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Abstract

The trace of a degree n polynomial p(z) over GF(2) is the coeffi-
cient of z"~! and the subtrace is the coefficient of 2™ 2. We derive an
explicit formula for the number of irreducible degree n polynomials
over GF(2) that have a given trace and subtrace. The trace and sub-
trace of an element B € GF(2") are defined to be the coefficients of

n-1
n—1

2™ and "2, respectively, in the polynomial g(x) = H (z+ ﬂz‘).

i=0
We also derive an explicit formula for the number of elements of
GF(2") of given trace and subtrace. Moreover, a new two equation
Mobius-type inversion formula is proved.
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1 Introduction

The trace of a degree n polynomial p(z) over GF(2) is the coefficient of
z"~! and the subtrace is the coefficient of z"~2. It is well known that the
formula

Lin) = = Y u(@)2/4 M

din

counts the number of degree n irreducible polynomials over GF(2), where
p(d) is the Mdbius function. Less well-known is the formula

Li) = 5= Y w(d2"/? @

which counts the number of degree n irreducible polynomials over GF(2)
that have trace 1. This result is later proved in Theorem 3. The purpose of
this paper is to refine these formulas by enumerating the irreducible degree
n polynomials over GF(2) with given trace and subtrace. This enumeration
uses numbers familiar to those working on the combinatorics of words. In
order to state our main result we need to develop some notation.

The cotrace of p(z) is the coefficient of z!. The reciprocal of p(z) is the
polynomial p*(z) := z"p(1/z). A polynomial is self-reciprocal if it is equal
to its reciprocal.

An aperiodic word of length n has n distinct circular shifts, exactly one of
which is minimal in the lexicographic order. Such a word is called a Lyndon

word. If L(n, k) is the number of length n Lyndon words containing exactly
k 1’s, it is known that

1 n/d
k=2 > wa () Q
n d | ged(n,k) k/d
A simple proof may be found in [2].
For S C {0,1,...,n}, let
e(S) =Y _ L(n,k).

kes

It can be readily seen that e({0,1,...,n}) = L(n) and e({k | k is odd }) =
Ly (n), the number of irreducible polynomials with trace 1. Our main result
comes from the correspondence in enumeration between Lyndon words and
irreducible polynomials. The main theorem says that the number of degree
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n irreducible polynomials with given trace and subtrace is obtained by
taking every fourth entry from the n-th row of the table of L(n, k) numbers.

MAIN THEOREM. The number of irreducible polynomials of degree n over
GF(2) with given trace and subtrace is covered by one of the following cases:

o The number of trace 0, subtrace 1 polynomials is e({k | (k+n) =0
(mod 4)}).

o The number of trace 1, subtrace 0 polynomials is e({k | (k+n) =1
(mod 4)}). : ‘

o The number of trace 0, subtrace 0 polynomials is e({k | (k+n) =2
(mod 4)}).

o The number of trace 1, subtrace 1 polynomials is e({k | (k+n) =3
(mod 4)}). ‘

Subsequent to our discovery of this theorem in 1998, we learned in 2001 that
it had been anticipated in a more general form by Kuz’min [8]. However,
the approach and proofs in the two papers are disjoint. Whereas [8] makes
extensive use of the theory of L-functions and character theory for groups,
our proofs are combinatorial in nature and elementary in that they rely
only on the intrinsic (vector space) structure of the field. We feel that the
novelty of our approach justifies publication. Furthermore, we have recently
learned that Yucas and Mullen [12] have used the machinery and approach
developed in this paper to count the number of polynomials over GF(2)
with given trace, subtrace, and sub-subtrace.

The organization of this paper is as follows. We begin in Section 2 by
proving a novel two-equation Mébius inversion formula. In Section 3, we
derive the formula (2) for L;(n), first as a corollary of known results, and
then using a method which is indicative of our approach for the more refined
formulas for trace and subtrace. In Section 4, we prove a series of technical
results which are then used to count the elements in GF(2") with given
trace and subtrace. In Section 5, we prove the main theorem.

Congruences modulo 4 are crucial and. pervasive in this paper and expres-
sions of the form z = y (mod 4) are shortened to read z = y. We use
Jungnickel [6] as a reference for terminology and basic results from finite
field theory.
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2 A generalized Mobius inversion formula

The approach we follow in this section is similar to that found in Knuth,
Graham, and Patashnik [7]. The defining property of the Mébius function
is

Y ud) = [n=1], (4)

din

where [P] for proposition P represents the “Iversonian convention”: [P]
has value 1 if P is true and value 0 if P is false (see [7], pg. 24).

LEMMA 1

\‘ Z Z Okl = Zzak,m (5)
kln Il(n/k) min klm
k=1 =1 m=1 k=1
DY =)D okm (6)
I i o i
Z Z Ok,kl = Z Zak,m M
w102 il
N ek = D) aem (8)
ey i2eY sy s

We will prove one of these (8); the proofs of the others are similar. First

observe that if m = ki, thén

E=3]k=3] = [k=1]k=3] = [m=1][k=3].

