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Abstract

We consider the firefighter problem. We begin by proving that the asso-
ciated decision problem is NP-complete even when restricted to bipartite
graphs. We then investigate algorithms and bounds for trees and square
grids. .

1 Introduction

We consider a dynamic problem introduced by B. Hartnell in 1995 [5]. Let G
- be a graph which is rooted at a vertex r € V(G). At time 0, a fire breaks out at
vertex r. At each subsequent time interval, the firefighter defends some vertex
which is not yet on fire, and then the fire spreads to all undefended neighbours
of each burning (i.e., on fire) vertex. Once a vertex is defended, it remains so
for all time intervals. The process ends when the fire can no longer spread.
The firefighter (optimization) problem is to determine the maximum number of
vertices that can be saved, i.e., that are not burning when the process ends.

As described above, the problem involves a single fire and a single firefighter.
The general version of the problem involves fires breaking out at each vertex
belonging to a set F, and being defended by a set D of firefighters each of whom
can, at each time interval, defend a vertex which is not burning (see [3]). We
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do not consider the general version of the problem, apart from determining its
complexity and the results we survey below.

A number of papers investigating different aspects of the firefighter problem
have appeared in the literature. The design of optimal graphs is developed in
[3]. Two approaches are considered. One of these is to design graphs such that
one can minimize the expected number of vertices burned when the fire breaks
out at a random subset of vertices. Stars are proved to be optimal graphs when
there is one firefighter, regardless of the number of fires. The second approach is
to design graphs where the firefighters can minimize the damage (measured as
the number of vertices that eventually burn) given that the fires start at vertices
for which the damage is maximized. Related topics are examined in [2, 4, 6, 7).
Other papers consider-algorithms, bounds and heuristics [9, 11]. Algorithms for
two and three dimensional grid graphs are presented in [11). When the fire starts
at a corner vertex of a grid, the value of the optimum solution is established.
Otherwise, the algorithms lead to bounds on the maximum number of vertices
that can be saved and, in turn, these lead to some asymptotic results. For
an instance (G,r) of the firefighter problem, let R(G,r) be the ratio of the
number of vertices that can be saved to the total number of vertices of G. It
is proved that 1 + & < R(P, X Pp,v) < 1, where € = 21,, if n is even and
e= ——;— ifn 1s odd. For the three d1menmonal grid, it is conjectured that
hm,._,m R(P,, X P, % P,,r) = 0 for every vertex r. In [9] it is proved that the
greedy algorithm is a 2-approximation algorithm on trees, that is, the maximum
number of vertices saved is never more than twice the number saved using the
greedy algorithm. (It need not be the case that the number of vertices burned
under a greedy strategy is at most twice the number of vertices burned under
an optimum strategy.)

We begin, in Section Two, with some observations and easy cases of the fire-
fighter problem. In Section Three, we state the decision version of the firefighter
problem and show that it is NP-complete when the input is restricted to bipar-
tite graphs. This implies NP-completeness of the general version of the problem
for bipartite graphs. A variety of results concerning the firefighter problem on
trees are proved in Section Four. The section begins with some observations
about the location of the vertices that must be defended at time § in an optimal
strategy. A linear time algorithm that solves the optimization problem for bi-
nary trees, and works for all trees though not in polynomial time, is described
next. It is then demonstrated how to formulate the problem as a 0-1 integer
program, and shown how the integrality condition can be relaxed if some non-
linear constraints are added. The final subsection describes a polynomial time
algorithm, obtained via linear programming and a connection to perfect graphs,
that works for a subclass of trees; A rooted tree (T',r) is in the subclass if the
graph P(T,r), obtained by joining a vertex to all of its descendants and to all
vertices at the same level, is perfect. A forbidden substructure characterization
of these trees is also given. In the final section of the paper, bounds and some
exact values for the maximum number of vertices that can be saved in a square
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grid are developed. The results in this section improve those in [11].

2 Observations and easy cases

Graph theoretic notation not defined here follows [1].

