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Abstract

A set D of vertices in a graph G is irredundant if every vertex v in
D has at least one the private neighbour in N{v, G]\N[D\ {v},G]. A
set D of vertices in a graph G is a minimal dominating set of G if D is
irredundant and every vertex in V(G)\ D has at least one neighbour
in D. Further, irredundant sets and minimal dominating sets of
maximal cardinality are called IR-sets and I'-sets, respectively. A set
I of the vertex set of a graph G is independent if no two vertices in I
are adjacent and independent sets of maximal cardinality are called
a-sets.

In this paper we prove that bipartite graphs and chordal graphs
have a unique a-set if and only if they have a unique I'-set if and only
if they have a unique IR-set. Some related results are also presented.

Keywords: Independence; Upper domination; Upper irredundance;
Uniqueness; Chordal graphs; Bipartite graphs.

1 Terminology and Introduction

For any graph G the vertex set and the edge set of G are denoted by
V(G) and E(G), and n(G) = |V(G)| and m(G) = |E(G)| are called the
order and the size of G, respectively. For any subset A C V(G) we define
the induced subgraph G[A] as the graph with vertex set A and edge set
{ab € E(G) | a,b € A}. For any set A C V(G) and any vertex z € V(G)
we define G — A = G[V(G) \ 4] and G —z = G — {z}. For any positive
integers s and ¢ we denote by K the complete bipartite graph where one
partite set has order s and the other has order ¢, and for ¢ > 3 we denote
by C; the cycle of order t.

For every vertex z in the vertex set of a graph G we denote the set
of neighbours of z in G by N(z,G) = N(z) and we define N[z,G] =
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N[z] = N(z) U {z}. The sets N(z) and N[z] are called the open and the
closed neighbourhood of z, respectively. For a subset D of V(G) and a
vertex £ € D the set P(z,D) = N[z] \ N[D \ {z}] is called the private
neighbourhood of z with respect to D. We call a vertex y € P(z,D) a
private neighbour of z with respect to D. For a set A C D we define the
set P(A,D) = ¢4 P(z, D).

A set D C V(G) is irredundant if every vertex in D has at least one
private neighbour. An irredundant set D of G is called mazimal irredundant
if D U {v} is no longer irredundant for every vertex v € V(G) \ D. The
maximum cardinality of an irredundant set is called the upper irredundance
number and is denoted by IR(G). Further, an irredundant set of G of
cardinality IR(G) is called an IR-set.

A set D C V(G) is a dominating set of G if V(G) C N[D,G]. A
dominating set D of G is called minimal if D\ {z} is no longer a dominating
set of G for every vertex £ € D. The maximum cardinality of a minimal
dominating set is called the upper domination number and is denoted by
I'(G). We call a minimal dominating set of G of cardinality I'(G) a I'-set.

A subset I of the vertex set of a graph G is called independent if no
two vertices in I are adjacent and an independent set of a graph G is called
a mazimal independent set of G if for every vertex u € V(G) \ I the set
I'U {u} is no longer independent. An independent set of a graph G of
maximal cardinality is called a mazimum independent set of G or an a-set
and its cardinality is called the independence number of G and is denoted
by a(G).

If a(H) = ['(H) for every induced subgraph H of G, then a graph G
is called I'-perfect. Furthermore, a graph G is called IR-perfect if I'(H) =
IR(H), for every induced subgraph H of G. For other graph theory termi-
nology we follow the monograph by Haynes, Hedetniemi and Slater [13].

In 1985, Hopkins and Staton [15] have investigated graphs with unique
maximum independent sets, and there succeeded a couple of publications
on the uniqueness of graph parameters, as e.g. [6], [7], [9], [8], [10], [12],
[19] and [20]. There are also several publications on relations between
independence, upper domination and upper irredundance as for example
[1], (2} (3], [4], [11], (23], [14), [16] and [21].