We now rewrite the left side of (8),

Z z Qe kil = Z Z ak,kz[[n = Jk]]ﬂn/k = ml]][[k = 3]l|[l = 3]l

kln 1(n/k) Jim k,1>0
k=3 =3

m k>0
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and the right side of (8)

Yo am = 2. apmin = jmlm = kij[m = 1][k = 3]

k .
75 i 5 k>0

Z Z a;,,kz[n = mkl]]l[k = 3]”[[ = 3]',

m k>0

and observe that they are identical. m]

THEOREM 1 Suppose that A(n), B(n), a(n), and B(n) are functions on
numbers. Then

Am) =3 a(3)+ > 8(3) and

din din
d=1 da=3

B(n) =" 8(7) + Y a(3)

din din
d=1 d=3

if and only if

a(n) = D u(dAZ) + D udB(Z) and

d|n din
da=1 d=3

Bn) = 3 (@B + X w(dAG).

d|n din
d=s1 dz=3

Proof Consider the sum:

fm) = a(3)+ X3,

din din
d=1 d=3

Plugging in the expressions for o and 8 we obtain (applying (4) and
Lemma 1) '
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i = | T w0a®h+ ¥ o) +

i | g o
Y| X waB+ Y wead
& il A1

= Y Y w04+ Y Y weBL +
din cl(n/d) din cln/a)
Y > weB(—= /d +3 (c)A(
a3 & e

= X uPA) + 2 )B(,’;
m|n dlm mln d|m
ZZ#( —)B(—= )+ZZ#( )A( )
=5 & T

= YA )Zu( )+ZB( )
m|n dim
ZB Z u— )+2A( )Z#( )
ml" dlm m_!_u1 dlm

= ZA( )Zu( )+EB( ) > wZ 7)
mln dlm dim

= ZA( )Zu(d)+ZB( ) u(d)
""l" dlm "'l" dlm

= A

Verification in the other direction is similar and is omitted. O

Setting a(n) = B(n) (or A(n) = B(n)) gives us the following corollary.

COROLLARY 1 Suppose that A(n) and a(n) are functions on numbers. Then

Am) =Y a(%) if and only if a(n)= Y p(d)A(%).
din dln
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3 Counting trace 1 irreducible polynomials

In this section we count the trace 1 irreducible polynomials. We begin by
introducing some notation that will be used in the remainder of the paper.

If ¢ is the power of a prime, FF = GF(q), E = GF(¢q"), and 8 € E, we
define '

n—1
Trg/r(8) =3B .
k=0

In the case ¢ = p where p a prime, one writes Trg(f) instead of Trg/r(8).
The quantity T'rg(8) is called the absolute trace of 5 and is the negative of

n—1

the coefficient of 2"~ ! in f(z) = H (x - ﬂ”i). We also write Tr(f) instead

i=0
of Trg(B).

In this paper we deal only with the case p = 2 and adopt the following

notation. If E = GF(2") and 8 € E, Tr(B8) := Tre(8). f F = GF(2™),

E = GF(2"), with F C E and 8 € E, Trenam(B) := TTE/p(ﬂ). If a €

GF(2™) C GF(2"), Trom(a) := Trr(a). If B € GF(2"), St(B) is the
n-1

coefficient of z"~2 in f(z) = H(a: + ﬂzi). We also write St(f) instead of

i=0
St(8).
For polynomial f of degree n over GF(2), define

fPz) :=z"f(z +z71).

The following three results are all stated and proved in the book of Jung-
nickel [6].

LEMMA 2 ([6]}, PG. 77) Let g be any monic self-reciprocal polynomial of
degree 2n over GF(2). Then there exists a polynomial f of degree n over
GF(2) such that g = f9. If g is irreducible, then f is also irreducible.

THEOREM 2 ([6], PG. 77) The number of monic self-reciprocal irreducible
polynomials of degree 2n over GF(2) is Li(n).

LEMMA 3 ([6], PG. 80) Let f(z) be degree n irreducible polynomial over
GF(2). Then f@ is irreducible if and only the cotrace of f is 1.
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We now show that the number of degree n irreducible polynomials of trace
1 equals L, (n) using two methods. The first proof uses the previous results,
while the second proof is illustrative of the approach to be used in proving
the main theorem.

THEOREM 3 The number of degree n irreducible polynomials over GF(2)
with trace 1 is Li(n).

First Proof. We count the number of irreducible degree n polynomials
over GF(2) with cotrace 1; this is the same as the number with trace 1
since the map f — f* is a bijection and sends the irreducible polynomlals
to irreducible polynomials.

Let f be such a polynomial. By Lemma 3, f9 is irreducible. Clearly f<
is self-reciprocal and has degree 2n. On the other hand, if g is a self-
reciprocal irreducible polynomial of degree 2n, then by Lemma 2 there is
an irreducible polynomial f of degree n such that g = f@. By Lemma 3 the
cotrace of f is 1. Hence there is a one-to-one correspondence between self-
reciprocal irreducible polynomials of degree 2n and irreducible polynomials
of degree n with cotrace 1. Thus, by Theorem 2, the number of irreducible
polynomials of degree n with cotrace 1 is L;(n). : O

We now give an alternative proof for the result above, emphasizing different
aspects.

Second Proof. If 3 € GF(2") and p(z) is the minimal polynomlal of 3,
denoted Min(G), then

p(z) = (z - B)z — B - (z - B,
where d | n.

