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Abstract

The resolvable 2-(14,7,12) designs are classified in a computer
search: there are 1,363,486 such designs, 1,360,800 of which have
trivial full automorphism group. Since every resolvable 2-(14,7,12)
design is also a resolvable 3-(14, 7, 5) design and vice versa, the latter
designs are simultaneously classified. The computer search utilizes
the fact that these designs are equivalent to certain binary equidistant
codes, and the classification is carried out with an orderly algorithm
that constructs the designs point by point. As a partial check, a
subset of these designs is constructed with an alternative approach
by forming the designs one parallel class at a time.

Keywords: backtrack search; equidistant code; orderly algorithm;
resolvable t-design
1 Introduction

We use the following standard notations. A t-(v,k,)) design is a pair
(X,B), where X is a v-set of points, and B is a collection of k-subsets of
X, called blocks, such that each t-subset of X occurs in exactly A blocks.
A design is said to be resolvable if the blocks can be partitioned into a
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collection of parallel classes, each of which partitions the point set. A
partition of the blocks into parallel classes is a resolution of the design.

Two t-(v, k, A) designs are isomorphic if there exists a bijection between
the point sets that maps blocks onto blocks; such a bijection is an isomor-
phism. An automorphism of a design is an isomorphism of the design onto
itself. The (full) automorphism group of a design consists of all of its auto-
morphisms with composition of permutations as the group operation. Two
resolutions of a design are isomorphic if there exists an isomorphism of the
underlying designs that maps one resolution onto the other.

In this paper we classify, using computer search, all resolvable 2-(14, 7,
12) designs up to isomorphism. The following theorem of Alltop [1] shows
that our classification is also a complete classification of the resolvable
3-(14,7,5) designs.

Theorem 1 A resolvable t-(2k, k, X) design with t even is a resolvable (t +
1)-(2k, k, \') design with X' = A(k —t)/(2k —t) and vice versa.

Prior to this classification only one resolvable 2-(14,7,12) design was
known (3, 5].

Further definitions and background results on resolvable designs are
given in Section 2. Of central importance is a correspondence between
resolutions of designs and certain error-correcting codes due to Semakov
and Zinov’ev [10]. Section 3 outlines the classification algorithm, which is
based on the algorithm developed to establish nonexistence of a resolvable
2-(15, 5,4) design in [4]. The classification, which proceeds point by point,
is discussed in Section 4. There are exactly 1,363,486 nonisomorphic resolv-
able 2-(14,7,12) designs (and resolvable 3-(14,7,5) designs by Theorem 1).
Finally, to gain confidence in correctness of the classification, we perform
an independent partial verification in Section 5, by forming the designs one
parallel class at a time.

2 Preliminaries

Given a t-(v, k,\) design, we denote the number of blocks in which a point
occurs by 7 and the number of blocks by b. Then, a straightforward double
counting argument gives

ur = bk, r(’::;) =A<::11). (1)

Furthermore, it is easy to see that a necessary condition for resolvability
is that k divides v. In addition, a resolution consists of r parallel classes,
each of which consists of v/k blocks. A 2-(14,7,12) design has b = 52 and
T = 26.

66



A resolution of a resolvable t-(2k, k, A) design is unique since every block
can form a parallel class only with its complement block. (In general a
resolution need not be unique. For example, there are 4 nonisomorphic
resolvable 2-(15,3, 1) designs; these have 7 nonisomorphic resolutions [5].)

A (binary block) code of length n is a nonempty set C C Z%, where
Za = {0,1}. The elements z = (zy,...,Zn) € C are called codewords. The
cardinality of a code is the number of codewords it contains. The Hamming
distance between two codewords z,y € C is the quantity

dy(z,y) ={j € {1,...,n} : z; #y;}|.

The minimum distance of a code C is the minimum Hamming distance
between pairs of codewords, taken over distinct codewords of C. A code
is equidistant if all pairs of distinct codewords have the same Hamming
distance. An (n,M,d) code has length n, cardinality M, and minimum
distance d. The next result, which is called the Plotkin bound (originally
proved in [9]; a generalization to the g-ary case can be found in (2]), is of
central importance in our classification.

Theorem 2 If there exists an (n, M,d) code and 2d > n, then

2d
< .
M < 2d—n

(2)

If equality holds, an (n, M,d) code is equidistant, and the coordinate values
are evenly distributed in each coordinate (so M must then be even).