Cockayne, Favaron, Payan and Thomason [2] found in 1981 that any
bipartite graph G satisfies a(G) = I'(G) = IR(G). About ten years later
Jacobson and Peters [16] proved the same for chordal graphs and for a
class of graphs defined by three forbidden induced subgraphs, and Topp
[21] showed this equality for unicyclic graphs. Using these results, we prove
in this paper for any of those graphs the equivalence of the uniqueness of
an a-set, the uniqueness of a I'-set and the uniqueness of an IR-set, and we
present some related results.
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2 Preliminary results

The following equality chain is well known.

Lemma 2.1 (Cockayne, Hedetniemi and Miller [4]) For any graph
G every mazimal independent set is a minimal dominating set and every
minimal dominating set is mazimal irredundant. Thus,

a(G) <T(G) < IR(G).

In 1998, Gutin and Zverovich have found the following relation.

Theorem 2.2 (Gutin and Zverovich [11]) Any I'-perfect graph is IR-
perfect.

There are several classes of graphs that are I'-perfect and IR-perfect. Four
of them are considered here.

Theorem 2.3 (Cockayne, Favaron, Payan and Thomason [2]) IfG
is a bipartite graph, then

a(G) = I(G) = IR(G).

Theorem 2.4 (Jacobson and Peters [16]) IfG is a chordal graph, then
a(G) =T'(G) = IR(G).
Theorem 2.5 (Jacobson and Peters [16]) For any graph G that does
not contain either K, 3, Cy or the graph H in Figure 1 as an induced
subgraph,
a(G) =T(G) =IR(G).

The complete bipartite graph K; 3 is also called the claw, and graphs G
that do not contain K 3 as an induced subgraph are also called claw-free.

Figure 1
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Theorem 2.6 (Topp [21]) If G is a unicyclic graph, then
a(G) =T(G) = IR(G).

Since the main properties of the graphs in the last four theorems are
hereditary with respect to induced subgraphs, all those graphs are I-perfect
and IR-perfect.

3 Uniqueness
As a corollary of Lemma 2.1 we obtain the following.

Observation 3.1 Let the graph G be arbitrary.

a) If I'(G) = IR(G) and G has a unique IR-set D, then D is also the
unique I'-set of G.

b) If a(G) = I'(G) and G has a unique I'-set D, then D is also the unique
a-set of G.

Proof. Lemma 2.1 implies that every a-set of G is a I-set of G if
a(G@) = I'(G), and every I'-set of G is an IR-set of G if I'(G) = IR(G).
Hence, the required result follows. a

We will now construct graphs which show that the converse of Obser-
vation 3.1 does not hold in general.

For every integer ¢t > 3, let G;; be the graph consisting of two disjoint
complete graphs H and H' with vertex sets V(H) = {z,,%2,...,2:} and
V(H') = {y1,92,..., 4} and of the additional edges {z;y; | 1 < i < t} and
of a further vertex z that is adjacent to all vertices in H (cf. Figure 2 a)).

Further, let the graph G2 consist of the graph G, of a disjoint in-
dependent vertex set U of cardinality ¢ — 2 and of the additional edges
uv € E(G3,) for every u € U and v € V(G1,¢) \ {z1,¥2} (cf. Figure 2 b)).

Observation 3.2 The graph G ¢ has the unique I'-set V(H) and ['(G1 )
=IR(G1,:) =t but G has no unique IR-set, since the two sets V(H) and
V(H') are IR-sets of G 4.

The graph G2,¢ has the unique a-set U U {z;,y2} and a(G2;¢) =T'(Ga2;) =
IR(G2,) =t but G has the two [-sets U U {z,y2} and V (H).

We will see that for all classes of I'-perfect graphs G considered in Sec-
tion 2, a unique a-set I of G also is the unique I'-set and the unique IR-set
of G. In order to prove this, we use the following two lemmas.
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H K H H' /
H2H =2K;, t>3 U independent, |U| =t — 2 and
ue U, v € V(G1y),uv € E(Ga) & v # z1,92
a) b)
Figure 2

Lemma 3.3 If any graph G has a unique a-set I, then every vertezr in
V(G) \ I has at least two neighbours in I.