Let Irr(n) denote the set of all irreducible polynomials over GF(2) of degree
n. By a-Irr(n) we denote the multiset consisting of a copies of Irr(n).
Classic results of finite field theory imply the following equality of multisets:

U Min@) = |Jd-Irr(@d) = U Irr(%). (9)

BeGF(2™) d|n d|n

From (9) it is easy to derive (1) via a standard application of Mébius
inversion.
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Now we restrict the equality (9) to trace 1 field elements to obtain:

U Ming) = Ui ety : Troh=1) (10

BEGF(2") dln

Tr(@)=1
= U 7 {pe Irr(%) :d-Tr(p) =1} (11)
d|n

U g {pe Irr(%) : Tr(p) =1} (12)

din
d odd

The set of trace 0 and trace 1 elements partitions GF(2") into two sets of
equal size (since trace is additive and @ — o+ 1 is a bijection). Hence, the
number of trace 1 elements in GF(2") is 2"~!. Thus if we take cardinalities
in (12), we obtain:

Z Irr (13)

din
d odd

where Irr(n,1) denotes the number of irreducible polynomials of degree n
and trace 1. The fact that Irr(n,1) = Li(n) now follows by Corollary 1.
O

4 Counting elements in GF(2") of given trace
and subtrace

In this section we count the elements in GF(2") with glven trace and sub-
trace. We first prove two technical lemmata.

LEMMA 4 Suppose 8 € GF(2") with minimal polynomial p of degree n/d.
Then Tr(B) is the coefficient of z™~* in p* and St(B) is the coefficient of

z"~2? in pt.

Proof We consider only the subtrace. The proof for the trace is almost
identical.

The subtrace of 8 is the coefficient of z"~2

n—1 )
a(@) = [ @+ 6%).

=0
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Since p has degree n/d, the degree of § must be n/d; i.., ﬂ2i+"/ ‘= .
Therefore,
n/d

g(z) = ([[z + 827 )? =p*.

i=0

O

Let Lg(k) be the number of irreducible polynomials of degree k with trace
0.

LEMMA 5
_ n_n. 27?1 ifn even
; 0@ = TR+ i - {5 it
I" d:o dl’;
Proof: Let

TOEDIAC

dln
d=2

B(n) = Z =L(5 )+Z Lo()

d|n
da=0 d=2

If n odd then clearly there are no even divisors of n. But in each of the
expressions A(n) and B(n) the divisors of n must be even. Thus if n is odd
then both A(n) and B(n) must be 0.

Consider n even. We first prove that A(n) = 2™/2-! and then use this
result to prove B(n) = 2™/2-1,

An) = Z g )

dln

= X3 g 2 w2

klz
k odd

= _=Z Z 2n/dk

din  dk|n
d=2 k odd

= 3 S p(k)2n/ 9,

dk|n
d=s2
k odd

—
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We now let m = dk and substitute for d:

Am) = 5 Y wkem
7o
k odd
S
ey
kl?
1
= Iy emY
w o HE
1
gl
= 2"/2—1.

We now consider B(n) + A(n) for n even.

Bn)+A(n) = Y ZL(Z)+ Y ho(3)+ > ZLi(3)
% & o

= n_.,n n_.n
= Y SLH+ ; 7L

din

- T

din

d=2

d even
n n
- SR
2d ‘2d
d3 d
= 272,

Thus since A(n) = 2"/2-! for n even, by performing simple subtraction we
get the result B(n) = 2"/2-! for n even. m]

We first modify (12) to add a restriction on the subtrace, and then express
the result as a disjoint union depending on the value of d mod 4.
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U M@ = Ug{pelrr(g) : Tr(p?) =t and St(p?) = s}
BEGF(2™) d|n
Tr(B)=t

St(8)=s

- Ug.{peirr(g) : d-Tr(p) =t, d- St(p) +

din

(‘21) Tr(p) = s} (14)
= g%-{pelrr(%) 1 t=0,s=0}U

UE-{ €Irr() @ Tr(p) =t, St(p) = s}U

dlndprrd.rp—, p)=s

.—.ln n

ga-{pelrr(z) :t=0, Tr(p) =s}U

H%'{pe:[rr(%) : Tr(p) =t, St(p) =s+t}.

Taking cardinalities, we obtain an expression for F(n,t,s), the number of
elements of GF(2") of trace t and subtrace s.

F(n,t,s) S ) |Min(B)|
BEGF(2™)
Tr(8)=t
St(B8)=s

n n
d|Z"E.l{pe Irr(z) :t=0,s=0} +
d=0

n

) g Hpelrr(5) : Tr(p) =t, St(p) = s}l +

> % ‘Hpe Irr(%) : t=0, Tr(p) = s} +
dlnz

Z % -Hp € Irr(%) : Tr(p) =t, St(p) =s+t}|

d|n
d=3

We use the notation P(n,t,s) = |{p € Irr(n) : Tr(p) = t,St(p) = s}|. If
t =1 and s = 0 then we obtain
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Fin,,00 = Y 2 l{pelrr() : Tr(p) = 1,5¢(p) = 0| +

d|n

SR ipeter(3) : Trip) = 1,t) = 1)]

dln

= Z - P(n/d,1,0) + Z - P(n/d,1,1). (15)
d|1| dln

If t = s =1 then we obtain

FnLl) = Y2 lpeter(3) : Tr() =1,5t0) = 1) +

din
d=1

> % Hpel(3) : Tr(p) = 1,5¢(p) = 0}

dln

= ZE P(n/dll)-}-Z— - P(n/d, 1,0). (16)

din din
d=1 d=3

If t = s = 0 then we obtain

F(n,0,0) = Z"L(“ +z Lo

dln

Z P(n/d 0, 0) + Z <" P(n/d,0, 0)

Hig .;""3
= [n even] 2727 + Z = - P(n/d,0,0). (17)

din
d odd

Ift =0 and s =1 then we 6b£éiin
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F(n,0,1) = Z 'Z‘Ll(%) +
its

> 2 Pn/d,0,1)+ Y 2 P(n/d,0,1)

am Hid
= [neven] 22"+ 3 %-P(n/d,o,l). (18)

din
d odd

The justification for equations (17) and (18) is from Lemma 5.
Before proceeding further we need to determine the values of F(n,t,s).

