Quorum Constraints and Filters in Boolean Lattices

Zbigniew Lonc

Department of Computer Science

University of Kentucky

Lexington, KY 40506, USA
and
Faculty of Mathematics and Information Science -

Warsaw University of Technology

00-661 Warsaw, Poland

Victor W. Marek
Department of Computer Science
University of Kentucky
Lexington, KY 40506, USA

Abstract

We investigate constraints in finite Boolean lattices {(P(X),C)
where X is a finite set. The constraints studied here are of the form
(Z,k) where Z C X, 1<k <|Z|. Aset I C X satisfies (Z.k) if
i N Z| > k. We characterize the sets satisfying collections of such
constraints as filters (final segments) in (P(X)). We find yet other
characterizations of filters including one by means of families of sets
indexed by elements of X so that the elements of the filter correspond
to subfamilies with an empty intersection. Qur characterizations are
supported for algorithms. We also study the families of negated con-
straints and mixed families and find their characterizations. In the

~ positive case, formulas built of constraints can be used to measure
the complexity of filters (and thus also of antichains of their minimal
elements). We find pathological filters with very simple descriptions
when the disjunctions are allowed, but extremely complex descrip-
tions when only conjunctions are allowed.

1 Introduction

In this paper we investigate various constraints on subsets of a given finite
set X. First, we focus on the class of constraints that require the presence of
“sufficiently many elements”. Those are constraints of the form ¢ = (Z, k)
where Z is a subset of X, k is a natural number, and |Z| > k. Such a
constraint, called below a positive quorum constraint, or simply a constraint,
requires that a putative set I satisfying it has the property that |[TNZ| > k.
That is, the set I contains at least & of the elements of Z. We will be

JCMCC 48 (2004), pp. 115-137

concerned mostly with sets @ consisting of positive constraints (although
other constraints will also be considered). We will study collections of sets
satisfying constraints in a given set (). Sets satisfying all constraints in a
set) are called access structures with respect to @ [10]. When @ consists
of just one constraint (X, k) (where X is the entire set under consideration,
k € N,|X| > k), our problem reduces to the following well-known problem
of distribution of keys [9], see also [7, 4].

A group of scientists is working on a secret project. They wish
to lock up the documents in a cabinet so that the cabinet can
be opened if and only if k or more scientists are present. How
many locks are needed? How the keys to the locks have to be
distributed among the scientists?

~ More formally: “Given the set X of size > k and a key K, ope wants
to distribute A" so that any & or more parts reconstruct K, while any less
than k parts cannot reconstruct K.” Thus, if we are interested in the family
of those subsets of X that can reconstruct the key K, then it is precisely
the family F of subsets of X that satisfy the constraint (X, k). Shamir
[9] credits this problem to Liu [5]. Here we do not limit to Shamir’s con-
straint, but consider arbitrary collections @ of constraints. Our Theorem
2.1 characterizes the set of access structures with respect to @. In a related
paper [6] we study an application of the theory developed here. We show
how the access structures can be used in areas such as computer security,
key partitioning, distributed certificates, confirmation of identity, and other
related topics.

We prove that given a set of positive constraints @, the family of those
sets I C X that satisfy all constraints in @ forms a filter (final segment) in
the Boolean lattice ({P(X), C). Conversely, given a filter F we can find a set
of constraints @ so that F is precisely the collection of sets that satisfy Q.
We also prove a number of other characterizations of filters. One of these
characterizations can be used to solve the quorum problem (see below) for
sets of positive constraints.

While positive constraints are investigated and characterized in Section
2, in the next section we study negative constraints that is constraints of
the form ¢ = —(Z,k). Such a constraint is satisfied by a set J C Y if
|[I N Z| < k. While positive constraints are closely associated with filters
(i.e. final segments) in (P(X), C), the negative constraints are associated
with ideals, i.e. initial segments in (P(X}, C). Consequently sets of quorum
literals, i.e. positive and negative constraints, are related to segments in
(P(X),C). Although sets of positive constraints are always satisfiable,

116

and similarly sets of negative constraints are satisfiable, the mixed sets (of
positive and negative literals) are not necessarily satisfiable.

Since we are interested in an equivalent characterization of sets of con-
straints, we will construct various families of sets that can be used to test
the satisfaction of constraints. Specifically, one such characterization in-
volves constructing a family of sets {Gm : m € X} so that aset] C X
satisfies Q if and only if [,,c; Gm = 0. This characterization can be used
to solve the quorum problem. To explicate this problem notice that for the
single constraint ¢ = (X, k) both the Shamir and Mignotte solutions of the
key partitioning problem amount to giving techniques to show if a given
set I C X satisfies ¢ without, actually, storing I. Extending this problem
we formulate the quorum problem as follows

Given a set of constraints Q devise a technigue for checking if
any set I C C satisfies Q without describing explicitly the access
structure.

Theorem 2.1 (the equivalence (a) & (e)) gives us a solution of the quorum
problem for positive constraints. In [6] we show how to apply this solution
to design a secret sharing scheme. Our solution concerns a general case
of sets of constraints instead of just one constraint but it is computation-
ally expensive (see [6] for the complete analysis of the complexity of our
solution). In Section 3 we deal with the sets of negative constraints and
mixed collections of constraints. Theorems 3.1 (the equivalence (a) <> (e))
and 3.2 (the equivalence (a) ¢ (c)) provide a solution of the quorum prob-
lem for both negative and mixed collections of constraints. However, it is
not clear to us if these results can be applied somehow in secret sharing
scheme design. In Section 4 we investigate the issue of description of filters.
The language of constraints allows us to measure the complexity of filters,
namely by assigning to a filter the simplest formula built of constraints
that describes that filter. It turns out that the form of formulas makes
a a fundamental difference in such descriptions. We construct an exam-
ple of a family of filters that is simply describable when both conjunctions
and disjunctions are allowed, but is immensely complex when the alphabet
allows only for conjunctions. We also give estimates for the measure of
descriptions of filters. Our algorithms are presented in Section 5. Finally,
we discuss the issues associated with other types of constraints in Section
6.