Proof. Let G be an arbitrary graph that has a unique a-set I. Suppose
that a vertex v in V(G) \ I has at most one neighbour in I. Then, the set
(I'\ N(v)) U {v} is independent which either contradicts the maximality or
the uniqueness of I. m]

Lemma 3.4 Let G be a I'-perfect graph. If G has a unique a-set I and an
IR-set D # I, then

a) for every vertex x € I\ D there ezists a unique vertez wy, € D\ I
such that P(w,, D) = {z},

b) {ab€e E(G)|a€I\D,be D\I}={zw, |z €I\D}, and

c) there ezists a cycle C in G such that C = 2123 ...24pz; for some
positive integer p and for every 0 < i < p we have z4442 € D\ I,
Z4i+3 € IND and z4i41 € P(z4i42,D) C I\D, 24i44 € P(z4443,D) C
P(INnD,D)\(Iu D).

Proof. Let G be a I'-perfect graph that has a unique a-set I and an
IR-set D # I. By Theorem 2.2, we have a(H) = I'(H) = IR(H), for
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every induced subgraph H of G, and especially |I| = |D|. Let x € I\ D
be arbitrary. We define the induced subgraph G; = G — z of G and the
independent set I, = I'\ {z}. Since I is unique, the set I, is an a-set of
G:. Thus, we get that |D| > |I;| = a(G;) = I'(G;) = IR(G;). This and
the fact that D is a subset of V(G;) imply that D is not irredundant in G.
Hence, there exists a vertex w, in D with P(wz,D) N V(G;) = . Since
the set D is irredundant in G, we obtain that P(w,, D) = {z}, w; € D\ I
and N(z) N (D \ I) = {w;}, whereby the proof of a) is complete.

The equality | D\ I| = |I'\ D| implies that every vertex in D \ I has exactly
one neighbour in I\ D and this neighbour is its only private neighbour.
This proves b).

It remains to prove c). Let z; € I\ D be arbitrary and let z; be its
unique neighbour in D \ I. By Lemma 3.3, the vertex z; has at least two
neighbours in I which yields the existence of a neighbour x3 of z; in IND.
Since D is irredundant and z3 & P(z3, D), there exists a fourth vertex z4 €
P(z3,D) C P(IND,D)\D. 1t even yields that 24 € P(IND, D)\ (DUI),
since z3 lies in J. By Lemma 3.3 and since 4 € P(z3, D), the vertex z4 has
a neighbour in I\ D. If the vertex z4 is adjacent to z;, then z1z223247)
is a cycle that satisfies the properties in c). Otherwise, the vertex x4 has
a neighbour z5 in I \ D different from z;, and we can extend the path
T1ZT2T3T4 to a longest path P = z1z5...2¢, t > 5, such that for every
1 <1<t we have

z;€I\D ifi=1 (mod 4),

z;€ D\I ifi=2 (mod 4),

z;€IND ifi=3 (mod 4) and
z; € PIND,D)\ (IUuD) ifi=0 (mod 4).

This implies that z; € P(z;41,D) forevery 1 <i<twithi=1 (mod 4)
and z; € P(z;—1,D) forevery 1 <i <t withi=0 (mod 4).

If t =1 (mod 4), then the unique neighbour w of z; in D \ I does not
belong to P, since it has no other neighbour in I \ D, and we can extend
P with w, which is a contradiction.

Analogously, if t =3 (mod 4), then z; has a private neighbour u outside
I and D and, since u € P(IND, D)\ (IUD), this vertex u does not belong
to P and we can extend P with u, which is a contradiction.