Recall that F(n,t, s) denotes the number of elements 3 € GF(2") for which
Tr(B) =t and St(B) = s. Our purpose in this section is to prove the fol-
lowing theorem, which gives an explicit formula for the number of elements
of given trace and subtrace over GF(2").

Define S, (n) to be the sum

Se(n) =Y (’:)

i=r
THEOREM 4

_f Siyos(n) ifn even
Fn,t,s) = { Siras(n) ifn odd.

The proof is divided into 3 cases, Case 1: n odd, Case 2: n = 2, and Case
3: n = 0. There is one subsection per case. The first two cases use the
existence of a self-dual normal basis. A self-dual normal basis exists for
GF(2") if and only if n is not a multiple of 4. When 4|n there is no self-
dual normal basis and the derivation is considerably more complex. Before
we consider the three cases, we need to prove four technical lemmata.

A basis for GF(2") is a set of n linearly independent elements of GF(2").
A basis is a normal basis if it is of the form {a@,0?,...,0%""'}. If
{a,a?,...,a2" '} is a normal basis, then it is self-dual if Tr(c? a?) =
(=l

The numbers S,(n) can also be expressed as the sum of two powers of 2.
The T'[n,r] values mentioned in Lemma 6 are from Table 1.
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r=0 r=1 r=2 r=3
n=0| + 0 - .0
n=1 + + - -
n=2 0 + 0 -
n=3 - + + -
n=4 0 + 0
n=Es - - + +
n=6 0 - 0 +
n=7 + - - +

Table 1: T[n,7]

LEMMA 6

+2n/21=1 if Tln,r) = +
Se(n) =224 ¢ 221 ¢ Tin,r]= -
0 if T[n, 7] = 0.

Proof This lemma may be proved by induction on n using Table 1 and
the Pascal triangle recurrence relation (indexing done mod 4):

Sy(n)=Sn-1)+S,_1(n-1)
O

We now prove a combinatorial lemma that will be of use in the first two
subsections.

LEMMA 7 With summation done mod 2,

|{aoa1 ---an—1 € {0,1}": z a; =t, Z a;a; = s}| = Siyas(n).

0<i<n 0<i<j<n

Proof We prove this lemma by focusing on the number of 1's in the binary
string @p@1 ---ap—;. Suppose that the string has k ones. Clearly, ¢t =
k mod 2.

Notice that the expression Z a;a; is simply counting the number of
0<i<j<n
ways to pair up two distinct 1’s in the string where order does not matter.

45



Thus Z aaj = ( ) Since (¥) = k(k- 1)/2 we deduce that (5) mod
0<i<j<n

2 = 0 if and only if either k¥ or k — 1 is congruent to 0 mod 4. This means

that k must be congruent to 0 or 1 mod 4 if s = 0. Since the above condition

was if and only if we know that if s = 1 then k must be congruent to 2 or

3 mod 4.

We can now determine when a binary string with &k ones satisfies the fol-
lowing conditions for the values of (¢, s)

(0,0) if k=0mod4
(1,0) if k=1mod4
(0,1) if k=2mod4
(1,1) if k=3mod4.

We can simplify this into one expression

(t,8) if k=t+2smod4.

To count the total number of binary strings that satisfy (¢,s) we count all
possible ways to have k ones in a bmary string of length n and then sum
over all possible values for k.

[{aoa1-an_1 € {0,1}": > ai=t, Z aeg=s} = (:)

0<i<n 0<i<j<kn k=t+2s
= St+2s ('n')

0O

The following lemma expresses the subtrace of a field e]ement as the sum
of traces of certain of its powers.

LemMA 8 Let § € GF(2"). If n = 2m is even, then
St(8) = Tr(B®) + Tr(B%) + Tr(B%) + -+ + Tr(B2" "' *1) + Trom (82" +1).
Ifn=2m +1 is odd, then

| St(B) = Tr(ﬁ3) + Tr(ﬂs)'+ Tr(8°) + -+ Tr(82™ ).
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Proof We prove only the case where n is even; the other case is simpler
and similar. First note that

. n—-1n—s—1 .
sip)= > B =3 3 £
0<i<j<n s=1 t=0

Break up the latter sum into three parts, depending on whether s < m,
§ =m, or s > m, and call the respective sums A, B, and C. We deal with
B first.

n-m-—1 m—1
B - ; ﬁztﬁzm-ﬂ — g(ﬂzm_‘_l)zt - Tr2m (ﬂ2m+l)'

Now note that we can write C as
n—1 n—s-1 +
> > e
s=m+1 =0
n—m-—1k~-1
= > Y
k=1 t=0
m—1s-—1
- S
s=1 t=0
m—-1 n-1

_ SR g

s=1 t=n-—s

c

Observe that 827" = 82", Combining this observation and the last
expression for C, we now compute A + C. '

m—1n-s-1 m-1 n-1

A+C = Z Z BN+ Y S B
=1 g=1 t=n-—s
m—1n-1

_ Z Z(’Bzﬂl)z‘

s=1 t=0
m—1 .

