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Abstract

In this paper we introduce two new classes of critical sets, t-
uniform and T-uniform (where ¢ is a positive integer and T is a partial
latin square). We identify, up to isomorphism, all t-uniform critical
sets of order n, where 2 < n £ 6. We show that the completable
product of two T-uniform critical sets is a T-uniform critical set for
certain partial Latin squares T', and then apply this theorem to small
examples to generate infinite families of T-uniform critical sets.

1 Introduction

In any combinatorial configuration it is possible to identify a subset which
uniquely determines the structure of the configuration and is minimal with
respect to this property. In this paper we focus on subsets, called critical
sets, of a Latin square which uniquely determine the Latin square and are
minimal with respect to this property. (Formal definitions of Latin squares
and critical sets are given in Sections 2 and 3 of this paper.)

The concept of a critical set was first discussed in 1977 and in 1978
Curran and van Rees [3] exhibited examples of critical sets in the Latin
squares corresponding to the addition table for the integers modulo n. One
of the first major breakthroughs in the study of critical sets was documented
in a paper by Stinson and van Rees [8], in 1982. They defined 2-critical sets
and used these in conjunction with ‘direct products’ to construct critical
sets in Latin squares of larger order. A critical set C in a Latin square L
is said to be 2-critical if, for each z € C, C \ {z} is also contained in a
Latin square L', where L’ and L differ in only four cells. To this day, this
construction is one of the most important tools developed in this area.
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Recent computational results, presented in Section 5 of the current pa-
per, indicate that there exists another class of critical sets which has in-
teresting, and what appear to be useful, properties. We say a critical set
C is uniform if, for each z € C, C\ {z} is contained in a fixed number of
Latin squares L;, and (in some cases) across all elements of the critical set,
the differences between the L;’s are isotopic. In some sense we are saying
that every element of the critical sets has uniform “weight” or “power”. In
addition, it is possible to show (see Section 4) that if we take two “uniform”
critical sets in Latin squares of order m and n, then the “completable prod-
uct” is also a “uniform” critical set. It is hoped that the study of this class
of critical sets will enable us to extend our methods of construction and
thus facilitate the classification of critical sets.

The results presented in this paper are related to work by Fitina, Seberry
and Chaudhry [4] and Seberry and Street [7]. In these papers the authors
define the nest, the power and the influence of elements of combinatorial
configurations and relate this work back to strongboxes and secret sharing
schemes.

2 Partial Latin squares

A partial Latin square P of order n is an n X n array containing symbols
chosen from a set X of size n in such a way that each element of X occurs
at most once in each row and at most once in each column of the array.
Thus P may contain a number of empty cells. For ease of exposition,
a partial Latin square P will be represented by a set of ordered triples
{(3,4;k) | element k € X occurs in cell (i, j) of the array}. If all the cells
of the array are filled, then the partial Latin square is termed a Latin
square. That is, a Latin square L of order n is an n X n array with entries
chosen from the set X, of size n, in such a way that each element of X
occurs precisely once in each row and precisely once in each column of the
array.

We say that the partial Latin square P of order n completes to the Latin
square L of order n, if P C L. If L is the only Latin square of order n which
has element k in cell (z, j) for each (%, j; k) € P, then P is termed a uniquely
completable set (UC) in the Latin square L.

Two partial Latin squares P and @ of order n are isotopic if there
exists three bijections 8, ¢ and p, respectively, mapping the rows, columns,
and symbols of P to the rows, columns, and symbols of Q. Formally, P
and Q are isotopic if @ = {(8(:), #(5); p(k)) | (i,7;k) € P}. Moreover, if
0 = ¢ = p then we say P and Q are isomorphic. We note that if the partial
Latin squares P and Q of order £ are isotopic and there are precisely r



different Latin squares of order £ containing P then there are precisely r
different Latin squares of order £ containing Q.

Let P be a partial Latin square of order n and {a,b,c} = {1,2,3}. Then
the (a, b, ¢)-conjugate of P is denoted and defined by P, p,c) = {(Za, Zp; Zc) |
(z1,z2;23) € P}. For 6 € S3, the symmetric group on {1,2,3}, we define
8(z1, 22, 23) = (To(1), To(2), To(3)). It is immediate that P is UC to L if and
only if P(a,b,c) is UC to L(a,b,c)-

Let N be a Latin square of order n, with symbols chosen from the set
{1,2,...,n}. Let N7 be the array obtained from N by adding (r — 1)n to
each of the symbols in cells of V. Consequently, N is a Latin square iso-
morphic to N and based on the set of symbols {(r—1)n+1,..., (r—1)n+n}.
If Q is a partial Latin square contained in N then Q" is obtained by adding
(r — 1)n to each symbol in the non—empty cells of @, and consequently Q"
is a partial Latin square contained in NT, isomorphic to Q, and based on
the set of symbols {(r —1)n+1,...,(r — 1)n +n}.