Ift=0 (mod 4), then z; € P(z—1,D) and by Lemma 3.3, the vertex z;
has a second neighbour in I besides z;_; that has to lie outside of 9. Since
P is a longest path, this neighbour has to lie in the set (I \ D) 1 V(P).
Let z, € N(z:) N (I \ D) N V(P) such that v is maximal. Then, we know
that v =1 (mod 4). If we define y;_(,-1) = z; for every v < i < ¢, then
Y1¥2 - - - Ye—(v-1)%1 is a cycle that satisfies the properties in c).
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If t=2 (mod 4), then z;—, is the only neighbour of z; in I \ D, and by
Lemma 3.3, z; has at least one neighbour in I N D. Since the path P is
a longest path, there exists a greatest index 1 < v < t — 1 such that the
vertex z, € N(z;) N (I N D), and we know that » =3 (mod 4). In this
case, we define y; = z;_1, y2 = T¢ and Y34 ;) = z; forevery v <i <t-2.
Hence, the cycle 192 ... 4:—(,—1)¥1 satisfies the properties in c). ]

With this lemma we are able to prove the following results.

Theorem 3.5 Let G be a bipartite graph and let D be a subset of V(G).
Then the following conditions are equivalent:

(i} D is the unique IR-set of G.
(i) D is the unique I'-set of G.
(iii) D is the unique a-set of G.

Proof.

(i) = (ii) = (iii) Follows immediately from Theorem 2.3 and Observa-
tion 3.1.

(iii) = (i) Let G be a bipartite graph with partite sets A and B, and let
I be the unique o-set of G. Suppose that G has an IR-set D # I. Let
Dy = {z € D | P(z,D) = {z}}. Since G is I'-perfect, Lemma 3.4 yields
that every vertex w € D\ I has its unique private neighbour in I\ D which
implies that the set Dy is a subset of I N D. We define the four subsets

Ay =(D\I)NA4,
A, =(PIND,D)\(DUI)NA,
B, = (I \ D) N B,
B, = ((In D)\ Do)N B.
Figure 3 illustrates these sets where P = P(IND, D)\ (DUI). Note, that

the sets A; and A, are disjoint subsets of A\ I and the sets B, and B; are
disjoint subsets of BN I. Next, we define the set

I'=(I\(B1UB;))U(A1UA2) =(I\B)U(DoNB)U (4; UA,).

Suppose that there exist two adjacent vertices a and b in I'. The union
(I'\ B)U (Do N B) is independent as a subset of I, and the union (I \ B)U
(A1 U Ay) is independent as a subset of the partite set A. Thus, without
loss of generality, we deduce that a € A; U Ay and b€ Dy N B.

If a € A;, then we obtain the contradiction that b € Dy is its own private
neighbour with regard to D but b is adjacent to a € D.
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I\D InD D\I P

Figure 3

If @ € As, then a has to be a private neighbour of b, which contradicts that
b € D,.

Hence, the set I' is independent, and by the uniqueness of I, we obtain
that |I'| < |I|, which is equivalent to | By U Ba| > |A;1 U A4

By Lemma 3.4 a), we get that |B;| < |4, since a vertex in B, only has
neighbours in the partite set A.

Furthermore, every vertex & € B2 = ((IND)\ Do) N B has a private neigh-
bour p; in P(IND,D)\ (DUI). Since z lies in the partite set B, we
deduce that p, € Az, which implies that |Bs| < |A2|. This results in the
contradiction |B; U B;| < |4, U Aq|. o

Corollary 3.6 Let G be a unicyclic graph and let D be o subset of V(G).
Then the following conditions are equivalent:

(i) D is the unique IR-set of G.

(ii) D is the unique ['-set of G.
(iii) D is the unique a-set of G.
Proof.

(i) = (ii) = (iii) Follows immediately from Theorem 2.6 and Observa-
tion 3.1.

(iii) = (i) Let G be a unicyclic graph. If the only cycle in G is even, then
G is bipartite and the required result follows from Theorem 3.5. Now, let
the only cycle in G be odd and let I be the unique a-set of G. Suppose
that G has an IR-set D # I. Since G - as a unicyclic graph - is I-perfect,
we obtain by Lemma 3.4 c) the existence of a cycle C in G of even length.
This contradiction completes the proof. m]
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Theorem 3.7 Let G be a I'-perfect, claw-free graph and let D be a subset
of V(G). Then the following conditions are equivalent:

(i) D is the unique IR-set of G.
(i) D is the unique I'-set of G.