The firefighter problem can be regarded as a one player colouring game.
Initially, some vertex of a graph G is painted red. At each turn, the player
(firefighter) selects an unpainted vertex and paints it black. Each unpainted
neighbour of a red vertex is then painted red. This process continues until,
finally, the game ends when no more vertices can be painted red. The object
of the game is to minimize the number of red vertices. In the context of this
formulation, a vertex is burning if it is painted red, defended if it is painted
black, and saved if it is not painted red when the game ends. It is easy to see
that the set of burning vertices induces a connected subgraph and, if there are
unpainted vertices (neither burning nor defended) when the process ends, then
the set of defended vertices is a vertex cut.

Let (G,r) be an instance of the firefighter (optimization) problem. We use
MVS(G,r) to denote the maximum number of vertices of G that can be saved if
the fire breaks out at r. An optimum strategy is one which results in MV S(G,r)
vertices being saved. Notice that in any optimum strategy, all defended vertices
are adjacent to a burning vertex when the process ends, otherwise, there is a
strategy that saves at least one more vertex. Further, since at least one vertex
is defended at each step and at least one new vertex burns in all steps except
possibly the last, the game ends in at most | 3] steps.

As a way of becoming familiar with the firefighter problem, the reader is
invited to establish the following very easy facts.
MVS(Kp,r)=1.
If 2 < m < n, then MVS(Kp ,7) = 2.
MVS(Cp,r)=n-2. ’
MVS(P,,r) =n—1isr is a leaf, and n — 2 otherwise.

A caterpillar is a tree that has a path containing at least one end of every
edge. It is not hard to prove that the following greedy strategy works for
caterpillars.

Strategy 2.1. Let (C,r) be a rooted caterpillar. If r is a leaf, then defend its
unique neighbour. Otherwise, at time 1 defend the neighbouring vertez of highest
degree. If the process has not terminated, then at time 2 defend o highest degree
unprotected vertez adjacent to the fire.

As a final easy but slightly less trivial example, consider the n-cube Qx.

Recall that V(Qy,) is the set of binary sequences of length n, and two vertices
are adjacent if and only if they différ in exactly one element.
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Proposition 2.2. MVS(Q,) =n.

Proof. Since @, is vertex-transitive, we assume the fire breaks out at vertex
r = (0,0,...,0). We use mathematical induction to show that at time ¢ > 0
all vertices with at most ¢ ones are either defended or burned. This implies the
proposition since the number of vertices that can be defended in ¢ time intervals
is¢.

The statement is clearly true when ¢ = 0. Assume that it holds for ¢ = k,
and consider ¢ =k + 1.

Each vertex with k -+ 1 ones is adjacent to k + 1 vertices with k ones (there
are k + 1 ones that can be changed to a zero). By the induction hypothesis, at
least one of these vertices is burning. Hence any undefended vertex with & + 1
ones is adjacent to a burning vertex and will burn at time k + 1 if it is not
immediately defended. This completes the proof. , a

It is interesting to note that only n vertices can be saved although Qy, has a
large number of vertices (2"), each of which has a small degree (n).

3 Complexity

In this section we establish NP-completeness of the firefighter decision problem
for bipartite graphs. It is formally stated below:

FIREFIGHTER ,
INSTANCE: A rooted graph (G,r) and an integer k > 1.
QUESTION: Is MV S(G, r) > k? That is, is there a finite sequence dy, dz, . . ., d;-
of vertices of G such that if the fire breaks out at r then,
(i) vertex d; is neither burning nor defended at time i,
(ii) at time ¢ no undefended vertex is adjacent to a burning vertex, and
(iii) at least k vertices are saved at the end of time .

The transformation is from the well-known NP-complete problem EXACT
COVER BY 3-SETS (X3C, see [10], page 221). A description of X3C is included
below for completeness.

EXACT COVER BY 3-SETS (X3C)

INSTANCE: A set X with |X| = 3¢ and a collection C of 3-element subsets of
X.

QUESTION: Does C contain an ezact cover for X, i.e., is there a subcollection
C' C C such that each element of X occurs in exactly one member of C'?

Theorem 3.1. FIREFIGHTER is NP-complete for bipartite graphs.
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Proof. FIREFIGHTER is clearly in NP. The transformation is from X3C. Sup-
pose an instance of X3C, a set X with | X| = 3q and a collection C of 3-subsets of
X, is given. We construct a rooted bipartite graph (G, r) and a positive integer
k such that at least k vertices of G can be saved if and only if there is an exact
cover of X by elements of C,

Initially, G consists of the vertex r and |C]| vertices Cy, Cy,...,Cjc| vertices
corresponding to the elements of C, each joined to r by a path of length ¢g. So
far, there are 1 + [C|g vertices. To complete the construction of G, for each
pair of disjoint sets in C, join the corresponding vertices C; and Cj; by 10¢°
paths of length two. Let P be the set of vertices added in this step. Finally, let
k = g+ (§)(10¢%). The construction can be accomplished in polynomial time.
It is easy to see that G is bipartite.