Let M and N be Latin squares of order m and n, with symbols chosen
from the sets {1,2,...,m} and {1,2,...,n}, respectively. The direct prod-
uct of M with N is the Latin square of order mn obtained by taking each
cell of M containing symbol r, 1 < r < m, and replacing it by the array
NT. Formally,

MxN = {((a—1)n+d,(b-1)n+e(c—1)n+f)]|
(a,b;c) € M A(d,e; f) € N}.

Lemma 1 Let M and N be two Latin squares of order m and n respec-
tively. The direct product M x N is isomorphic to the direct product
NxM.

Proof: Let Y = {1,...,mn} and note that for each z € Y there exists
unique integers z; and y;, 1 < 2y < mand 1 < y; < n such that z =
(z1 —1)n 4+ y1. Define f: Y — Y such that f(z) = f((z1 — 1)n+w1) =
(y1 — 1)m + z;. It can be shown that f is one to one and onto. If f is
applied to the rows, columns and symbols of M x N, we obtains a Latin
square N x M isomorphic to M x N, where

NxM = {((d-1)m+a,(e—1)m+b;(f~1)m+c)
[((e—1)n+d,(b—1)n+e(c—1)n+ f)e M x N}.

O

We may generalise this definition to the product of two partial Latin
squares as follows.
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Let M and N be two Latin squares of orders m and n, with symbols
chosen from the sets {1,2,...,m} and {1,2,...,n}, respectively. Suppose
that P is a partial Latin square contained in M and Q is a partial Latin
square contained in N. Then we define the completable product of P and Q,
with respect to M and N, written P x @, to be the partial Latin square of
order mn obtained by replacing each cell containing the entry r of P with
the array N” and each cell containing the entry s of M \ P with the array
Q°. Formally the completable product of P with Q is

PxQ = {(a-1n+d,(b-1)n+e(c—1n+f)|
(a,b;¢c) e PA(d,e;f) e N}U
{(ea-n+d,(b-)n+e(c~1)n+f)|
(a,b;) e M\ PA(d,e; f) € Q}.
We note that the partial Latin square P x Q is contained in M x N.

Lemma 2 Let P be a partial Latin square in the Latin square M of order
m and let Q be a partial Latin square in the Latin square N of order n.
Then the completable product P x Q with respect to M and N is isomorphic
to the completable product @ x P with respect to N and M.

Proof: The product P x Q is the set
PxQ = {((a-1)n+d,(b-1)n+e(c—1)n+f)|

(a,b;¢) € PA(d,e; f) e N}u
{(le=1)n+d,(b-1)n+e;(c—1)n+f)|
(a,b;¢) e M\ PA(d,e; f) € Q}.

By Lemma 1 we know that P x Q is isomorphic to

x = {(d-=1)m+a,(e-1)m+b;(f—1)m+c)
|[((a—=1)n+d,(b-1)n+e(c—1)n+f) € (P x Q)}.
We leave the reader to prove that x = Q x P. O

Finally, let P and Q be two partial Latin squares of order m and n,
respectively. Then for a given cell (i, j) of P, define the block position (i, 5)
of P x Q to be the cells of P x Q corresponding to the intersection of rows
(¢—1)n+1to (i —1)n+n and columns (j —1)n+1 to (j — 1)n +n.

3 Critical sets

A critical set in a Latin square L of order n is a partial Latin square C in
L, such that



(1) C is a uniquely completable set in L, and
(2) no proper subset of C satisfies (1).

Let I be a partial Latin square of order n. The set of cells S; =
{(i,7) | (4,7;k) € I} is said to determine the shape of I. Two partial
Latin squares I and I, of order n with Sy = Sy, are said to be mutually
balanced if the symbols in each row (and column) of I are the same as those
in the corresponding row (and column) of I’. They are said to be disjoint if
no cell in I contains the same symbol as the corresponding cell in I’. Given
two partial Latin squares I and I’ of order n, of the same shape, with the
property that I and I’ are disjoint and mutually balanced, then I is said
to be a Latin interchange and I’ is said to be a disjoint mate of I. An
intercalate is a latin interchange of size four.

Let L be Latin square of order n and I C L be Latin interchange with
disjoint mate denoted I'. Then (L \ I) UI' is a Latin square of order n
distinct from L. Consequently, the definition of a critical set implies that if
C is a critical set then for each (i, j; k) € C there exists a Latin interchange
I(; j;xy such that Ij; jxy NC = {(4,5; )}

A critical set C of order 7 is called t-uniform if for each (%, j; k) € C there
are precisely ¢ distinct Latin squares of order n containing C \ {(¢, j; k)}.

Note that using the definition of power, as defined in [7], we are saying
that each element of C has power ¢.

Let P be a partial Latin square and assume the cell (%, j) of P is empty.
The addition of a triple (%, §; k) to the partial Latin square P is said to be
forced (see [6, 2]) if either

(1) Vh # k, 3z such that (i,2z;h) € P or (z,j;h) € P; or
(2) 6(i, 4, k) satisfies 1 in Py(y,2,3) for some 6 € Sj.

The concept of “forced” has been extended to semi-forced by Bedford
and Whitehouse [2]. To state their definition we need the following notation.