= Z Tl‘(,B2 +1)
s=1

Thus A + B + C is equal to the expression in the statement of the lemma.
]

As mentioned, the first two cases in the proof of Theorem 4 utilize a self-
dual normal basis for GF(2") over GF(2). In each case, the trace and
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subtrace of an element 3 € GF(2") are expressed as simple functions of the
basis multipliers. The following lemma gives the expression for trace.

LEMMA 9 Let {a,0?,...,a2" '} be a self-dual normal basis, and suppose
B=apa+0a0®+ - +an_10® . Then

Tr(B) = Z ai.

0<ikn

Proof Note that Tr(a) = 1, since otherwise the basis vectors are linearly
dependent. Using basic properties of trace,

Tr(8) = Tr( ), a:a?)

0<i<n

= Z aiTr(azi)

0<i<n

> a

0<i<n

In the following three subsections we prove Theorem 4.

Case 1: n odd

THEOREM 5 Let n be odd. Let B = {a,0?,a%,...,0%" '} be a self-dual
normal basis of GF(2") over GF(2). Let B = apa + a10® + aza® + ... +
an-102""" be an element of GF(2"). Then

St(ﬂ) = Z a;a;.

0<i<j<n

Proof Let n =2m+ 1. To apply Lemma 8, we require tl:e trace of ﬁzh‘“
for k=1,...,m. Define a_, = a(—rmodn) and consider 8% +1:

2 4 . 2n—2 on- 1
(s +a;a +aza + - +ap-sa +an_10° )

2 4 2n—2 2"
(@n—kotan_gr10°+an_gy20*+ - +an_p_sa +an—f-10

i 9j
= E a,-aj_ka2 02 .

0<i,j<n

-1

210
BB )
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When we calculate the trace of 2"+, all terms of the form o2 o? with
i # j are zero, as B is self-dual. Thus the trace of 32"+! is given by

Tr(ﬁzk"'l) = Tr( z aiai_kaziazi)

0<i<n
i1

= E aiai—xTr(a®")

0<i<n
= E aiGi—k

0<ikn
= E a;a; + Z a;a;.

i<j i<y

j—i=k J=i=n—k

Applying Lemma 8, we sum the last expression for k=1,2,...,m.

m
) = 3| T aet T om
k=1 i<j i<y
Jj—i=k i—i=n-k
= T ant Y ae
i<j
l<;-—t<m n-m<j—i<n
= Z a;a;.
0<i<j<n

a

The following corollary follows from the preceding theorem and Lemma 9.

COROLLARY 2 Let n be odd. The number of elements 8 € GF(2") with
Tr(B) =t and St(B) = s equals the number of n-tuples [ag, a1, ...,an-1] €
GF(2)" with

Z a;=t and Z aia; = 8.

0<i<j<n 0<i<j<n

Thus, by Lemma 7 we have now proved Theorem 4 for the case when n is
odd.

Case 2: n=2mod 4

This section deals with the case of n even, but not a multiple of 4. As
with the n odd case, it relies on the existence of a self-dual normal basis.
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Some preliminary material, culminating in Corollary 3, is needed to show a
property of the basis generator a. Throughout this section, n = 2m, where
m is odd.

LEMMA 10 If n is even, and a € GF(2") with Tr(a) = 1 then
TTgn:4(a)T7'2n;4 (az) =1.

Proof Let § = Tran.4(a), § € GF(4), so that

2n-2

0 = a+a*+a®+---+a and

# = P+t +a® 4.+,

Then Tron.4(a)Tran.4(a?) = 63, and thus is either 0 or 1. If 8% = 0, then
6 = 6% =0, but § + 6% = Tr(a) = 1, a contradiction. O

LEMMA 11 Ifn =2mod 4, m = n/2, and a € GF(2") then

(m—1)/2 .
Trma@Trona@) = 3 Trla™™ 4 4 Tran(a?"*)
k=1

Proof Note that o®”*! € GF(2™) since (a2” +1)2" = a2" *1, so that the
trace expression Trym (02”11} is well-defined.

m—1m-—1 . .
Tron.4(0)Trana4(a?) = o2 2!
i=0 j=0
m-—-1m-1 . . m—1i-1 . .
_ a22-a22,+1 + Z Zaz2x+10221+2m+1
i=0 j=i i=0 j=0
m-1m-1 m—1m+i-1

2i 2541 2 2j+1
= oot + E E o a?

i=0 j=i i=0 j=m
m~1m+i-1 i
_ azziazz;q-l
i=0 j=i
m—1m-—1 . L
— a22va22('+.1)+1
i=0 j=0
m—1
= D;,
j=0
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where

m~1 m-—1

20 o2(i+)+1 . 1 2i
D; = Y o*a? = (@22, (19)
=0 i=0
Note that
(m-3)/2
Trgn:4(a)Tr2n:4(az) = D(m—l)/2+ Z (D] +Dm_j._;). (20)
J=0

To simplify this expression we re-arrange the sum for Dy,_;_; as follows:

J - m-—1
2(i+m—j—1)+1 o2i 2i+m—j—=1)41 o2i
Dp_j1 = E a? a + E a? a?
i=0 i=j+1
m-—1 m—j—-2
g2k+1  g2(k+i+1) J 92k+1  92(k+j+1)
= _;_ a a + E o a
k=m—j-1 k=0
m-—1 )
z 22k+l 22(k+j+l)
= a a
k=0
m-—1 .
— Z (02214'1 +1)225+l.
k=0
Thus,
T ai j2eiitn ~ 2( )
i i 2i4+1 P4l
Dij+Dy_j1 = E a* a? + E a® " a?
i=0 i=0
n—-1
of p2(i+i+1)
= E a® «
i=0
241
= Tr(a®”" *1). (21)
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It only remains to calculate D(py_1)/2.

m—1
2i 2i4+m
Dim-njz = 0% a®

i=0
(m—l)/2 2§ 2i4 m-l 2i 28+
= Z o’ o? + Z o
i=0 i=(m+1)/2
(m-/z o mo2 ,
§ it+m i+m+1 i1
= Z a? a? + Z a® T a? *
i=0 =0
(m=1)/2 5  (m=3)/2 )
m i m i1
= Z (@™ +1)2" 4 Z (@2 +1y2
=0 i=0
m-—1
— Z(az'"n)z‘
i=0
= Trom(a®" t1). - (22)
Substituting (21) and (22) into expression (20) finishes the proof. O

COROLLARY 3 If n = 2mod 4, m = n/2, and a € GF(2") generates a
self-dual normal basis then

T’I'gm (a2m+l) = 1.

Proof Since a generates a self-dual normal basis, Tr(a) = 1 and
Tr(azn_l"’l) =0 for all k, and so

1= Trana(@)Trama(@?) = Tram (@™ +1),
O
THEOREM 6 Let n be even. Let B = {a,a2,d4, o ,azn_l} be a self-dual

normal basis of GF(2") over GF(2). Let B = apa + a10% + aza* + ... +
an-102""" be an element of GF(2"). Then

St(B) = Z aia; + Z a;.

0<i<j<n 0<i<n

Proof The subtrace relates to the trace as follows:

St(8) = Tr(B®) + Tr(B%) +--- + Tr(B2" *1) + Tram (82" +Y)  (23)
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where m = n/2. Note that as 2m(2™ + 1) = 2™ + 1(mod2™ — 1) the mth
conjugate of 2" +! is itself, and so 42" t! is an element of GF(2™). Now

consider 82" +1:

k i o
ﬁ2 +1 Z aiaj—kaz a2

0<i,j<n

When we calculate the trace of 82*+1, k < m, all terms of the form a2 a?’
with i # j are zero, as B is self-dual. Thus the trace of B2“+1 is given by

Tr(g*+) = Tr( ) aiaita®a?)

0<i<n
i+1
= Z aiai_kTr(a2 )
0<i<n
= Y aai
0<i<n
= Z aiej + E aia;.
i<j i<j
j—i=k j—i=n—k

Now, consider §2" +!:

m i o
‘32 +1 _ Z aiaj—ma2 a2

0<i,j<n
Separating the terms for which j = ¢ and those for which j =i +m,

gt '=C+D+E

where
i1
Cc = Z 2;8i—ma®  and
0<i<n
i+m
D = Z a;a;o 22
0<i<n

The terms in E are paired by the bijection on the indices (i,7) ¢ (§ +

m,i+m). A pair of such terms has the form
i oj itm oit+m [Py ] i+m  oj+m
2ij4+m@? 0 +ajimaia®  o® = aigjem(@® a® +a¥ ¥ ).

The trace in GF(2™) of this pair is

2l+m 2)+

a,-aj+mTr2m(a2ia2j +a ) = aiajemTr(c? ‘a?) = o.
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as B is self-dual.
Now consider the trace in GF(2™) of D:

Trom(D) = Trom( Z a,-aiaziazﬂm)
‘ 0<i<n

Trom ( z ai(aazm)zi)

0<i<n

= Z a;Trom (azm“)?.

0<i<n

= Z a;Trom (a®" +1).

0<i<n

By Corollary 3, Tram (02" *1) = 1, and so

T’I‘gm (D) = Z a;.

This leaves us with T'rom (C):

Trom(C) = Z Trom(a;a;— m(12 ).

0<i<n~-1

Pairing the terms by the bijection on indices i <+ ¢ + m gives

2|'+m+1

Trom(C) = Z Trgm(a,-a,-.,.mazm)+Tr2m(a,'+ma,-a ) .

0<i<m

z ai8irmTrom (

0<i<m

= Z aia5+mTr(azi+l)

0<i<m

= E QiGi4+m

0<i<m

i41 i+m+1
2 az )

again, as B is self-dual. Thus,

Trym .32 +1 Z QiGiym + Z a;.

0<i<m 0<i<n
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Applying Lemma 8,

m-—1

. k 2™ 41
St(B) = Y Tr(B)+Trem(6°"*)
k=1
m-—1
- T D owt T e ]+ T awnt T o
k=1 t<1 i<y 0<i<m 0<ikn
j—i=k j=i=n-<k
= Z aie;j + Z aia; + Z QiQitm + Z a;
l<) t<m n— m.5<jl—!'<'l 0<i<m 0si<n
= Z a;a; + Z a;.
0<igj<n 0<i<n

O

The following corollary follows from the preceding theorem and Lemma 9.