(i) D is the unique a-set of G.

Proof.
(i) = (ii) = (iii) Follows immediately from Theorem 2.2 and Observa-
tion 3.1.

(iii) = (i) Let G be a I'-perfect, claw-free graph and let I be the unique
a-set of G. By Lemma 3.3, every vertex in V(G) \ I has at least two neigh-
bours in I. Since G is claw-free, every vertex in V(G) \ I has exactly two
neighbours in I. Suppose that G has an IR-set D # I. Then, there exists a
cycle C in G as in Lemma 3.4 ¢). Let C = z,3 ... 24,7, for some positive
integer p such that z; € I\ D and z; € D\ I. Furthermore, let

(I\D)e = V(C)n(I\D)
(D\I)e = V(C)N(D\))
(INnD) = V({C)n{UIND)
Pc = V(C)n(PInD,D)\(UD))

Suppose that there is an edge ab in the induced subgraph G[(D\ I)c U Fc].
Since every vertex in P¢ is a private neighbour of a vertex in I N D, there
is no edge between any vertex in Pc and any vertex in (D \ I)¢. Thus, it
yields either a,b € (D\I)c or a,b € Pc. If a,b € (D\I)¢, then let, without
loss of generality, a = 2 and b = z; for some j =2 (mod 4), 2 < j < 4p.
Since N(z2)NI = {z1,z3} and N(z;)NI = {zj_1,Z;j4+1}, the induced sub-
graph G[{z1,z2,z3,;}] is a claw, which is a contradiction. Analogously, if
a,b € Pc and, without loss of generality, a = x4 and b = z; for some j =0
(mod 4), 4 < j < 4p, then N(z4) NI = {z3,25}, N(z;) NI = {zj—1,Zj41},
and the induced subgraph G[{z3,zs,%s,z;}] is a claw, which is a contra-
diction. Hence, the set (D \ I)¢ U P¢ is independent. Every vertex z in
(D\I)cUPc has two neighbours in INV(C) and hence it has no neighbour
in I'\ V(C). This implies that the set I' = (I \ V(C))U (D \ I)c U P¢ is
independent. Since the cardinalities |[INV(C)| and |(D\I)cU P¢| are both
equal 2p, we obtain the contradiction that |I'| = |I| and I’ is a second a-set
of G different from I. a

By Theorem 2.5 and Theorem 3.7, we obtain the following,.
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Corollary 3.8 Any graph G that does not contain either K, 3, C4 or the
graph H in Figure 1 as an induced subgraph has a unique IR-set if and only
if it has a unique I'-set if and only if it has a unique a-set.

At least we consider chordal graphs.

Theorem 3.9 Let G be a chordal graph and let D be a subset of V(G).
Then the following conditions are equivalent:

(i) D is the unique IR-set of G.
(ii) D is the unigque I'-set of G.
(iii) D is the unique a-set of G.

Proof.
(i) = (ii) = (iii) Follows immediately from Theorem 2.4 and Observa-
tion 3.1.

(iii) = (i) Let G be a chordal graph and let I be the unique a-set of G. As
mentioned at the end of Section 2, the graph G is I-perfect. Suppose that
G has an IR-set D # I. Then, there exists a cycle C in G as described in
Lemma 3.4 c). Let C = z,x5 ... 24px: for some positive integer p such that
z, € I\ D and z2 € D\ I. Furthermore, let C’ be a cycle of minimal length
in the induced subgraph G[V (C)] that contains the edge z;z2. Since the in-
duced subgraph G[V'(C)] is chordal, we obtain that C' = z,z2yz; for some
vertexy € V(C)\{z1,z2}. The fact that z; € I leadstoy € V(C)\I. Note
that V(C)\I C (D\I)U (P(InD,D)\(IuD)). If y € P(INnD, D)\ (IUD),
then we obtain the contradiction that y is adjacent to the vertex z5 in D\ I.
Hence, it remains that y € D \ I. But in this case the vertex y lies in D
and is adjacent to z; € P(z2, D) which is a contradiction. m]