Let P be a partial Latin square of order n defined on an element set X.
Then Ap is an array of alternatives for P if

1. Apisann x n array ;

2. whenever the (4, )" cell of P is filled, the (, 5)*! cell of Ap is empty;
and

3. whenever the (i, 5)*" cell of P is empty, the (i, )*! cell of Ap contains
all the elements of X which do not appear in the i*h row or j** column
of P.



We denote the set of symbols in cell (¢,5) of Ap by Ap(3, ).

Let P be a partial Latin square. We will say that the element k' €
Ap(i,7) is forced out of Ap if either:

(1) there exists 7 > 0 and i3, %2,...,i, (all # i) with ¥’ € Ap(i;,j)U...U
AP(iﬂj) and IAP(ihj)U' . 'UAP(irvj)l =r,or

(2) 0(i,5,k') satisfies 1 in Ap,, , ,, for some 8 € S;.

The reduced array of alternatives, RAp, is the array obtained from
Ap by successively removing elements which are forced out until it is not
possible to force out any other elements. Then if k € RAp(4, j), the addition
of a triple (%, j; k) to P is said to be semi-forced if either:

1. k is the only element in RAp(%,j); or

2. k occurs exactly once in either the i*h row or 7*" column of RAp.

Note that if a triple is forced it is also semi-forced.

A UC set U is near-strong UC to the Latin square L if there exists a sets
of triples U = 8, C S2 C ... C Sy = L such that each triple t € S,41\ S, is
semi-forced in S,. Further, let P and @ be two partial Latin squares in L.
The partial Latin square P is near-strong completable to @ if there exists
a sequence of sets of triples P = S} C Sy C ... C Sy = @ such that each
triple t € Sy+1 \ Sy is semi-forced in S,.

A critical set C is a near-strong critical set in L, if C is near-strong UC
to L and no proper subset of C satisfies this property.

In [2] Bedford and Whitehouse prove the following lemma.

Lemma 3 Let P be a partial Latin square of order m that is UC to the
Latin square M and let Q be a partial Latin square of order n that is UC
to N. Let L be a Latin square to which P x @ completes. Suppose that
the addition of the triple (%, j; k) is semi-forced in P. Then L must contain
a copy of N* in block position (2, 7).

A similar proof to that given in [2] for Lemma 3 leads to the following
lemma which is crucial for the results in the next section.

Lemma 4 Let P be a partial Latin square of order m in the Latin square
M and let @ be a partial Latin square of order n that is near-strong com-
pletable to a partial Latin square R in the Latin square N. Suppose that
in the process of completing P to a Latin square the triple (%, j; k) is semi-
forced in P. Then in the process of completing P x @ to a Latin square
the block position (,3) in P x Q is semi-forced to contain a copy of R*.



Let C be a near-strong critical set in L and let T be a partial Latin
square in L. The critical set C is called T-uniform if for each (i, j; k) € C

(i) there exists a partial Latin square I; j;x) in L isotopic to T such that
13,5 N C = {(i,5; k)}, and

(ii) €\ {(4,5;k)} is near-strong completable to L \ I; j.x)-

Once again this is related to the notion of the influence of a triple, as
presented in [7]. For any two triples (a,b;c) and (d,e; f) in C, the sets
Itap;c) and Ijg ..y correspond to the influence of these triples and it is
assumed that these partial latin squares are isotopic.

Lemma 5 Let C be a T-uniform critical set in L. Then C is also t-uniform
where,

t=|{M | M is a Latin square of order n and L\T C M}|.

Proof: Since for each (3, j; k) € C there exists a partial Latin square I; j.x)
such that I(; j.) is isotopic to T, for any two triples (a,b;¢),(d,e; f) € C
there exist bijections 6, ¢ and p such that Iy .5y = {(6(3), #(3); p(k)) |
(i,4;k) € Iap,c)}. Soif I is a latin interchange in I, p;) it follows that
{(6(3), #(5); p(k)) | (4,5; k) € I} is a latin interchange in I(g;s). Therefore
there is a one-to-one correspondence between latin interchanges in I4 p;c)
and latin interchanges in I(g.;s). On the other hand, if M is a latin square
of order n containing L \ I(4 ;) and different from L then L\ M is a latin
interchange in I(4 4,). So the result follows. O

4 Theoretical results

In this section we study the completable product of T-uniform critical sets
for certain partial Latin squares T'.

Lemma 6 Let P be near-strong UC to a Latin square M of order m and
let @ be near-strong UC to a Latin square N of order n. Let (a,b;c) € P
and (d,e; f) € Q and assume that I and J are partial Latin squares in M
and N, respectively, such that P \ {(a,b;c)} is near-strong completable to
M\ I and Q\ {(d,e¢; f)} is near-strong completable to N \ J. Then the
partial Latin square (P x Q) \ {7} is near-strong completable to

((M\ DU {(a,b;0)}] x (N\T)U{(d,e; /)}])\ {}
where y=((a—1)n+d,(b—1)n+e;(c—1)n+ f).