COROLLARY 4 Letn = 2 mod 4. The number of elements 8 € GF(2") with
Tr(B) =t and St(B) = s equals the number of n-tuples [ag, a1, -..,an-1] €
GF(2") with ,

Z a;=t and Z aiaj#s+t.

0<i<j<n 0<i<j<n

By Lemma 7, we have now shown that F(n,s,t) = Siyo(s4+tmod2)(n). This
agrees with the expression of Theorem 7 if ¢ = 1, but not if t = 0. However,
note that if n = 2, then So(n) = S2(n). This follows from the symmetry
(%) = (%) of the binomial coefficients. Thus F(n,s,t) = Si+2s(n) for
either value of t and we have proved Theorem 4 for the case when n = 2.

Case 3: n=0mod 4

For all of the below material, n is a multiple of 4, and m = n/2. Also, if
unspecified, trace and subtrace are of GF(2") over GF(2).

An overview of this case is as follows. We partition GF(2") into 2™ equiva-
lence classes, each of size 2™. We then combine two results: (a) half of the
classes have all elements trace 0, and half have all elements trace 1; and
(b) each of the classes, except for one, consists half of subtrace 0 elements
and half of subtrace 1 elements. The exceptional class, which turns out to
be the self-complementary elements, is all trace 0, and either all subtrace
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0 or all subtrace 1 (depending on n). Thus we can determine the number
of trace s subtrace t elements (one half of the elements of one half of the
classes, accounting for the exception).

DEFINITION 1 Let o € GF(2™). Define R, as {8 € GF(2") : 8*" + 8
a}. Note that R, is the set of all elements B in GF(2") with Trzn.2m (8)
a.

The following lemma shows that GF(2") is partitioned into 2™ classes of
size 2™.

LEMMA 12 Let o € GF(2™). Then R, is a coset of GF(2™) C GF(2").

Proof If 8,032 € R,, then

(B + B2)*" B+ ﬂzm
6 + a)+ (B2 + Ot)

= pi+ P

Thus B + B2 € GF(2™). So each R, has |R,| > 2™. These sets are disjoint
and there are 2™ of them. Thus |R,| = 2™. O

This lemma shows a useful property of the trace of a product when one of
the elements is in GF(2™).

LemMA 13 Let § € GF(2"), 7 € GF(2™). Then Tr(87*") = Tr(6*"™"7).

Proof Tr(f72') = Tr((B7¥)2""") = Tr((8*"“v*™)) = Tr((B" "))
since v € GF(2™). 0

The following is the central result. It shows that there is usually an additive
“subtrace-changing” element in GF(2™).

LEMMA 14 Let a € GF(2™). Let v € GF(2™) with Tram ((a +1)y) = 1.
Let B € Ry. Then St(B+ ) = St(B) +1.
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Proof By Lemma 8,

m-—1

StB+7) = Y Tr((B+7)**) +Tram((B+7)2"H)
k=1
m—1

= S Tr((B+7)* (B+7) + Tram (B+ 12" (B+7))
k=1
m—1
— z Tr(ﬂ2"+1 +ﬁ2"7+372* +72"+1)
k=1
+Trom (B + B2y + " + 427 H).

If we calculate St(8 + v) + St(8), the terms involving just 3 cancel, and so

m—1

St(B+7) +StB) = Z Tr(B%y + 872" + 2" +1) +

k=1
Trom (B2 7+ By2" + 47" +1).

Since 4y € GF(2™), the terms involving the trace of powers of v are 0, and
S0

m-—1
StB+7)+5tB) = > Tr(Bv+6v") +

k=1
Trom (87" v + 872" + 4% 11).

Now consider the summation. By Lemma 13,

m-—1 m—1

3" Tr(6*y + Bv*") 3 Ty + 827y
k=1 i k=1

m-1 m—1
T8+ 3 Tr( )
k=

1 k=1

m-—1

- m—1

= YT+ Y Tr (s )
k=1 =1

= 0,
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and so

St(B+7)+St(B) = Tro=(B v+B87" +7° )
Tram(ay) + Trom (72 1)
= Trom(ay) + Trem (%)
= Trem(ay) + Trem(7)
= Tram(ay+9)
= Trom((a+1)y)
1.

Thus, St(8 + v) + St(B) = 1, or St(8 + ) = St(B) + 1. O

Note that if @ = 1, then no such ~ exists.

The next lemma points out that the additive subtrace-changing element
splits each class (except one) into two halves. ‘

LEMMA 15 The coset Ro, o # 1, contains 2™~! elements with subtrace 0,
and 2™~1 elements with subtrace 1.

Proof Let o € GF(2™), and suppose a # 1. Since (a + 1) - GF(2™) =
GF(2™) and GF(2™) contains 2™~! elements with trace 1, there exists an
element v € GF(2™) with Tr((a+1)y) = 1.

Since R, is a coset, it is closed under addition by v. By this and Lemma 14,
addition by v is a bijection between the subtrace 0 and the subtrace 1
elements of R,. Thus these two sets are equal-sized, with size 2™~!. [0

We now focus on the exceptional class: the self-complementary elements.
LEMMA 16 Let B € R,. Then St(8) = [n = 0 mod 8].

Proof The set R, consists of all roots of all self-complementary irreducible
polynomials of degree n/d, where d is odd. Let 8 € R, and let p be the
minimal polynomial of 3, with degree of p = k = n/d. From (3], k is even.
From Lemma 4 and equation (14), St(8) = St(p?) = d-Stox (p)+(3) Trox ().

