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Abstract

In this paper it has been verified, by a computer-based proof,
that the smallest size of a complete arc is 12 in PG(2,27) and 13
in PG(2,29). Also the spectrum of the sizes of the complete arcs of
PG(2,27) has been found. The classification of the smallest complete
arcs of PG(2,27) is given: there are seven non-equivalent 12—arcs
and for each of them the automorphism group and some geometrical
properties are presented. Some examples of complete 13—arcs of
PG(2,29) are also described.

1 Introduction

In the projective plane PG(2,q) over the Galois field GF(g) an n—arc is
a set of n points no 3 of which are collinear. An n-arc is called complete
if it is not contained in an (n + 1)-arc of the same projective plane. For
a detailed description of the most important properties of these geometric
structures, we refer the reader to (7). In [9] the close relationship between
the theory of complete n—arcs, coding theory and mathematical statistics
is presented. In particular arcs and linear maximum distance separable
codes (MDS codes) are equivalent objects [21], [22], [23]. Partly because
of this fact, in recent years, the problem of determining the spectrum of
values of n for which a complete arc exists has been intensively investigated.
This article concerns the minimal complete arcs in PG(2, q) for ¢ < 29. The
minimal size of a complete n-arc of PG(2, q) is indicated by ¢(2, ¢). General
lower bounds on ¢(2, g) are given in the following table:
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q t(2,q) > | References

q V2q+1 20

g=p", pprime, h=1,23 [ 3g+1/2 | [2],3],(18]
Table 1.1: Lower bounds for £(2, q)

The values of (2, q),q < 25 are stated in the following table:

¢ |29 Number of classes Number of classes References
’ up to PGL(3,q) up to PI'L(3,q)

2 4 1 7

3 4 1 7

4 6 1 1 7

5 6 1 7

7 6 2 7

8 6 3 1 [7],]14]

9 6 1 1 7]

11 7 1 8],[6

13 8 2 1],[6

16 9 6 2 [11],[14],[17]

17 10 560 5],[17

19 10 29 5,117

23 10 1 (5]

25 12 606 [15]

Table 1.2: t(2,9), ¢ <25
In this article it is demonstrated by a computer-based proof that
£2(2,27) = 12, t2(2,29) = 13,
and that the spectrum of the sizes of the complete arcs in PG(2,27) is:
12,13,14,15,16,17,18,19, 22, 28.

This result has been obtained by an exhaustive computer search that has
been feasible because projective properties among arcs have been explo.ted.
In fact in writing effective computer search programs in projective spaces,
some strategy has to be adopted to avoid producing too many isomorphic
copies of the same arc and searching through parts of the search space
isomorphic to previously searched portions {19].

The authors also classify the smallest complete arcs in PG(2,27) finding
seven classes of 12—arcs up to PT'L(3,q). The smallest complete arcs of
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PG(2,29) have not been classified yet, but 254 non-equivalent examples
of 13—arcs have been found. The automorphism group is D3 for all the
seven complete 12—arcs of PG(2,27), while in PG(2,29) 251 13-arcs have a
trivial automorphism group and the remaining three 13—arcs are stabilized
by Z3. In both spaces some geometrical properties of the smallest complete
arcs have been studied.

The plan of the paper is the following: in the second section the obtained
results concerning the values of £5(2,27) and of ¢5(2,29) and the spectrum
of the sizes of the complete arcs in PG(2,27) are presented; in the third
some geometrical properties of the smallest complete arcs in PG(2,27) are
given; in the fourth some smallest complete arcs in PG(2,29) are described.

2 The determination of ¢2(2,27), t2(2,29) and
of the spectrum of the sizes of complete
arcs in PG(2,27)

The results presented in this paper have been obtained by an exhaus-
tive computer search. The exhaustive search has been feasible because
projective properties among arcs have been exploited to avoid obtaining
too many isomorphic copies of the same solution arc and to avoid search-
ing through parts of the search space isomorphic to previously searched
portions. The algorithm used starts constructing a tree structure contain-
ing a representative of each class of non-equivalent arcs of size less than or
equal to a fixed threshold h. If the threshold h were equal to the actual
size of the sought arcs, the algorithm would be orderly, that is capable
of constructing each goal configuration exactly once [19]. However, in the
present case, the construction of the tree with the threshold h equal to the
size of the sought arcs would have been too space and time consuming. For
this reason a hybrid approach has been adopted. The tree representing the
non-equivalent arcs of size less than or equal to eight has been constructed
and then every non-equivalent 8—arc has been extended using a backtrack-
ing algorithm trying to obtain complete arcs of the desired size. In the
backtracking phase, the information obtained during the classification of
the arcs has been further exploited to prune the search tree. In fact the
points that would have given arcs equivalent to already obtained ones have
been excluded from the backtracking steps. The algorithm is described in
detail in [15).