Proof: Consider the partial Latin square P\ {(a, b;c)}. Since P\ {(a, b;c)}
is near-strong completable to M \ I there exists an empty cell, say (i, 5),
of P\ {(a,b;¢)} which is semi-forced to contain a specified symbol, say
symbol k. So by Lemma 4 in the process of completing (P \ {(a,b;¢)}) x
(Q\{(d, &; f)}) to a Latin square the block position (%, j) in (P\{(a, b;¢)}) x
(Q@\ {(d,e; £)}) is semi-forced to contain a copy of (N \ J)*. Since (P \
{(a,b;0)}) x (Q\{(d,e; £)}) C (Px Q)\ {7} it follows that in the process of
completing (P x Q) \ {7} to a Latin square the block position (i, 5) is semi-
forced to contain a copy of (N \ J)*. Now since @* C (N\J)*u{((i—1)n+
d,(j—1)n+e; (k—1)n+f)}, the block position (%, 5) in (PxQ)\ {7y} contains
(G=1)n+d,(j—1)n+e; (k—1)n+f), and Q is near-strong completable to
N we conclude that in the process of completing (P x Q) \ {7} to a Latin
square the block position (3,7) in (P x Q) \ {7} is semi-forced to contain a
copy of N*. Continuing in this manner it can be shown that (P x Q) \ {7}
is near-strong completable to

[((M\I)U {(a,d;9)}) x Q]\ {~}.

Note that every block position corresponding to a non-empty cell of
M \ I contains an isomorphic copy of N. So all these block positions
are completely filled. Block position (a,b) is filled except for the triple
((a=1)n+d,(b-1)n+e;(c—1)n+ f). All other block positions contain
an isomorphic copy of Q.

By Lemma 2 we see that (P x Q)\ {7} is isomorphic to (@ x P)\ {6} and
[(M\ DU {(a,b;c)}) x Q) \ {7} (with respect to M and N) is isomorphic
to [@ x (M \ I) U {(a,b;¢)})] \ {6} (with respect to N and M), where
0=(d-1ym+a,(e—1)m+b;(f —1)ym+c). So (Q x P)\ {4} is near-
strong completable to (Q x (M \ I)U {(a,b;c)})] \ {6}

Now since Q\ {(d, e; f)} is near-strong completable to N\ J there exists
an empty cell, say (g, h) in N \ Q which is semi-forced to contain a specific
symbol, say symbol £. So by Lemma 4 and an argument similar to that
described above we see that in the process of completing [Q x (M \ I)U
{(a,b;c)})] \ {6} to a Latin square the block position (g, k) is semi-forced
to contain a copy of M¢. Continuing in this manner it can be shown that
(Q x P)\ {0} is near-strong completable to [((N \ J)U{(d,e; f)}) x (M \
N U {(a,b;09}]\ {6}

Once again Lemma 2 can be used to show that this partial Latin square
is isomorphic to [((M \ I) U{(a,b;)}) x (N \ J)U{(d,&; /)DI\ {7}

This completes the proof. O

Lemma 7 Let P be near-strong UC to a Latin square M of order m and
let @ be near-strong UC to a Latin square N of order n. Let (a,b;c) € P
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and (d,e; f) ¢ Q and assume that I is a partial Latin square in M such
that P\ {(a,b;¢)} is near-strong completable to M \ I. Then the partial
Latin square (P x Q) \ {7} is near-strong completable to

(M\I) x (N\{(d,e; )}})
where y=((a—1)n+d,(b—1)n+e;(c—1)n + f).

Proof: Consider the partial Latin square P\ {(a, b;¢)}. Since P\ {(a,b;c)}
is near-strong completable to M \ I there exists an empty cell, say (, j), of
P\ {(a, b;c)} which is semi-forced to contain a specified symbol, say symbol
k. So by Lemma 4 in the process of completing (P \ {(a,b;¢c)}) x Q to a
Latin square the block position (%, 7) in (P\ {(a, b;¢)}) x Q is semi-forced to
contain a copy of N*. Since (P\ {(a,b;¢)}) x @ C (P x Q) \ {7} it follows
that in the process of completing (P x Q) \ {7} to a Latin square the block
. position (i, j) is semi-forced to contain a copy of N*. Continuing in this
manner it can be shown that (P x Q) \ {7} is near-strong completable to
(M\)U{(a,b;c)}) x Q] \ {7} ‘

By Lemma 2 we see that (P x Q)\ {7} is isomorphic to (@ x P)\ {é} and
[((M\I)U{(a, b; ) })xQ]\{} is isomorphic to [Qx ((M\])U{(a, b; c) D]\{4},
where d = ((d—1)m +a,(e—1)m+b;(f —1)m +c¢). So (Q x P)\ {6} is
near-strong completable to [Q x (M \ I) U {(a,b;c)})] \ {6}