Suppose X admits an exact cover by elements of C. Then, at each time from
1 to g, defend a vertex corresponding to a set in the cover. Since each pair of
these vertices is joined to 10¢° paths of length two, the number of vertices saved
is at least g + (2)(10¢°), as required.

Conversely, suppose at least ¢ + (§)(10¢°) vertices can be saved. Notice
that all but at most g vertices corresponding to elements in C are burned after
g steps. Thus, at most ¢ such vertices can be saved. If fewer than g of these
vertices are saved, then the maximum number of vertices in P that can be saved
is (3)(10¢%), so that even if every other vertex in the graph were saved, the
number of vertices saved is at most (*;')(10¢%) +¢|C] < (%3%)(10¢%) + ¢(¥) <
k. Therefore, g vertices corresponding to elements of C must be saved. If
these g vertices do not correspond to a collection of pairwise disjoint 3-subsets
then, reasoning as above, the maximum number of vertices saved is at most
(8)(10¢%) — 10¢° + ¢(%§) < k. Thus, the elements of C corresponding to these ¢
vertices form to an exact cover.

a

Theorem 3.1 implies NP-completeness, for bipartite graphs, of the more
general version of the firefighter decision problem with a set F of vertices where
the fire breaks out and a set D of defenders, as it establishes NP-completeness
of the restriction to |F| = |D| = 1.

4 'Trees

The result in Section 3 motivates investigating the firefighter problem on classes
of bipartite graphs. Trees are a natural choice but, even for this restricted class
of graphs, the problem seems difficult. We conjecture that FIREFIGHTER is
NP-complete for trees.
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The main results in this section include a linear time algorithm that com-
putes the optimum solution for binary trees and works for all trees (though not
in polynomial time), an integer programming formulation of the problem on
trees, a non-linear optimization version, and a polynomial time algorithm that
computes the optimum solution for a subclass of trees. The latter algorithm
arises from transforming the firefighter problem in certain trees to the maxi-
mum weight independent set problem in a related family of perfect graphs and
finding a solution using linear programming.

4.1 Tree Preliminaries

In this subsection we state some definitions and establish a few useful facts
about the location of the vertices that are protected, at each time interval, in
an optimal strategy.

Let (T,r) be a tree rooted at r, and let v be a vertex of T. The level of
a vertex v in (T,r) is the length of the unique (r,v)-path. A vertex w # v of
T is a descendant of v if the unique (r,w)-path in T contains v. In this case
v is called an ancestor of w. Note that the definition excludes the possibility -
that a vertex is a descendant or ancestor of itself. We use desc(v) to denote the
number of descendants of the vertex v. We say that v is the parent of w, or that
w is a child of v, if w is both a descendant of v and adjacent to v. The subiree
rooted at v is the rooted tree (I”,v), where T" is the subtree of T' consisting of
the vertex v and all of its descendants. A branch of (T, r) is a subtree rooted at
‘a child of . The length of a branch B of (T, r) is the largest level (in (T',r)) of
a leaf of (T,r) belonging to B. A stem is a vertex which is adjacent to a leaf.

Observation 4.1. Suppose the fire breaks out at vertez r of the tree T. In ~
an optimum strategy, the vertez defended at each time is adjacent to a burning
vertez.

Proof. Suppose that S is an optimum strategy in which, at time i, the vertex z
defended is not adjacent to a burning vertex. Since in a tree there is a unique
path between any two vertices, the strategy &' which is the same as S except
that at time { the ancestor of £ which is not burning and is adjacent to a burning
vertex is defended, saves more vertices than S, a contradiction. [m]

Corollary 4.2. Suppose the fire breaks out at vertez r of the tree T'. In an
optimum strategy, the vertez defended at time i is at level i.