Siemes, Topp, and Volkmann [19] have investigated so called k-indepen-
dent sets - a generalization of unique a-sets - and they have found charac-
terizations of k-independent sets for several classes of graphs. For k = 1
their results contain a further characterization of unique a-sets in chordal
graphs (cf. Theorem 4 in [19]).

Theorem 3.10 (Siemes, Topp, and Volkmann [19]) Let G be a graph
in which every even cycle possesses a chord. Then the following statements
are equivalent.

a) D is the unique a-set of G.

b) D is an independent dominating set of G such that every vertez in
V(G) \ D has at least two neighbours in D.
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The following lemma contains a simple characterization of dominating
sets as in Condition b) of Theorem 3.10. The proof of this result is trivial.

Lemma 3.11 Let G be an arbitrary graph. Then the following two condi-
tions are equivalent.

a) D is a (minimal) dominating set of G such that P(z,D) = {z} for
every vertezz € D.

b) D is an independent dominating set of G such that every vertex in
V(G)\ D has at least two neighbours in D.

Theorem 3.9 together with Theorem 3.10 and Lemma 3.11 yields the
following.

Corollary 3.12 Let G be a chordal graph of order at least 3 and let D be
a subset of V(G). Then the following conditions are equivalent:

(i) D is the unique IR-set of G.
(i) D is the unique I'-set of G.
(iii) D is the unigue a-set of G.

(iv) D is a independent dominating set of G such that every vertez in
V(G)\ D has at least two neighbours in D.

(v) D is a (minimal) dominating set of G such that P(z,D) = {z} for
every vertez z € D.

Remark 3.13 By Lemma 3.3, Condition (iv) and (v) in Corollary 3.12 are
necessary for the uniqueness of a-sets in arbitrary graphs. But they are not
necessary for the uniqueness of I'-sets in arbitrary graphs (cf. the graph
Gi, in Figure 2 a)).

Furthermore, in arbitrary graphs Condition (iv) and (v) are not sufficient
for the uniqueness of a-sets, I'-sets or IR-sets, even not if the graph G satis-
fies a(G) = I'(G) = IR(G) and an a-set I of G fulfils Condition (iv) and (v).
For example consider for some integer s > 3 the complete bipartite graph
K, ; satisfying a(K, ;) = ['(K;,s) = IR(K,,;) = s and both partite sets are
a-, I- and IR-sets that fulfil Condition (iv) and (v). Thus, Corollary 3.12
does not even hold for bipartite graphs.

Remark 3.14 There exist polynomial time algorithms to compute a for
bipartite graphs and for chordal graphs (cf. Chapter 12.3.4 in [13]).
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If we consider an arbitrary unicyclic graph G and an edge =y on its cycle,
then it is straightforward to see that a(G) = max{a(G—z),a(G—y)}. Since
G -z and G — y are trees, we can determine a(G) for unicyclic graphs G
in linear time, by using the algorithm of Daykin and Ng [5].

Also for claw-free graphs it is possible to find an a-set in polynomial
time (cf. [17], [18]).

In [7] the authors have proved that, if G is a class of graphs such that for
every graph G € G, and every vertex v € V(G) it is possible to determine
a for the graphs G and G — N[v,G] in polynomial time, then it can be
decided in polynomial time whether a graph in G, has a unique maximum
independent set.

Since every one of the four graph classes considered in this paper fulfils
this condition, we can decide in polynomial time whether any graph in
one of these classes has a unique a-set. By our results in Theorem 3.9,
Theorem 3.7, Theorem 3.5 and Corollary 3.6, this also yields an efficient
algorithm for the decision problem whether a graph in these classes has a
unique I'-set or a unique IR-set.
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