Note that every block position corresponding to a non-empty cell of Q
contains an isomorphic copy of M. So all these block positions are com-
pletely filled. Now since Q is near-strong completable to N there exists an
empty cell, say (g, k) in N\Q which is semi-forced to contain a specific sym-
bol, say symbol £. By Lemma 4 and an argument similar to that described
in Lemma 6, if (g,h) # (d,e) we see that in the process of completing
[Q x((M\I ) U {(a,b;c)})] \ {¢} to a Latin square the block position (g, h)
is semi-forced to contain a copy of M®. If (g,h) = (d, €) then the block posi-
tion (g, h) in [@x (M \I)U{(a,b;c)})]\ {8} is semi-forced to contain a Latin
subsquare which contains (P\ {(a, b; ¢)})¢ and is based on the set of symbols
(£-1)ym+1,(£—1)m+2,...,(£—1)m+m. Therefore it will contain a copy
of (M\I)®. Continuing in this manner it can be shown that (Q x P)\ {6} is
near-strong completable to [((N\ {(d,e; f)}) x (M \I)U{(a,b;c)}))\ {4}
We also note that

[((N\{(d, & N)}) x (M\D)U{(a, ;)]\ {8} = (N\{(d, &; )}) x (M\]).

Once again Lemma 2 can be used to show that this partial Latin square
is isomorphic to (M \ I) x (N \ {(d,¢; f)}).

This completes the proof. a
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Lemma 8 Let P be near-strong UC to a Latin square M of order m and
let Q@ be near-strong UC to a Latin square N of order n. Let (a,b;c) € P
and (d,e; f) € Q and assume that J is a partial Latin square in N such
Q\ {(d,e; f)} is near-strong completable to N \ J. Then the partial Latin
square (P x Q) \ {7} is near-strong completable to

(M\ {(a,b;0)}) x (N'\ J)

where y = ((a —1)n+d,(b—1)n+e;(c—1)n+ f).

Proof: First by Lemma 7 (Q x P)\ {4} is near-strong completable to
(N\J) x (M\ {(a,b;¢)})

where § = ((d — 1)n +a,(e = 1)n + b; (f — 1)n + c). Now by Lemma 2

(Q x P)\ {4} is isomorphic to (P x Q) \ {7} and (N\J) x (M \ {(a, b;c)})
is isomorphic to (M \ {(a,b;¢)}) x (N \ J). So the result follows. O

The proof of the following lemma is straightforward and we leave that
for the reader.

Lemma 9 Consider the following partial Latin squares of order four.

243 2(3
2 (1| 2143
R=53 [ 1 =13 4172
| 3] 2

Then R is near-strong completable to S.

Theorem 10 Let P and @ be T-uniform critical sets in Latin squares M
and N, respectively, where T is an intercalate. Then P x Q is a T-uniform
critical set in M x N.

Proof: First since P and Q are near-strong critical sets in M and in N,
respectively, it follows that P x Q is near-strong UC in M x N (see [2]).
Now we prove for each (%, j; k) € (P x Q) there exists an intercalate I(; j;x)
such that (P x Q)\ {(¢, j; k)} is near-strong completable to (M x N)\ I(; j.x)-

Case 1: Let (a,b;c) € P and (d,e; f) € Q. By the assumptions there exist
intercalates

I
J

{(a,b;¢),(a,b';c'), (a',b;¢), (a',b';¢)}, and
{(d,e; f),(d,e; '), (d,e; f'), (d',€'; F)}

12




in M and N, respectively, such that P\{(a, b; c)} is near-strong completable
to M\ I and Q\ {(d,¢; f)} is near-strong completable to N\ J. By Lemma
6, (P x Q) \ {7} is near-strong completable to

x = [((M\D)U{(a,b;c)}) x (N\J)U {(d, e NI\ {7},

where vy = ((a — 1)n+d, (b — 1)n + e;(c ~ 1)n + f). It will be shown that
in x there are only 10 empty cells. The empty cells must occur in block
positions (a,b), (a,¥'), (a’,b) or (a’,b'). So the set of empty cells must be
a subset of the set of sixteen cells

R = {((z-1n+y(z-)n+w)|zc {aa'}, y€ {dd},
z € {bb'}, we {ee€'}}

in x. But we know cells ((a—1)n+d, (b—1)n+¢’), ((a—1)n+d’, (b—1)n+e),
((ea=1)n+d,(b—1)n+¢), ((a'-1)n+d,(b—1)n+e), (a—1)n+d, (b’ —
)n+e), (¢’ — 1)n+d, (b — 1)n + e) are all filled. Hence ten of the cells
of R’ are empty in x and so R’ forms a partial Latin square isotopic to
the partial Latin square R given in Lemma 9. So by Lemma 9 of the ten
empty cells six are semi-forced. The four unforced cells form an intercalate
in M x N.

Case 2: Let (a,b;¢) € P and (d,e; f) € Q. By the assumptions there exists
an intercalate I in M such that P\ {(a,b;c)} is near-strong completable
to M\ I. So by Lemma 7 (P x Q) \ {7} is near-strong completable to
(M\I)x(N\{(d,e; f)}). By Lemma 2 this partial latin square is isomorphic
to (N\{(d,e; f)}) x (M\I). In this partial latin square every block position
(3,7) # (d,e) contains an isomorphic copy of M and the block position
(d,e) contains an isomorphic copy of M \ I. So in partial latin square
(M\I)x (N\{(d,e; f)}) there are only four empty cells and these cells
form an intercalate in M x N.