Corollary 4.3. Suppose the fire breaks out at vertez r of the tree T. In an
optimum strategy, no two vertices at the same level are defended.
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4.2 Binary trees

We now describe a recursive algorithm that computes an optimum solution
to the firefighter problem for trees, and works in linear time for binary trees.
Suppose the fire breaks out at vertex r of the tree T, and let z,,22,...,Zx be the
neighbours of r in T. By Corollary 4.2, we must decide which of 21, Z2,...,Z%
to defend at time one. This will save all vertices in the subtree rooted at z;.
For i = 1,2,...,k, let T; be the tree obtained from T by deleting r and the
subtree containing vertex z;, and identifying all of the other vertices z;, j # 1,
to obtain a (super-vertex) w;. For each i between one and k, find MV S(T;, w;)
recursively. Then, defend a vertex z; for which 1+ MV S(T;,w;) + desc(z;) is
largest. The vertices of T; defended in order to obtain MV S(T;,w;) are the
remaining vertices of T that should be defended.

It is easy to prove by mathematical induction that the above procedure
computes an optimum solution for any tree. It is not, in general, a polynomial-
time algorithm. We include here a standard induction argument to show that
it requires only a linear number of steps for binary trees: In this case, k < 2.
Let S(n) be the number of steps taken by the algorithm when the input binary
tree has n vertices. Then, S(1) is a constant ¢;. Let the constant ¢z denote
the number of steps necessary to prepare for the recursive calls and choose
which vertex to defend at the end of the algorithm. Suppose S(k) < c-k
for 1 € k € n— 1, for some constant ¢ > max{c;,c2}. For binary trees, the
instructions lead to S(n) < S(n;1) +S(n2) + ¢, where n; and na are the number
of vertices in T} and T3, respectively. Since n; + nz = n — 1, we have by the
induction hypothesis that S(n) < cny +cna+c¢ < ¢(ny +n2+1) = cn, as desired.

4.3 Integer Programming

In this subsection we describe a 0-1 integer linear program to find MV S(T,r)
for any rooted tree (T,r). For each vertex v # r of T, let w, = desc(v) + 1.
The integer w, is the number of vertices that can be saved by defending vertex
v. Let z, be a boolean decision variable such that z, = 1 if and only if vertex
v is defended (z, = 0 otherwise). We will want to maximize the objective
function ),y Zow,, subject to constraints that guarantee that at most one
vertex is defended at every level (Corollary 4.3), and that at most most one
ancestor of each vertex is defended (so each saved vertex is counted once in the
objective function). The latter condition will be satisfied if and only if exactly
one ancestor of each leaf is defended. The resulting integer linear program is
shown in Figure 1.

We have observed that the LP relaxation of this integer linear program often
has integral optima. There are, however, rooted trees for which this is not the
case.

It is possible to guarantee an integer optimum solution to the relaxation of
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Subject to:

z z,<1 for each level ¢
level(v)=i
T+ Z Ty <1 for every leafv of T
all ancestors of v

z, € {0,1}

Figure 1: A 0-1 integer program for the firefighter problem on a tree.

the above integer linear program by adding some non-linear constraints. For
each vertex v # r and each descendant w of v, add the constraint z,z» = 0.
The constraints corresponding to ancestors can be deleted as these new ones are
stronger. We now show that there is an integer valued optimum solution. Let
i be the highest level at which some variable z, i not integral, if such a level
exists. Let m be a vertex at this level with 0 < z,, < 1 and wy, maximum over
all vertices v at level i with z, > 0. By the constraints z,z, = 0 it follows that
if 2, >Othen:c.,=0foreachverw:u#rwhichisanancestbrordescendant
of v. Hence, the value of z,, can be increased by an amount ¢ so long as z,
is decreased by € for some vertex v at level 4. Since the objective function is
- maximized, equality must occur in the constraint corresponding to vertices at
the level {. Further, every vertex p at level § with z, > 0 must have wp = wm,
otherwise the solution obtained by setting, for any such 2, Zm = % + zp and
, = 0 has a greater value of the objective function. But then setting z,, = 1
and z, = 0 for all vertices v # m at level i gives a solution which is integer valued
at levels 1,2,...,i and has the same value of the objective function. Repeating
this process if necessary produces an integral optimum solution. In particular,
the maximum value of the objective function is always integer valued.

