2 we prove that for any n—vertex (n > 16) graph G, OIR(G)+
OIR(G) < 3n/4. The bound is exact for n = 0 (mod 4) and extremal
graphs of the inequality are exhibited. A simple corollary shows that for
n > 16, OIR(G)OIR(G) < 9n?/64. This bound for the product cannot be
attained for n > 17.

2 The bound for OIR(G) + OIR(G)

Let X(Y) be open irredundant sets of G(G), |X| = = and |Y| = y. Note
that both z and y are at most n/2. Each v € X(v € Y) has an X-epn u,
in G (Y-epn v, in G). The edges of G (respectively G) will be coloured red
(blue). Occasionally u,(vs) will be called a red epn of u (blue epn of v).
Let X’ = {u, | u € X}. Then each edge of {uu, | u € X} is red while all
other edges joining X to X’ are blue. Note that the set X' is also an open
irredundant set of G and u is an X’-epnof u, in G. Let Z =V - (XU X’).

The principal result will follow immediately from three propositions
which are broken down into cases depending on the distribution of ver-
tices of Y and blue epns among the three sets X, X', Z. The counting in
the various cases is remarkably similar. We repeatedly use the following
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obvious fact.

Lemma 1 Let A be an open irredundant set in a graph F and B C V(F).
If each w € AN B has A-epn in B, then |AN B| < |B|/2.

Proposition 1 Ifn > 14 and [Y N X| > 3, then z +y < 3n/4.

Proof Since [YNX| >3, foreachu €Y NX, u, & X’'. Hence up € XUZ.
Define

Xi={ue¥YnX|ue X}
Xo={ueYnX|u€Z}
Xz3=X-(X1UX2)
and for i = 1,2,3, let | X;| = z;. Forw € YNZ, w, € X; UX2U X', hence
wp € X3U Z.
Casel YNX'=¢
Let t = |{w e YNZ | wy € X3}|. Then by Lemma 1,

{weYNZ|weZ}<(n—2z—23—1t)/2 (1)

We will now give more detailed justification for (1). Similar explanations
will be omitted in future cases of the propositions. Define

B=Z-({weYnZ|wy,€ Xs}U{ws € Z|w e X}) (disjoint union).

Note that |B| = (n — 2z — 22 —t) and
{fwe¥YNZ|wyeZ}={weYNB|w, € B}.

Then (1) follows by applying Lemma 1 with A =Y. Now
z+y=z+|YNnX|+|Y nZ|

n-—2:r—:r:2—t)

<z (@ra) e (T

B lyn
—$1+2+2+2. (2)

The blue epns in X3 are distinct and so z3 >t + x4, i.e.

5-3 (3)

< = .
-2 2

[CTRCS
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From (2) and (3) we obtain

T+ T2+ 23 n
2 >+§

~|g

x+y$(

I
N8
..I_
b3
IA
+
|3
I

-3

Case 2 [YNnX'|>2.

In this case z; =0, each w € YN Z has wy, € Z and for each w e Y N X/,
w, € X' ie. wp € X3U Z.

Subcase 2(a) w €Y N X' has w, € X3.
This implies |Y N X’| =2. Let Y N X’ = {w,v}. Now
z+y=z+|YNX|+|YNX'|+|Y N2

(n—2z—z9— )
2

where A = 1 (respectively 0) if v, € Z(X3). Hence

n Ty A
<—4+2_Z 42
x+y_2+2 2+2 (4)

<z+z20424

By counting blue epns in X3 we obtain z3 > 2 — A. Hence from (4)

b)) +.’123)

) +1=2 2L (5)

2 2

n
a:+’y$§+(

n—=ry

However |Z| > z; and so z < . Hence from (5)

n =z
L —_— - .
z+y < 1 4-i-l (6)

By hypothesis 3 = |Y N X| > 3. If 25 > 4, then (6) gives 2 + y < 3n/4 as
required. If o = 3, then (6) gives
n 1
<4
s+y< - +7 (7)

However equality in (6) or (7) requires z3 = 2 — X and = = (n — x2)/2.
Therefore
(n—-3)

2
Hence n = 13 — 2\ < 14, a contradiction which shows that

=zx=z9+z3=3+(2-\).

T+ <3n-+-1
V<7771

Therefore xz 4+ y < 37".
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Subcase 2(b) Each w € YN X' has wy € Z.
Let s =|Y N X’|. Then

z+y=z+|YNX|+|YNX'|+|Y NnZ|

(n 2z — :r:z-s)
<z+z3+s+

-(F+a)rg<3+

wl:
Al:
wl:
Il
~| L

Case 3 |Y NX'|={v}.