Case 3: Let (a,b;c) ¢ P and (d,e; f) € Q. By the assumptions there exists
an intercalate J in N such that Q \ {(d,e; f)} is near-strong completable
to N\ J. So by Lemma 8 (P x Q) \ {7} is near-strong completable to
(M \ {(a,b;c)}) x (N \ J). In this partial Latin square there are only four
empty cells and these cells form an intercalate in M x N.

This completes the proof. a

Lemma 11 Let 2 < n < 6 and let T be an intercalate. Then the only
T-uniform critical sets of order n are the trivial critical set of order 2 and
the critical sets 4.2.1, 4.2.2, 6.3.2, 6.3.3, 6.3.4, 6.3.5, 6.3.6 and 6.7.3 listed

in Section 5.
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Proof: See Section 5. 0O

The other 2-uniform critical sets listed in Section 3 are not T-uniform
for any T. So there are 2-uniform critical sets which are not T-uniform for
any T.

Applying Theorem 10 and Lemma 11 we obtain the following result.
Corollary 12 There exist infinite families of T-uniform critical sets, where

T is an intercalate. Therefore, there exist infinite families of 2-uniform
critical sets.

Lemma 13 The completable product S x S is a T-uniform (hence a 4-
uniform) critical set in L x L, where

1{213 1 213
L=[2]3]|1] §= 3 T=|2[3]1
3112 3|11]2

Proof: First note that S is a T-uniform in L. Moreover, by [2] S x S is
near-strong UC to L x L. Now we prove that for each (i, j;k) € (S x S)
there is a partial Latin square I(; j;x) in L x L and isotopic to T such that
(S x S)\{(4,7; k)} is near-strong completable to (L x L)\ I(; j;x). Consider
(8 x 8)\ {(1,1;1)}. It is straightforward to see that (S x S)\ {(1,1;1)} is
near-strong completable to

23] 4 678
2|13|1||5]|6]|4(8]9]|7
311|12[16]4|5[[9}{7|8
415|6]718|9]11]12]|3

61418917123
6145978312
718{91]12|3||4]|5](6
819[7|[2]|3]|1[[5]6]4

7183 20164

This is (L x L)\ I{1,1,1), where
I(l,l;l) = {(1, 1; 1)» (11 5; 5)) (11 9; 9): (5) 1; 5)» (51 9; 1)$ (9» 1; 9)’ (9, 5; l)r
(9,9;5)}.
Note that I(; 1;1) is isotopic to T

An argument similar to that described above can be applied for the
triples (2,2;3), (4,4;7) and (5,5,9) of S x S.
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The other triples of S x S are of the form (3(a—1)+d, 3(b—1)+e¢;3(c—
1) + f) where (a,b;¢) € S and (d,e; f) & S or (a,b;c) € S and (d,e; f) € S.
The reader may apply Lemma 7 and Lemma 8, respectively, for these two
cases. a

Theorem 14 Let P and Q be T-uniform critical sets in Latin squares M
and N, respectively, where T is as in Lemma 13. Then Px Q is a T-uniform
critical set in M x N.

Proof: First since P and Q are near-strong critical sets in M and in N ,
respectively, it follows that P x Q is near-strong UC to M x N (see [2]).

We now prove that for each (i, j; k) € (P x Q) there exists a partial Latin
square I(; j.r), isotopic to T, in M x N such that (P x Q) \ {(,5;k)} is
near-strong completable to (M x N)\ I(; j.x).

Case 1: Let (a,b;¢) € P and (d,¢; f) € Q. By the assumptions there exist
partial Latin squares I and J, both isotopic to T, in M and N, respectively,
such that P\{(a, b; c)} is near-strong completable to M\I and Q\{(d, ¢; f )}
is near-strong completable to N'\J. By Lemma 6 (Px Q)\{7} is near-strong
completable to

X =[((M\D)U{(a,b;9}) x (N\T)u{(d,e; HNI\ {7},

where v = ((a ~ 1)n +d, (b — 1)n + €; (c — 1)n + f). It is straightforward
to verify that x U {7} contains a partial Latin subsquare isotopic to § x .S,
where S is as in Lemma 13. Moreover, all the empty cells of  are contained
in this partial Latin subsquare. Now the result follows by Lemma 13.

Case 2: Let (a,b;¢) € P and (d,e;f) ¢ Q. By the assumptions there
exists a partial Latin square I in M, isotopic to T, such that P\ {(a,b;¢)}
is near-strong completable to M \ I. So by Lemma 7 (P x Q) \ {v} is
near-strong completable to (M \ I} x (N \ {(d,e; f)}). By Lemma 2, this
partial latin square is isomorphic to (N \ {(d, e; f)}) x (M \ I). Clearly, the
cells

{(d=1)m+i,(e— Vm+]) | G,5:k) € I}

form a partial latin square isotopic to T in N x M. Now since (N \
{(d,e; f)}) x (M \ I) is isomorphic to (M \ I) x (N \ {(d,e; f)}) the re-
sult follows.