4.4 P-trees and Perfect Graphs

We now describe a subclass of trees for which the firefighter problem can be
solved in polynomial time by linear programming via a translation to perfect
graphs. Recall that a graph G is called perfect if every induced subgraph of G has
the property that its chromatic number x and clique number w are equal. Many
NP-hard graph-theoretic optimization problems can be solved in polynomial
time (often by linear programming) when restricted to the class of perfect graphs
(see [8]). Maximum weight independent set is such a problem.
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e level i
a b level i+1

d : level i+2

Figure 2: The forbidden configuration.

Let (T,r) be a rooted tree and P(T,r) the graph obtained from T by adding
edges joining each vertex to all of its descendants and to all vertices at the same
level. If P(T,r) is made into a weighted graph by defining w(r) = 0 and, for
v #r, w(v) =1+ dese(v), then a maximum weight independent set in P(T,r)
corresponds to an optimum solution to firefighter in (T',r). The strategy is to
defend the vertices in the independent set in order of increasing distance from
r. :

A rooted tree (T, r) will be called a P-tree if it does not contain the config-
uration shown in Figure 2. Note that there is no requirement that this be an
induced subgraph. An octopus is a rooted tree in which all descendants of each
stem are leaves. Every octopus is a P-tree. After stating a few properties of
P-trees and octopii that follow immediately from the definitions, we prove that
(T, r) is a P-tree if and only if the graph P(T,r) defined above is perfect. Thus,
if (T,r) is a P-tree, MVS(T,r) can be found in polynomial time by construct-
ing the graph P(T\,r), weighting it as described above, and finding a maximum
weight independent set in this perfect graph.

Proposition 4.4. Let (T,r) be a P-tree. Then:

(i) A vertez v # r has at most two children which are not leaves.

(ii) A stem v # r of degree greater than 2 has at most one child which is not @
leaf.

(5i5) All vertices v # r with at least two children which are not both leaves occur
on the same branch B and at level at least £ — 1, where £ is the largest level of
a leaf of (T, r) that does not belong to B.

Proof. If any of the statements fails, there is a forbidden configuration. o

. 'The branch in Proposition 4.4 (iii) will be called the P-branch of (T,r). All
other branches of (T, r), if any, will be called O-branches.

Theorem 4.5. A rooted tree (T,r) is a P-tree if and only if P(T,r) is a perfect
graph.

Proof. (<) Suppose (T,r) is not a P-tree. Then it contains the configuration in

91



Figure 4.4, and P(T,r) contains the induced 5-cycle abcdea. The corresponding
induced subgraph has x > w. Thus, P(T,r) is not a perfect graph.

(=) Suppose (T,r) is a P-tree. We show that every induced subgraph of
P(T,r) has the property that x = w by induction on |V(T)|. This is clearly
true if |V(T)| = 1. Suppose it is true for all rooted trees with k vertices and let
(T, r) be a rooted tree with k + 1 vertices. There are two cases to consider.

Case 1. There are no O-branches.
In this case, (T,r) has only one branch - a P-branch — and r has a unique
child r'. :

Let T = T —r. Since (T,r) does not contain the configuration in Figure
4.4, neither does the rooted tree (7,r'). Hence, (T',r') is a P-tree. Since any
induced subgraph of P(T,r) that does not contain r is an induced subgraph of
P(T',¢'), the induction hypothesis asserts that any such subgraph has x = w.
Thus, it remains to show that x = w for any induced subgraph of P(T,r) that
contains r. Let G be such an induced subgraph. The graph G - r is an induced
subgraph of P(T",r’), so x(G —r) = w(G ~r). Let ¢ be an w(G —r)-colouring of
G —r. Since r belongs to every maximal clique of P(T,r), w(G) = w(G-r)+1.
Thus, ¢ can be extended to an w(G)-colouring of G by introducing a new colour
and assigning it to 7.

Case 2. There is an O-branch.
Let v be a leaf of maximum level over all leaves belonging to O-branches.

Similarly to Case 1, x = w for any induced subgraph of P(T, r) that does not
contain v, and it must be shown that the same is true of any induced subgraph
that does contain v. Let G be such a subgraph.