Define A as in subcase 2(a) and let u(= 0 or 1) be the number of vertices in
Y NZ with blue epns in X3. Hypothesis and the private neighbour property

imply
zy+p <1 (8)

By counting blue epns in X3 we obtain
$32(1—)\)+$1+M. (9)

The set Z contains A + z2 blue epns of vertices in Y N (X U X’) and p
vertices of Y N Z have blue epns in X3. Hence using Lemma 1 we obtain

z+y=z+|YNX|+|YnX'|+|YNnZ|

n—2r—p—22—A
2

<z+ () +x2)+1+u+<

A
P T k)

2 ) 5 Tl

Using (9) we deduce

Ty + 22+ 23

) (10)

[

n 1 n =z
<= — = - =
x+y_2+< )+2 2+2+

However by (8) 1 < 1 and so zo > 2. This implies z < (n — 2)/2 and
therefore from (10) we get z +y < 37". |

Proposition 2 Ifn>16 and [Y N X | € {1,2}, thenz +y < 32.

Proof Let |Y NX|=1+ a, where a € {0,1}. If |Y N X’| > 3, then the
result is true by the application of Proposition 1 to X’ and Y. Hence we
may assume that |Y N X’| < 2.

Case 1 |[YNX'| =1+ where 8 € {0,1}.
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At most 1 — o (respectively 1 — ) vertices of Y N Z have blue epns in X’
(respectively X). Hence

z+y<z+|¥YNnX|+|YnX'|+|YNnZ|

Sw+u+a»+u+ﬂy+u_a»+u-ﬁy+(“ﬂx—2+w+ﬂg

n a+f _n
= - —_— -
2-}-3+ 7 =73

< Z%n (since n > 16).

+4

Case 2 |[YNX'|=0.

In this case at most (1 —a) vertices of YN Z have blue epns in X’. Suppose
that ¢ vertices of Y N Z have blue epns in X. Then estimating as above
yields

n—-2r—14+a-—t
2
t

n 3 (11)

=3tztaty

Now t + (1 + @) < z. Therefore from (11)

x+y$x+(1+a)+(l—a)+t+(

n
<=4+Z+1.
:1:+y_2+2+1 (12)
Ifz < -"T“*-, then (12) gives z +y < 37". Suppose that = 25, where
m < 3. Then |Z| =m and

z+y=z+|YNnX|+|YNZ|

n—m
2
m

+'5+2
7

3n
- —_ > .
+2 < 1 (for n > 16)

IA

)+2+m

o3 IS A/~

IA

Proposition 3 Ifn>16 and [Y N X| =0, thenz+y < ?{T".

Proof By Propositions 1 and 2 applied to X’ and Y we may assume that
[Y N X'| =0. Let s (respectively t) vertices of Y N Z have blue epns in
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X (X"). By estimating as usual we obtain

n—s—t—2x
z+y<z+s+t+| —mm

2
_n s+t _n y
=3t 3ty
Since y < 2, we obtain z +y < 2 as required. [ |

The principal result of the paper now follows immediately from Propo-
sitions 1, 2 and 3.

Theorem 1 For any n—vertez graph G where n > 16,

3n

OIR(G) +OIR[@) < .

In order to describe the following example and the extremal graphs in

Section 3, we let X = {uy,...,uz} and X’ = {v,,...,v;}, where for each
i=1,...,T vertex v; is a red epn of u;. Note that each edge joining X to X’
which is not in {u;v; | ¢ =1,...,z}, is blue. Let Z = {wy,...,wx} (where

2z + k = n > 16). Examples will be described by specifying = and disjoint
sets Y, Y’ of cardinality y. The order of vertices within the set parentheses
describing Y, Y, will be such that a vertex in Y’ will be a blue epn of the
corresponding vertex in Y, so that all other edges joining Y to Y’ are red.
Any edge which joins neither X to X’ nor Y to Y’ may be arbitrarily red
or blue.

We now present an example to show that OTR(G) +OIR(G) can exceed
3nfd forn < 16. Let n =13, 2 =5, Y = {u),us, w1, wy, w3} and Y’ =
{’02,’01,113,114,115}. Then

3
z+y=10> );13.