When studying the value of £2(2,27), during the classification, up
to PT'L(3,27), of the arcs of PG(2,27) of size less than or equal to 8, 4
non-equivalent arcs of size 5, 174 non-equivalent arcs of size 6, 8261 non-
equivalent arcs of size 7 and 311313 non-equivalent arcs of size 8 have been
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found. Each 8-arc has been extended to obtain complete arcs of size less
than or equal to 12 and twelve examples of complete 12—arcs have been
found, so t2(2,27) = 12. The search for the 12—arcs lasted about 7 days
on a 200 MHz PC. The algorithm used guarantees that any other 12-arc
is projectively equivalent to one element of this set. The 12—arcs found
have been classified using MAGMA, a system for symbolic computation
developed at the University of Sydney. The number of non-equivalent arcs
up to PT'L(3,27) results is seven. In the next section the description of a
representative of each equivalence class is presented.

When studying the value of t3(2,29), during the classification, up
to PGL(3,29), of the arcs of PG(2,29) of size less than or equal to 8, 10
non-equivalent arcs of size 5, 682 non-equivalent arcs of size 6, 41301 non-
equivalent arcs of size 7 and 1933469 non-equivalent arcs of size 8 have been
found. In this case it has not been possible to look for complete arcs of size
thirteen because the execution of the program would have lasted too long,
hence each 8-arc has been extended to obtain complete arcs of size less
than or equal to 12. No examples of complete 12—arcs have been found, so
t2(2,29) = 13. The search for the 12—arcs lasted about 40 days on a 300
MHz PC. In section 4 the description of some examples of complete arcs of
size thirteen of PG(2,29) is presented.

In PG(2,27) examples of arcs of size k, 12 < k < 19, are known ([0,
[12], [13], [16]) and the second largest cardinality, m(2, 25), is 22 ([4]). So,
to determine the spectrum of the sizes of complete arcs, complete arcs of
size twenty and twenty-one have been sought. In this case the algorithm
presented above has been modified stopping the extension of the current
8—arc when the number of points available becomes too small to obtain a
complete arc of the desired length. No complete arcs of size 20 and 21 have
been found, so the spectrum of the sizes of complete arcs in PG(2,27) is:

12,13,14,15,16,17,18,19, 22, 28.

The execution of the program lasted about 35 days on a SUN Enterprise
450 with a 400 MHz processor.

3 Classification of the smallest complete arcs
in PG(2,27)

The size of the smallest complete arcs of PG(2,27) is twelve and the num-
ber of non-equivalent, up to PI'L(3,27), 12—arcs is seven. Six complete
12—arcs have the dihedral group D3 as automorphism group, while the
seventh has S4. This and all the other properties presented in this section
and in the next have been determined using MAGMA.
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Each of these seven arcs contains the following set of points

R ={(0,0,1),(0,1,0),(1,0,0),(1,1,1)}

and the field GF(27) has been constructed using the primitive polynomial
e +22+1.

The list of these arcs is the following;:

Ky = RU{(L¢ €12,6%, (1,6%,€"), (1,€,€M), (1,2,€), (1,£%,6%),
(1,€%,6%2), (1,7, €9), (1,62, €20));

K; = R U {(1,€%¢5), Rens ', (1,5“‘,525), (1,2,€7), (1,€%,6%),
(1,6%,6%), (1,€29,6%), 1,65, )

K = RU{(1,6¢"), (L& €21,65), (1,€",€6%), (1,€'%,6%Y), (1,2,€%),
(1,1, 2y, (1,8, ¢%), (1,62, 69}

Ky = RU{(1,€%€"), (1€, (1,6,6"), (1,6%,67), (1,6",2),
(1,€%,6%), (1€ e° (15 £}

K- =RU (1 616)6 17,§25) (16 £11) (1 625 68) (1 624;£23)
(1,6%,2), {’, ) (1) (‘,f b

Kg = RU{(1,¢",€"), 1, e”,e”) 1,e,eMm), 1,68,6), (1,¢ s2°),
(1,€2,€'7), (1,€%,6%2), (1,€%, ¢4}

K —Ru{Qg €2,¢'), (L 518,52‘ ), (1,624,620, (1,€',€"), (1,£%,€%),
(1,€%,€Y), (1,€%2,€%), (1,6%°,6%)}.