Since (T' — v,r) does not contain the configuration in Figure 4.4, it is a P-
tree. Since G.— v is an induced subgraph of P(T' — v,r), x(G - v) =w(G —v),
by the induction hypothesis. Let ¢ be an w(G — v)-colouring of G — v. If
w(G) > w(G — v), then ¢ can be extended to an w(G)-colouring of G as in
Case 1. Suppose, then, that w(G) = w(G — v). If some colour is not used on a
neighbour of v, then ¢ can be extended to an w(G)-colouring of G by assigning
that colour to v. Hence every colour is-assigned to some neighbour of v.

Every vertex adjacent to v in G is either at the same level as v in (T, r), or is
an ancestor of v in (T,r). Since w(G) = w(G — v) some colour a; is not used on
any neighbour of v in G at the same level as v in (T,r). Thus a; must be used
on some ancestor z; of v in (T',r). Since the vertices of G that are ancestors
of v in (T,r) form a clique, z, is the only neighbour of v in G coloured ay.
Similarly, some colour az # o is not used on any neighbour of v in G which is
an ancestor of v in (T',7), but is used on some vertex z at the same level as v
in (T,r). As above, z is the only neighbour of v in G coloured as.

Consider the subgraph H of G—v consisting of the vertices coloured ay or az.
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If z; and 2, do not belong to the same component of H, then switching colours
in the component of H containing z; results in a colouring of G — v in which
a; is not used on a neighbour of v. This can be extended to an w(G)-colouring
of G, as above.

Suppose, then, that z; and z2 belong to the same component of H. We will
obtain a contradiction. Since H is connected, there is an (z;,z2)-path in H,
and since the vertices of H are 2-coloured, any such path is of odd length Let
X be a shortest (z;,22)-path in H.

Let (T",r) be the P-tree obtained from (T, r) by deleting all vertices whose
level is greater than that of v. By Proposition 4.4 (iii) and the choice of v,
(T",r) is an octopus and, further, the path X belongs to P(T”,r).

Since (T, r) is an octopus and X is a path in P(T",r), the edges of X alter-
nately join two vertices at the same level in (T, r), and a vertex to an ancestor
or descendant in (T,r). By the argument above, the edge of X incident with
the vertex z; joins it to an ancestor or descendant in (T,r), and the edge of
X incident with z, joins it to a vertex at the same level in (T"",r). Hence, since
the edges of X alternate “types”, the length of X is even, a contradlctxon Thxs
completes the proof of Case 2.

Both cases have now been considered, and the result follows by induction.
O

5 Square Grids

In this section we consider the firefighter problem in an n x n grid G, whose
rows.and columns are indexed 1,2,...,n, with (1,1) being the top left corner.
When the fire breaks out in the two outermost rows and columns, we are able
to establish the value of the optimum solution and give a strategy for achieving
it. In the remaining cases, we give bounds for the maximum number of vertices
that can be saved. The results in this section improve those in [11].

A vertex is said to be at level k if it is graph distance k from the vertex
where the fire breaks out. For £ > 1, we define d(t) to be the number of vertices
at level ¢ defended by time ¢, and s(t) to be the number of vertices at level ¢
which are not burning at time ¢. We use p(t) to denote the number of vertices
at levels greater than t defended by time ¢. Note that it is possible for a vertex
at a level less than ¢ to be defended at time ¢, if it is not burning. Also, d(¢), s(t)
and p(t) are non-negative for all ¢ > 0.

For any ¢ we have p(t) + Xi-, d(§) < t, as the vertices defended at time
i need not be on level . It follows from the definitions that for any ¢ > 1,
p+1)+diEt+1)<p(t)+1.

Lemma 5.1. Suppose the fire starts at f = (r,c), where 1 < r < ¢ < [n/2].
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Then, for1<t<n-r, s(t) <t - p(t).

Proof. The statement is clearly true when ¢ = 1. Suppose it is true when ¢ = k,
and consider time k + 1. Since k — p(k) < k, it follows from the structure of
G, that the union of the neighbourhoods of any k — p(k) + 1 vertices at level
k+1 contains at least k —p(k)+1 vertices at level k. Since s(k) < k—p(k), one
of these vertices at level k is burning. Thus, at most k — p(k) vertices at level
k + 1 have no neighbour burning. Therefore, s(k + 1) < k —p(k) + d(k +1) =
(k+1)—(p(k)+1~-d(k+1)) < (k+1)—p(k+1). This completes the proof. O

Corollary 5.2. Suppose the fire starts at f = (r,c), where 1 <r < ¢ < [n/2].
Then, for1 <t<n-r,s(t) <t.