Case 3: Let (a,b;c) ¢ P and (d,e; f) € Q. By the assumptions there
exists a partial Latin square J in N, isotopic to T, such that Q\ {(d,e; )}

15



is near-strong completable to N\ J. So by Lemma 8 (P x Q) \ {7}, is
near-strong completable to (M \ {(a, b; ¢)}) x (N \ J). Clearly, the cells

{(e—1)ym+d,(b—1)m+e) ]| (d,e; f) € J}
form a partial Latin square isotopic to T in M x N.
This completes the proof. a

One can apply Lemma 13 and Theorem 14 to generate infinite families
of 4-uniform critical sets as follows.

Corollary 15 Let L; and S; be the Latin square L and the critical set S
given in Lemma 13, respectively. For n > 2 we define L, = Ly x L,—1 and
Sp = S X Sp—1 (with respect to Ly and Ln—1). Then S, is a T-uniform
(hence 4-uniform) critical set of order 3" in Ly, for all n > 1, where T is as
given in Lemma 13.

5 Computational results

The authors of [1] found all the critical sets of different sizes in the Latin
squares of order at most six. They also counted the number of main and
isotopy classes of these critical sets and classified critical sets from the main
classes into various “strengths”. Using computer programs we examined
these main classes and found all the possible m-uniform and T-uniform
critical sets of order not larger than six. Here we list these critical sets.

The only T-uniform critical sets of order 2 < n < 6, where T is an
intercalate, are the trivial critical set of order 2 and the critical sets 4.2.1,
4.2.2, 6.3.2, 6.3.3, 6.3.4, 6.3.5, 6.3.6 and 6.7.3.

The only T-uniform critical set of order 2 < n < 6, where T is as in
Lemma 13, is the critical set 3.1.2.

5.1 Latin squares of order 3

There is only one main class for Latin squares of order three. The critical
set 3.1.1 is 2-uniform and the critical set 3.1.2 is 4-uniform. Up to isotopism
there is no other m-uniform critical set of order 3, for any m.

1123 1(2 1
2(3]1 2 3
3112

3.1 3.1.1 3.1.2
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5.2 Latin squares of order 4

There are two main classes for Latin squares of order four.

1[2]3]4 112]3]4

213(4]1 2111413

34|12 3(4]1]2

4111213 413|211
4.1 4.2

There does not exist any m-uniform critical set in Latin square labelled 4.1.

The following 2-uniform critical sets are in the Latin square labelled 4.2.
Up to isotopism there is no other m-uniform critical set in the Latin square
labelled 4.2.

112 1213
413 211
1 3 1
3
4.2.1 4.2.2

5.3 Latin squares of order 5

There are two main classes for Latin squares of order five.

112(3]4]5 11213}14]5

213|451 211|453

314|512 314|5|1]2

41511]2]3 4(5]2]3]|1

5(1]1213]|4 5131124
5.1 5.2

There is no uniform critical set in the Latin square labelled 5.2.

Up to isotopism the following 32-uniform critical set is the only uniform
critical set in the Latin square labelled 5.1.
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2

3[4

5.1.1

5.4 Latin squares of order 6

There are twelve main classes for Latin squares of order six.

1{2]13[4]5]6 112]3[4]5]6 112]13[4]5]6
213|4[5]6]1 211]14/3]6}5 2(1]4]|5|6(3
314{5]6|1(2 3]4]5(6]1]2 3|14]1]6[2]5
415]16]112(3 413|16]|5[2]1 41516|1]13]|2
5(6|1|2|3]4 5/611]2]4]3 5/6[2]3[1]4
6]1|2(3|4]5 6]/5)2|1]13]4 6]/315]2[4]1
6.1 6.2 6.3
1/213]4(|5]|6 1{2]3]4|5]6 1{2|3[4]5]6
211]4|15|6(3 211|14[5]6]|3 2|11|14]5|6(3
314|11[6]2]5 3|4|12]6[|1}5 3|14|5[6]1]2
415|6[113]2 4}]5|16[/2]3]1 4]15(6]3[2|1
5(/6]2[3|4]1 5{6|1(3]|4]2 5/611]2[3]4
6|13|5[2]1]4 613|5[1]2]4 6|13[2|1]4(5
6.4 6.5 6.6
11213[4]5]6 112]3[4[5]6 1/2|3|4|5]|6
2|/1|14]|3]6|5 21114|3]|6]|5 21114]|3|6]5
3|5|/1]6]2]4 3|5|1j6]|2]4 3[5(1]6[2]4
416(2]5|1(3 4/6[2j5|1]3 41612531
513|6/1]4}2 5/3]16[2]4]1 5/416]2]1]3
6451231 645132 6/3|5[1]4]2
6.7 6.8 6.9
11234156 112|13|4|5]|6 112(3]4]|5(6
2]11|14(3]6]5 2|11|14(5[6]3 2(3|1|5(6]|4
315]11{6]|4(2 3|14(2[6[1]5 3(/1/2(6|4][5
416]|5]1([2]3 416(5(2[3(1 4165|213
513]16(2|1|4 5[3]6[1]2]4 5([4]16[3{2]1
6{412]5]|3|1 615[1]3]4]2 615[4]1]13]|2
6.10 6.11 6.12
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There is no uniform critical set in the Latin squares labelled 6.1, 6.8, 6.9,
6.10, 6.11 and 6.12.