If n = 4 mod 8, then d odd implies kK = 4 mod 8. From Theorem 4 of [3],
Trox(p) = Stox(p) = 0, and so St(B) = 0.

If n = 0 mod 8, then d odd implies k¥ = 0 mod 8. From Theorem 4 of (3],
Trox(p) = 0 and Stax(p) = 1, and so St(8) = d. Since d is odd, St(B) = 1.
O
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The following three lemmata account for the distribution of GF(2™) in terms
of trace.

LEMMA 17 Let B € R,. Then Tr(B) = Trom (c). That is, all elements in
the coset of a have trace Trom(a). '

Proof

Tr(B)

B+B+B 4+ 57

B+B7)+ (B +B7 ) 4+ (87T 48777
B+BT)+ B+ -+ B+
ata®+---4a®

= Trom(a).

O

Thus we can unambiguously define of the trace of the coset Ro, Tr(Rs) =
Trom(a).

LEMMA 18 Of the 2™ cosets, 2™~ have all elements having trace 0, and
2™=1 have all elements having trace 1.

Proof In GF(2™), |{a:Trym(a) =0}f = 2™~ O
LEMMA 19 Tr(R;) = 0.
Proof The trace of 1 in an extension of even-degree is 0. O

THEOREM 7 The number of elements in GF(2") with given trace and sub-
trace are as follows.

t s F(n,t,s) t s F(n,t,s)

0 0 27 -2m-1 0 0 20*42m7
If8n: 0 1 27242m-1 If8 n: 0 1 272 -—2m-1

1 0 272 1 0 272

1 1 272 1 1 2"

Proof First consider the 2™~! cosets with trace 1 (Lemma 18). As R,
is not among these (Lemma 19), each has 2™~! subtrace 0 elements and
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2™-1 gubtrace 1 elements. (Lemma 15). Thus F(n,1,0) and F(n,1,1) are
both 22m-2 = 272,

Similarly, consider the 2™~! — 1 cosets with trace 0, excluding R;. In the
union of these cosets, the number of trace 1 subtrace 0 elements and the
number of trace 1 subtrace 1 elements is (2™~! — 1)2™m~1 = 2n-2 _ gm~1,

If 8|n, then by Lemma 16, all the elements of R; have subtrace 1, and so
F(n,0,1) = 272 — 2m~1 4 9m = 27=2 4 9m-1 and F(n,0,0), unaffected
by R,, is 2772 —2m~1,

If 8 fn, then the elements in R; have subtrace 0, again giving the desired
numbers. O

Comparing Theorem 7 with Lemma 7 we see that F(n,t,s) = Siy25(n),
thereby proving Theorem 4 when n = 2. The proof of Theorem 4 is now
complete.

5 Proof of Main Theorem

Applying the Mobius inversion of Theorem 1 to equations (15) and (16) we
obtain

wroe - 2o 2 (190 5 (1)

din i=38
d=1 | n/d odd n/d even i
Z Z n/ z n/d

d ( .d) + ( ] )
din ”( ) i=3 ! i= ?
d=3 | n/d odd n/d even



lid=k[i =1] +

[id = K} = 3] +

> (k70
Zuw) S (fya)tia=Hti=31+
(<72

a=1 n/d even

3 u(d) Z (’;ﬁ) lid = K] = 1]

din
d=3 n/d even

= > pd)d (k/d [n/d odd] +
din dJ_kl
> ud)d ] (k 1) In/d 0dd] +
dln dlk
;.;u(d) % (k/d) [n/d even] +
zlz(d) Z (k/d [n/d even]
dln dlk

= podl Y wa(pg) +

k=1 d|ged(n, k)
[n even]],;{ E (d)(k/d
=3 d|gcd(n,k)

= [n odd] En - L(n,k) + [n even] Z n - L(n, k).
k=1 k=3

This establishes the result for P(n,1,0). The derivation of the result for
P(n,1,1) is almost identical and is omitted.

The result for P(n,0,0) is obtained by applying the Mobius inversion of
Corollary 1 to equation (17).
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P,0,0)= ¥ ud)| ¥ (”{")Jr

d|n
d odd

(n/d) [n/d even]2"/2¢-1

i=0 i=2
n/d odd n/d even

Since d is odd, n/d is odd when n is odd and n/d is even when n is even.
In the case where n is odd we obtain

n-P(n,0,0) = Y u d)Z(k/d

din au
d odd

= > wa(yg)

k=0 d|gcd(n,k)

> n-L(n,k).
k=0

In the case were n is even we obtain

n- P(n,0,0)

> X (fg) - ez

d|n dlk
n/d wr2de
§u<d)§(k/d) ﬂznﬂ(2d)2 2a-1
n/d—1
d
Z Z (d)(’,:jd) ﬂzn“(d)m%d(

k=2 dlged(n,k)
d odd

£.5.0(0) +

k=2 di scd(n k)

Zzu(d)( n/ d) [dm = k][d = 2]|[m odd]

din m,k
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- 2.2 (i) +

=2 dlged(n.)
Zp(d ( d) [dm = k][dm = 2][d even]
dln m,k
_ n/d
- § @) + 3 2wl

- wa(le) + X waCl)

k—2 dlscd(n k) k=2 dlscd(n k)

even
= Z n- L(n,k)
k=2

This establishes the result for P(n,0,0). The derivation of the result for
P(n,0,1) is almost identical and is omitted. (]
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