Corollary 5.8. Suppose the fire starts at f = (r,c), where1 <r < ¢ < [n/2].
Then,

n-—r

Zs(t)s (n—;'+1)‘

=1

Strategy 5.4. When the fire breaks out at (r,c), 1 < r < ¢ < [n/2], defend
vertices in the following order: (r+1,¢),(r+1,c+1),(r+2,c—1), (r+2,c+
2),(r+3,c-2),(r+3,¢c+3),...,(r+¢,1),(r+¢,2¢), (r+¢,2¢+1),...,(r+c,n).

If the fire starts at vertex (r,¢), 1 < r < ¢ < [n/2], then Strategy 5.4 results
in 2((n—r)+(n—r-1)+- - -+(n—r—c-1))+(n-2c)(c~1) = n(n-r)—(c—1)(n—c)
vertices being saved.

Theorem 5.5. If the fire breaks out at f = (1,c), then Strategy 5.4 produces
an optimal solution.

Proof. Without loss of generality, 1 < r < ¢ < [n/2]. Since s(t) counts be
the number of vertices at level ¢ which are not burning at time ¢, and some of
these may subsequently burn or be defended later, Corollary 5.3 implies that
the maximum number of vertices among those at levels less than or equal to
n — 1 that can be saved under any strategy is (). Since Strategy 5.4 results in
this many vertices at at levels less than or equal to n — 1 and all other vertlcw
being saved, it produces the optimum solution. o

By symmetry Strategy 5.4 produces an optimum solution when the fire
breaks out in the last row, or in the first or last column.

Theorem 5.6. For2<r <c< [n/2],
MVS(Gn, (r,¢)) < —(r—1)+ (n-r+1) +(PSH) () + (T FY) + (Y,
where (3) =0 ifa <b.
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Proof. By Corollary 5.3 no strategy can save more than ("~ *!) vertices at level
less than or equal to n—r. Since there are at least n vertices at level n—r, Lemma
5.1 asserts that under any strategy at least n—(n—r)+p(n—r)=r+pn-r)
vertices at level n—r are burning at the end of time n—r. Since there are at least
n — 1 vertices at level n —r + 1, each of which has two neighbours at level n—r,
at least r + p(n — r) vertices at level n — r + 1 are adjacent to a burning vertex
at the end of time n — r. Since at most 1 + p(n — r) vertices at leveln —r +1
are defended by time n — r + 1, at least r — 1 vertices at this level must burn.
The bound is obtained by assuming that no other vertices of G, are burned.
All such vertices lie in the corners of the grid and at levels at least n — r + 2.
Let S be the set of all vertices of G, whose level is at least n —r +2. The lower
left and right corners, respectively, contain (5) and ("~5~?) vertices in S. The
upper right corner contains vertices in S only if (r - 1)+(n ¢) 2 n—r+2 (that
i8, 2r—c—3 >0, or r > (c—3)/2), and then it contains (*"~ ) of them. The
upper left corner contains vertices of S only if (r—1)+ (¢ —1) > n—r+2 (that
is, 2r+c—(n—4) >0, or r > (n + 4 — ¢)/2), and then it contains (2"""'""")
of them. This completes the proof.

Corollary 5.7. If the fire breaks out at f = (2,c), then Strategy 5.4 produces
an optimal solution.

Proof. Without loss of generality 2 < ¢ < [n/2]. Then n > 3. Thus, so
(351 = (>+°;™"?) = 0, s0 the difference e between the bound in Theorem 5.6
and the value of the solution obtained under Strategy 5.4is r(r—3)/2+1=0. O

By symmetry, Strategy 5.4 produces an optimum solution when the fire
breaks out anywhere in the row two, row n — 1, column two, or column n — 1.

We conclude by remarking that the difference between the bound in Theorem
5.6 and the value of the solution obtained under Strategy 5.4 grows as the start
of the fire approaches the middle of the grid. If the fire breaks out at (3, 3), then
the difference is two if n > 5 and three if n = 5. In general, if the fire breaks
out at ([n/2], [r/2]), then the difference is (3/8)n? — (11/4)n + 5 if n is even,
and (3/8)n? ~ (3/2)n + 9/8 if n is odd.
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