Some geometrical properties of these arcs have been investigated; the
following theorem summarizes some of the obtained results:

Theorem 1 Let C be the set of all irreducible conics of PG(2,27). Then
the following hold:

(a) |KiNG| <8, for i=1,...,7 and for all G € C;

(b) the value 8 is reached only for Ke, and Kz; for each of them there exist
three conics in C intersecting them in 8 points.

(c) K7 has a unique orbit (cardinality 12) while each K;, i =1,...,6, has
two orbits of cardinality 3 and one orbit of cardinality 6.
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In the following table we describe the conics intersecting K, and K7 in

8 points:

G:|[KNG|=8
a:y+£l°xz+§l7yz =0
K¢ §2my+§“mz+y2+£6y2=0
£2 +fl2xy+£uxz+£22yz+£23z2 _
zy + Ezz+y%+ &ﬁy7+ {7@ =0
K; zy + Bz +yz=0
z2 + Ezl:cy + 6253:2 + §leyz =0

Table 3.1: Conics intersecting K¢ and K7 in 8 points

The orbits of K;, i =1,...,6, are described in the following table:

[O]=3 O] =6

12 4
(01,0, e a3 ey | {LEHE100)
K, 24 47 19 22 (1,€7,€°),(1,1,1),
{(01011))(115 ’é )a(lxg 1& )} (1’2’2§),g1,§’§11)1}1
{(170’0),(1,59’523),(1’523,521)}; {(1155765)a(1:§75 )1
K| Geonmaenaen ey | s el

21 ¢6 11
(1,00, @ enem a2 | (s OSE

Bl 0.0 e} | (L 0%
2 16

(01,019 e, 0 | (LEED0L00

| wandetehaetay | QT i)

25 .8 16 -4 17 £25\1. {(1)6241£23)7(0a0r1)1
{(115 ’6 )a(laE ’{ )y(1)£ sE )}7 (11521y§17)1(1’070)1

K5 {(1,1,l),(1,{,{“),(1,{19,522)} (0v110)a(1)§2072)}
. {(1,€,6™),(1,1,1),
A gl (1,€%,€"),(0,1,0),

KG {(lv£191£22)a(1:622v£23)»(1’£5’£24)} (1 0 0) (1 E 611)}

Table 3.2: Orbitsof K; i=1,..6

In the following table we describe the classes in relation to the existence
of G € C suchthat |[K;NG|=6,i=1,.,7:
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IG]: | KinG |=6
K, 28
Ky 37
K; 37
K, 49
K 31
K 28
Ky 40

Table 3.3: Number of conics intersecting K;, i=1,...,7, in 6 points

There are no G € C such that |[K; NG| =7 for i=4,6,7 while for
the remaining arcs a description is given in the following table:

|Gl:|[K N G|=7 Equations
22+ Moy + %22+ %2 =0
2y + €022 + €7yz = 0
K, 6 61::8!, -;251%2 -i'r- vt E1121yz =0
e+ 2y + vz 4+ yz2=0
Elga:y +&2z2 4 .£1°yz +22=0
22 + 22y + %22 4+ 192 + P02 + €322 =0
oy +Ezz + §2zyz =0
Ky 3 2wy + &z + 12 + 02 =0
22+ zy + 22 + €232 + +€6Myz =0
Ty + Efbxz +&yz+22=0
K3 3 22+ 8ay + 022 +£28y2 =0
2y + %2+ Pyz+ 22 =0
2+ ay+ P2z +£0%2z=0
K 3 £y + 222 +y2 + Myz =0
fxy + 8224+ €yz 4+ 22 =0