Two (n, M,d) codes are equivalent if their codewords are related by a
permutation of the coordinates and a permutation of the coordinate values
{0,1}. More formally, two (n, M, d) codes, the codewords of which we as-
sume to be labelled as {yV,...,y™} and {z(V, ..., 2(M)}, are equivalent
if there exist permutations o € Sym({1,...,M}), = € Sym({1,...,n}), and
U1, - - 4o € Sym({0,1}) such that

4 = w55 3)
holds foralli=1,...,M and j =1,...,n.

The following construction is a special case of a more general result of
Semakov and Zinov’ev {10]. Label the points X = {z;,...,Z2x} and the
blocks B = {By,...,Bp} of a resolvable 2-(2k,k, ) design so that blocks
Bjj_1,By; form a parallel class of the resolution for all j = 1,...,7. Then,
we obtain a (r,2k,r — \) equidistant code by defining the codewords of the
code by the rule

y-) _ 0 Tf z; € B2j—1 (4)
1 ifz; € sz
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foralli=1,...,2k and j = 1,...,r. Clearly, the labelling of the blocks
determines the code equivalence class representative obtained.

Conversely, if ¢t = 2, we obtain from (1) that equality holds in (2) for
an (r,2k,r — A) code. Thus, the above construction can be reversed, that
is, from an arbitrary (r,2k,r7 — X) equidistant code we can construct a
resolvable 2-(2k, k, A) design by labelling the codewords and applying (4)
in the reverse direction; the labelling of the codewords then determines the
design isomorphism class representative obtained.

The previous construction demonstrates that the isomorphism classes
of resolvable 2-(2k, k,\) designs are in a one-to-one correspondence with
the equivalence classes of (r,2k,r — A) equidistant codes. We apply this
correspondence in the classification algorithm outlined in the next section.

3 The search

We use backtrack search to construct exactly one representative from each
isomorphism class of resolvable 2-(14,7,12) designs, that is, equivalence
class of (26,14, 14) codes. The search is based on the algorithm developed
in [4]; see that paper for furtheér details.

A partial solution in the search is an equidistant code of length 26 and
minimum distance 14. Rejection of equivalent codes is achieved by using
the canonicity predicate from [4]. Briefly, a code satisfies the canonicity
predicate if and only if it is the lexicographic minimum in its equivalence
class determined by (3).

The search has two stages. The first stage proceeds by adding one code-
word at a time to the partial solution. It is required that the added code-
word is lexicographically greater than any of the codewords in the current
partial solution. The addition of a codeword is followed by an applica-
tion of the canonicity predicate to the augmented partial solution; if the
augmented solution fails to satisfy the predicate, then it is not considered
further.

The second stage determines all completions of a partial solution C C
738 to an equidistant (26,14, 14) code by performing an exhaustive search
for all (14 — |C|)-cliques in the compatibility graph of C. The vertices
of the compatibility graph of C consist of all codewords = € Z2° that are
(2) lexicographically greater than any codeword in C; and (b) for which
dy(z,y) = 14 holds for all y € C. Two vertices z,z’ are connected by an
edge if and only if dy(z,z’) = 14. After the compatibility graph has been
constructed, the maximum clique algorithin described in (8] is employed to
locate the (14 — |C|)-cliques. Each (26,14, 14) code obtained from C and
the vertices of a (14 — |C|)-clique is filtered using the canonicity predicate
to produce a collection of representatives for the equivalence classes.

68



The codewords required in both stages are constructed coordinatewise
by backtrack search. In constructing the codewords we take advantage of
Theorem 2, which shows that each coordinate of an (26,14, 14) code has
exactly 7 zeros and 7 ones. So, the first 7 codewords added to the code
must contain a zero in the lexicographically most significant coordinate of
the code, and the subsequent 7 codewords must contain a one.

In generating the (26, 14, 14) codes, the threshold between the first and
the second stages of the algorithm was set to 8 codewords, up to which the
first stage was applied. The second stage was then used to augment a code
with 6 further codewords.

The classification was completed in about two CPU days on a worksta-
tion with 1GHz AMD Athlon CPU. The maximum order of a compatibility
graph was 1,280.