There are precisely ten (four of size 14 and six of size 15) uniform critical
sets in the Latin square labelled 6.2. All are 2-uniform.

6
1 3[6]5 211 3 5 114]3
3 2 4 1 3 2
3 5 1 3 5 1 4|3 5
6|1 4 5 2 3 1124
6 2 6 2 6 2
6.2.1 6.2.2 6.2.3
6
1143 1 3 5 1 3 5
3|4 2 1]2 1]2
3 5 3 5[12]1 3 5(2]1
1 4 5|6 5(6 4
6 2(1 6|5 1 4 6|5 1
6.2.4 6.2.5 6.2.6
5]6
1 3 5 1 3165 1 3(6]5
1] 2 314 3| 4
4 5[2]1 43 5 1 4136 2
5|6 2|4 1]2 6 2
6|5 5 1]3 3
6.2.7 6.2.8 6.2.9
4[5
2
4 1]2
6 2|1
56 3
6|5 1

6.2.10

There are precisely ten (one of size 14, six of size 15 and three of size 16)
uniform critical sets in the Latin square labelled 6.3. All are 2-uniform.

19



415|6
1 1 3 5 1 3 5
3 2|4 1 214 1 2|4
51 1{3}2 5|1 2
4 3 416 1 5 6|2
6 2|15 6 215 6]3 4
6.3.1 6.3.2 6.3.3
1 3 5 1 3 5 1 3 5
1 2| 4 1162 1162
5|1 2 1{3]2 4 312
5/4|6 5|4 3 5/4| 6
6|3 4 6 2 4 6 2 4
6.3.4 6.3.5 6.3.6
6
1 3 1 3 5 1 3 5
3|5 4 1 2|4 1 2|4
113]2 1132 416|5
6121 54| 6 5/4|6]2
6|3 5 3 5(4]1 6 2[5
6.3.7 6.3.8 6.3.9
1 3 5
116]2
4 3{2
5 6(2]1
6 2|5
6.3.10

There are precisely three (all of size 14) uniform critical sets in the Latin
square labelled 6.4. All are 2-uniform.

2(3]4 6 2134 6 2]13)4 6
4|2 642 5 4|2
6|5 6|5 3 213
5 6 3 5 6 5 6
5[1]4 114 6 5([1
6.4.1 6.4.2 6.4.3
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There is precisely one uniform critical sets in the Latin square labelled 6.5.
This is of size 14 and it is 2-uniform.

2

ot
»

3|6

3|4
5 2
2 3
1{56]2
6.5.1

There are precisely nineteen (all of size 15) uniform critical sets in the Latin
square labelled 6.6. All are 2-uniform.

1 3 5 1 3 5 1 3 5
1{2 61 6|1
4(5]6 4 2|3 4 213
112]3|4 611]2]|3 61112]3
6 2|5 2 4|1 6 2|5
6.6.1 6.6.2 6.6.3
1 3 5 1 3 5 1 3 5
6|1 6[1]2 6(1]2
4 213 4156 4/5]6
6/1{2]3 112(3 11213
6|3 4 6 215 6|3 4
6.6.4 6.6.5 6.6.6
1 3 5 1 3 5 1 3 5
5 2 5 2 4 6|1
6|12 4 213 4 213
5 1]2 4 5 1]2 4 61 3
63 4 6|3 4 2 411
6.6.7 6.6.8 6.6.9
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1 3 5 1 3 5 1 3|6
4 6|1 4 6|1 1]2
4 213 4|15(6 415 3
61 3 6|1 3 11234
6] .12]5 2 4|1 6 215
6.6.10 6.6.11 6.6.12
1 3|6 1 3|6 1 3|6
112 1]2 5 2
415 3 415|6 6]1]2
1[2)3(4 112]3]4 5 1]2 4
6|3 4 6 215 6|3 4
6.6.13 6.6.14 6.6.15
1 3|6 1 316 1 3|6
5 1]2 5 1]2 5(6|1]2
4 213 4|5 3 4 2|3
1]2 4 1]2 4 1]2
6|3 5 6|3 4 6|3 5
6.6.16 6.6.17 6.6.18
1 3|6
4 112
415 3
1 3|4
6 2|5
6.6.19

There are precisely three (two of size 15 and one of size 16) uniform critical
sets in Latin square labelled 6.7. All are 2-uniform.

6 5|6 3 6
116 5 1 4 2 4
112]56 3|11 112|156
4 213 112]3 4 6 2|3
4 1 413 2 6 1
6] 4 3 6|4|5 5|2
6.7.1 6.7.2 6.7.3
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