Table 3.4: Conics intersecting K;, i=1,2,3,5, in 7 points

4 The smallest complete arcs in PG(2,29)

The smallest cardinality of the complete arcs in PG(2,29) is 13. The
classification of the complete 13—arcs has not been finished; in this section
the description of the 254 non-equivalent 13—arcs found so far is given.
Let I'={K;, i=1,...,254} be the set of these complete 13—arcs. It has
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been verified using MAGMA that 251 of them have a trivial automorphism
group, while Z3 is the stabilizer of the remaining three. The three arcs
stabilized by Z3 have 5 orbits, one consisting of 1 point and the others
consisting of 3 points, as one may see in the following table:

O]=1 0] =3
(6,4, (1,4,25), (1,12,9)};
{(1,14,20), (1,3,7), (1,18,24)};
{(0,0,1), (1,11,15), (1,27,23)};
{(1,13,21), (1,0,0), (0,1,0)}
{(1,2,19), (1,0,0), (1,20,12)};
{(0,0,1), (1,8,19), (0,1,0)};
{(1,9,11), (1,1,1), (1,21,17)};
{(1,7,2), 1,13,21), (1,3,7)}
{(1’7’ 6)1 (115) 3)’ (1’22’ 12)};
{(1,6,4), (1,0,0), (0,1,0)};
{(1,13,21), (1,28,27), (1, 1, 1)};
{(1,23,19), (1,3,7), (1,12,23)}

Table 4.1: Orbits of K € ', having Z3 as stabilizers

K | {(1,1,1)}

K" | {(1,28,16)}

K" | {(0,0,1)}

For each complete 13—arc the intersections with the irreducible conics have
been computed. The following theorem summarizes the obtained results.

Theorem 2 Let C be the set of all irreducible conics of PG(2,29). Then
the following hold:

(a) |K: NG| <8, for i=1,...,254 and for all G €C;

(b) there are thirty complete 13-arcs such that for each of them there exist
ezactly one conic inC, G;, with |[K;NG;| =8, i =1,...,30 and there is ez-
actly one element of T', namely K3 = {(0,0,1), (0,1,0), (1,0,0), (1,1,1),
(1: 197 20)) (11 26: 24): (11 61 28): (1: 1392)7 (17 37 7): (1) 25’ 13)’ (1’ 10) 15)’
(1,24,23), (1,28,26)}, for which there exist two conics G1,G2 € C, G1:
0zy + 267z + 1lyz + 22 =0, Ga:xy+25z2z+ 3yz + 2> =0, such that
|K31 n G1| =8= |K31 n Gz‘.

() |KiNG;| <7 i=32,..,254, VG; €C.

The following table gives the number of complete 13-arcs for which there
exist j irreducible conics having seven intersections with them.
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[{KeI‘:|{GeC:1|2KﬂG|=7}|=j}|

36
75
67
45
13
5
1

Table 4.2; Numbers of 13-arcs in I’ for which
there exist j conics intersecting them in 7 points

|| U | Wl =] O] -

The following remark states, for j > 3, the number of 13-arcs such
that the conics having seven intersections with the arc have the maximum
number of common points belonging to the arc. Also the 13-arc with the
maximum number of conics that intersect it in seven points is given.

Remark 1 1) If j = 3 there exists three 13-arcs such that for each of
them

3
IK N ()Gl =3

i=1

2) If j =4 there exists four 13-arcs such that for each of them

4
K0 ()Gl =2;
1=1
8) If j =5 there ezists three 13-arcs such that for each of them
5
(Gl =1.
i=1

4) There is only one class, namely K = {(0,0,1), (0,1,0), (1,0,0), (1,1,1),
(1,13,21), (1,28,19), (1,3,7), (1,5,8), (1,25,22), (1,2,26), (1,7,20),
(1,14,15), (1,16,10)}, for which exist 7 conics G; i =1,...,7

Gy: zy+9zz2+20yz=0,

Gy: 9zy +27Txz+ 15yz+ 22 =0,

Gs : 22zy +4zz+2yz+ 22 =0,

G4 :9zy + 162z +y2 + 11yz =0,

Gs: 22 + 3zy + Txz + 18y%2 =0,

Gg : 22 + 6zy + z2z + 10y + 5yz + 22 =0,
G7: 2% + Tzy + 20zz + 18yz + 222 = 0,
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such that [KNG;| =T.
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