4 Results

Table 1 contains a classification of the resolvable 2-(14, 7,12) designs by full
automorphism group order. Space restrictions prevent us from explicitly
listing but a few of the designs here; anyone with further interest in the
designs should contact the first author so that a listing of the designs of in-
terest can be prepared. In particular, a listing of the resolvable 2-(14,7,12)
designs with nontrivial full automorphism group is readily available elec-
tronically at

(URL:http://www.tcs.hut.fi/~pkaski/res-14-7-12.html).

Theorem 3 There are 1,363,486 nonisomorphic resolvable 2-(14,7,12)
designs; 1,360,800 of these have trivial full automorphism group.

Table 2 lists four resolvable 2-(14,7,12) designs that admit compact
description using their automorphism groups. For each design the table
lists generator permutations for the full automorphism group and repre-
sentatives of the parallel class orbits that under the action of the full au-
tomorphism group form the unique resolution of the design. (Only one
block from each parallel class is listed since the other block in the parallel
class is obtained as the complement of the listed block with respect to the
point set {1,...,14}.) Each of the designs admits the 13-cycle (2 --- 14)
as an automorphism, so the designs are easily reconstructed even by hand
calculation.
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Table 1: The resolvable 2-(14,7,12) designs.

[Aut(D)] Nrd
1 1,360,800
2 1,819
3 748
4 63
6 37
8 1
12 13
13 1
24 1
39 2
156 1

Total 1,363,486

Table 2: Four resolvable 2-(14,7,12) designs with large automorphism
group order.

[Aut(D)| | Orbit representatives Generators for Aut(D)
156 {1,2,3,4,5,8,12} (234567891011 1213 14)
(31367591441110128)

39 {1,2,3,4,9,12,13} (234567891011 1213 14)
{1,2,3,5,7,9,10} | (35 11)(4 8 7)(6 14 12)(9 10 13)

39 {1,2,3,4,6,7,10} (234567891011 1213 14)
{1,2,3,4,69,11} | (311 5)(4 7 8)(6 12 14)(9 13 10)

13 41,2,3,4,5,9,13} (234567891011121314)
{1,2,3,5,8,9,13}

5 A partial verification of the classification

We shall now look at a partial verification of the earlier result. Instead of
proceeding point by point, we now proceed parallel class by parallel class.
The approach used is closely related to that in [7], from where we have

borrowed some of the terminology.
We define the parallel class intersection matriz (PCIM) of two distinct

parallel classes p = {Bp1,Bp2} and ¢ = {Bg1,Bg2} on 14 points as the
2 x 2 matrix A(p,q) = (ai;(p,q)), where a;;(p,q) = |Bpi N Byj|. Since a
resolvable 2-(14, 7,12) design has 26 parallel classes, for each parallel class
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{Bp1, Bp2}, there are 25 PCIMs with respect to the other parallel classes.
Obviously, for any two parallel classes p and g, a;1(p, q) + ai2(p,q) = 7 for
i = 1,2. The blocks in these parallel classes can therefore be ordered so
that the matrix A(p, q) is one of

70 6 1 5 2 4 3

0 7]’ 1 6|’ 2 5| 3 4|
and we say that the parallel classes meet in Type I, II, III, and IV, respec-
tively.

Let {Bp1,Bp2} be any parallel class of a resolvable 2-(14,7,12) design.
Let z;, z3, 3, and z4 be the number of matrices from the 25 PCIMs
of Type I, II, III, and IV, respectively, with respect to the other parallel
classes. It follows by counting pairs of points occurring in a block of the
fixed parallel class that

Ti+zot+zT3+24 = 25,
42z, + 305 + 2223 + 184 = 231.

These equations have two solutions: z; = 0, z2 = 1, z3 = 0, T4 = 24;
and z; = 19 = 0, 23 = 3, =4 = 22. In particular, note that z; = 0 for
both solutions, so no parallel classes can meet in Type I. We summarize
the result in the following theorem.

Theorem 4 A necessary existence condition for a resolvable 2-(14,7,12)
design is that, for each parallel class p, the 25 PCIMs with respect to the
other parallel classes agree with one of the patterns:

(i) one matriz is of Type II and 24 matrices are of Type IV,
(i) three matrices are of Type III and 22 matrices are of Type IV.

Based on Theorem 4 we divide resolvable 2-(14,7,12) designs into two
classes: designs of Type 1 have at least one parallel class that agrees with
(i), and designs of Type 2 have parallel classes that agree with (ii) only.