3 Extremal graphs: the product OIR(G)OIR(G)

In order to find the extremal graphs of the bound of Theorem 4, one sub-
stitutes equality for each inequality used in the proof of the bound in the
various cases in Propositions 1, 2 and 3. This analysis will be carried out
in (a) — (g) below. Note that the bound can only be attained when n =0
(mod 4).
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(a) Proposition 1, Case 1

Substitution of equality for inequalities used to establish the bound
(in future cases these words will be omitted) gives z = n/2 and z3 =
t+z;. Therefore, if the bound is attained, then |Z| =t = 22 = 0 and
z3 = z;. Thus
n
2y =11+ T3 =T = 3

so that y = n/4. without loss of generality Y = {u1,u3,...,ug3-1}
and Y’ = {ug, ug,...,ugp}.
(b) Proposition 1, Subcase 2(a)

In this situation we have £ = (n—z3)/2. This implies A = 0 and since
z3 = 2 — A, we deduce z3 = 2. Also r; = 0 and z = 4 which implies
k=4. Hence z = (n — 4)/2 and y = 22 + |Y N X'| = 6. Therefore
6 + (n — 4)/2 = 3n/4 which gives n = 16 and z = y = 6. Without
loss of generality

(i
Y= {'U],UZ,'U.3,U4,U5,U5} and Y' = {uz,UI,wl,wz,W3,W4}.

(c) Proposition 1, Subcase 2(b)

Here we have y = n/2 , hence = = n/4. The structure is that of (a)
with red and blue edges interchanged.

(d) Proposition 1, Case 3

In this case z = (n — 2)/2 which implies ¥k = 2 and z, < 2. By
hypothesis z; + z2 > 3 and (8) gives ; < 1. We conclude z3 = 2,
zy; =1 and A = g = 0. Equality in (9) gives 23 = 2. Hence n =12, a
contradiction.

(e) Proposition 2, Case 1
We have (o + f)/2 =1ie. a=p0=1 and 4+ n/2 = 3n/4 so that
n = 16. Hence

(z,9) € {(4,8),(8,4),(5,7),(7,5), (6,6)}.
If (z,y) = (8,4) then without loss in generality Y = {u;,uz,v3,v4}
and Y’ = {vp,v,uq,u3}. The situation with (z,y) = (4,8) is a
blue/red interchange of this.

If (z,y) = (7,5) then Y = {u;, u2,v3,v4, w1} and Y’ = {3, v1, u4, u3, wa}

and (z,y) = (5,7) gives a blue/red interchange of this.
Finally (z,y) = (6,6) gives

!
Y = {w1,u2,v3,vs, w1, w2} and Y’ = {va,v1,u4, u3, w3, ws},

which is a different situation from that in (b).
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(f) Proposition 2, Case 2

In this case t + 1 + a = z. Equality is possible if z = (n — 4)/2 so
that k =4,t <4 and z < 6. Wededucen < 16ie. n =16, a=1
and z = 6. Without loss of generality Y = {u,u2,w;,ws, w3, wq}
and Y’ = {'Uz,’U],’U.:;, Uy, Us, Uﬁ}-

(g) Proposition 3

We have y = k = n/2 and z = n/4. The situation is the same as
(a) with Y",Y, X playing the roles of X, X', Y and blue and red edges
interchanged.

The above analysis shows that there are several different structures of
extremal graphs for n = 16. For n > 20 and n = 0 (mod 4) every extremal
graph is one of those specified in (a) (we emphasize that we are ignoring
interchanges of X, X’ of Y,Y’, and of red/blue edges).

Finally we consider the product of OTR(G) and OIR(G).

Corollary 1 If G has n vertices, then
(i) OIR(G)OIR(G) < 36 forn =16.

2
(i) OIR(G)OIR(G) < 9614 forn > 17.

Proof Let OIR(G) = z and OIR(G) = y. By Theorem 4 for n > 16,
xyS:c(%n—m). (13)

By elementary calculus the maximum of the right hand side of (13) occurs
when z = y = 3n/8 and the maximum is 9n2/64.

(i) If n = 16, then the analysis of (b), (e) and (f) above give the
extremal graphs of the bound 9n2/64 = 36.

(i1) Ifn > 17, then (a) - (g) above show that z = y = 3n/8 is impossible
and so OIR(G)OIR(G) < 9n?/64. [ ]

Note that (a) above implies

2
max OIR(G)OIR(G) 2 % for n = 0 (mod 4).

2
We can obtain a lower bound very close to % for n £ 0 (mod 4) with

T = I.%J’ Y= {u11u31' . '} and Y/ = {U2,U4,. }
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