We shall now construct all resolvable 2-(14,7,12) designs of Type 1,
which by definition contain two blocks whose intersection has cardinality
six. This is carried out in a parallel class by parallel class backtrack search.

By combinatorial arguments one may restrict the search to start from
the structures in Figure 1. These structures show, w.l.o.g., the distribution
of the points among all parallel classes in the six points where two blocks
meet.
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Figure 1: Initial structures for the search.

012345 012345 012345 012345
012345 012345 012345 012345
0123 45 0123 45 0123 45 0123 45
0124 35 0123 45 0123 45 0124 35
0135 24 0145 23 0145 23 0125 34
0245 13 0245 13 0145 23 0345 12
1345 02 1345 02 2345 01 1345 02
2345 01 2345 01 2345 01 2345 01
012 345 012 345 012 345 013 245
013 245 013 245 013 245 013 245
014 235 014 235 014 235 014 235
014 235 014 235 015 234 014 235
015 234 015 234 023 145 015 234
015 234 015 234 024 135 015 234
023 145 023 145 024 135 023 145
023 145 024 135 024 135 023 145
024 135 024 135 025 134 024 135
025 134 025 134 025 134 024 135
025 134 025 134 025 134 025 134
034 125 034 125 034 125 025 134
034 125 034 125 034 125 034 125
034 125 034 125 034 125 034 125
035 124 035 124 035 124 035 124
035 124 035 124 035 124 035 124
045 123 035 124 035 124 045 123
045 123 045 123 045 123 045 123

In the backtrack search, symmetries are taken into account to speed up
the search. Isomorph rejection of final solutions is carried out by looking
for blocks that intersect in six points and record the intersection pattern
with the rest of the blocks (cf. Figure 1), combined with an isomorphism
check using the graph automorphism program nauty [6]. A total of 541,192
nonisomorphic resolvable 2-(14,7,12) designs of Type 1 is found in this
search; the order of the automorphism groups of these are presented in
Table 3. The CPU time employed in the search was about 500 hours on a
800 MHz PC computer.

The numbers in Table 3 agree with the numbers obtained by counting
the Type 1 designs in the complete classification, which gives an indepen-
dent partial verification of the complete classification.
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Table 3: The resolvable 2-(14,7,12) designs of Type 1.

|Aut(D)| Nrd

1 461,119
2 646
3 187
4 33
6 34
8 1
12 11
13 1
24 1
156 1

Total 462,034

Acknowledgements

Research of the first and third author was supported in part by the Academy
of Finland under grants 44517 and 1005G0.

References

(1] W. O. Alltop, Extending t-designs, J. Combin. Theory Ser. A 18
(1975), 177-186.

(2] G. T. Bogdanova, A. E. Brouwer, S. N. Kapralov, and P. R. J.
Ostergard, Error-correcting codes over an alphabet of four elements,

Des. Codes Cryptogr. 23 (2001), 333-342.
(3] M. Hall, Jr., Combinatorial Theory, Blaisdell, Waltham, 1967.

[4] P. Kaski and P. R. J. Ostergérd, There exists no (15,5,4) RBIBD, J.
Combin. Des. 9 (2001), 357-362.

[5] R. Mathon and A. Rosa, 2-(v, k, A) designs of small order, The CRC
Handbook of Combinatorial Designs (C. J. Colbourn and J. H. Dinitz,
eds.), CRC Press, Boca Raton, 1996, pp. 3-41.

[6] B. D. McKay, nauty user’s guide (version 1.5), Technical report TR-
CS-90-02, Computer Science Department, Australian National Univer-

sity, 1990.

73



(7] L. B. Morales and C. Velarde, A complete classification of (12,4,3)-
RBIBDs, J. Combin. Des. 9 (2001), 385-400.

[8] P. R. J. Ostergard, A fast algorithm for the maximum clique problem,
Discrete Appl. Math. 120 (2002), 195-205.

[9] M. Plotkin, Binary codes with specified minimum distance, IRE Trans.
Inform. Theory 6 (1960), 445-450.

[10] N. V. Semakov and V. A. Zinov’ev, Equidistant g-ary codes with max-
imal distance and resolvable balanced incomplete block designs, Prob-
lemy Peredachi Informatsii 4, no. 2 (1968), 3-10. Translated from
Russian in Problems Inform. Transmission 4, no. 2 (1968), 1-7.

74