117

2 Positive Quorum constraints

Example 2.1 The college intellectual property committee consists of nine
individuals, {z1,...,29}. Of these five are faculty, {z1,...,z5}, and four
are students {as,...,29}. Dr. ; and Ms. z¢ are co-chairs of the commit-
tee.

The meeting of the committee is legal if the féllowing three conditions
are met:

1. At least one of co-chairs is present,

2. At least three faculty members are present,

3. At least two student members are present.

We want to assign to each individual a set of indices so that the quorum
can be tested automatically — by the computation of the intersection of the

sets assigned to each member of the committee. More precisely, we would
like to assign to each member z; of the committee a set G; so that:

A set {z; :1 € I} forms a legal meeting of the committee if and
only if the intersection (\;; G; is empty.

Here is such family of sets {G1,...,Gg}. All sets G; will be included in
the set [15] = {1,...,15}. We list them below.

Gy = {2,3,4,5,12,13,14,15}

Gy ={1,2,6,7,8,12,13,14,15}

Gs = {1,3,6,9,10,12,13,14,15}

Gy ={1,4,7,9,11,12,13,14,15}

Gs = {1,5,8,10,11,12,13,14, 15}
Ge = {2,3,4,5,6,7,8,9,10,11,12}
Gr={1,2,3,4,5,6,7,8,9,10,11,13}
Gs = {1,2,3,4,5,6,7,8,9,10,11,14}
G = {1,2,3,4,5,6,7,8,9,10,11, 15}

For instance, the set {z2,z3,zs,z6,29} forms a legal meeting of the
committee. Indeed the co-chair z¢ is present, three faculty zs,z3,zs are
present, as well as two students: 2, and zo.

Now, it is easy to see that the intersection GaNG3NGsNGeNGy is, indeed
empty. To see this notice that 1 ¢ Gs, 2 € G3, 3 & G2, 4 € G3, 5 € Go,

118

6¢Gs, T¢ Gs, 8¢ G3, 9¢Ga, 10¢ Gy, 11 € G, 12 ¢ Go, 13 ¢ G,
14 ¢ Gg and 15 ¢ Ge. It may be of interest that our set {x2, z3, 5, z6, Zg} is
a minimal set satisfying all our constraints, and that every proper subfamily
of the family {G?2, G3, G5, Gs, Go} has a nonempty intersection. O

Generalizing from this example we define, a positive quorum constraint
(or simply a constraint) as a pair (Y, k) where k < |Y| (other quorum
constraints will be considered in Section 3). Intuitively, a positive quorum
constraint is a constraint on a putative set I requiring that out of the
elements of Y, at least k elements belong to I. In our example 2.1 we had
three constraints:

1. {{z1,ze},1) expressing the constraint that at least one of co-chairs is
present, '

2. {{z1,z2, 23, %4, 5}, 3) expressing the constraint'tha,t at least three
faculty members are present, and

3. ({ze, z7, z8, o}, 2) expressing the constraint that at least two student
members are present.

. Formally, we will éay that a set I is an access structure with respeét to
a (positive) quorum constraint ¢ = (Y, k) if [NY| > k. We denote this by

I'=g.

We call a family Z C P(X) an ideal if for all Y € Z, and for all Z, if

~Z CY then Z € Z. Similarly, we call a family 7 C P(X) a filter if for all

Y € F,and for all Z,if Y C Z then Z € F. Let A be a family of sets.

A set T is a transversal of A, f TN A # B, for every A € A. A family
A C P(X) is an antichain in if A ¢ B, for every A,B€ A, A# B.

If I is an access structure with respect to some positive quorum con-
straint g and I C J then J is also an access structure with respect to ¢. Thus
the same holds for sets @) of quorum constraints. Hence, whenever @ is a set
of quorum constraints, then the collection of access structures with respect
to @ forms a filter. We will denote this filter by Fo = {I C X : I = Q}.
It turns out (see Theorem 2.1 below) that the converse of this statement is
also true. More precisely, every family of subsets of {m] which is a filter is
the set of access structures with respect to some set of quorum constraints.
In other words quorum constraints suffice to define every filter in P(X).
Actually, a stronger statement is true. Specifically, every filter in P(X) is
a set of access structures with respect to a set of some very simple quorum
constraints @ called unitary quorum constraints.

119

A quorum constraint (Y, k) is unitary if k = 1. Clearly, a set I is an
access structure with respect to a unitary quorum constraint (Y, 1) if and
only if Y NI #0.

The following theorem states a number of characterizations of families
of access structures with respect to a given set of quorum constraints.

Theorem 2.1 The following conditions are equivalent.

(a) A family F C P([m]) is a filter in P([m]).
(b) There is a set of quorum constraints Q such that F = Fgq.
(¢) There is a set of unitary quorum constraints Q' such that F = Fo.

(d) There is a family of sets A such that F is the family of transversals of
A.

(e) There is a family of sets G = {G,...,Gm} such that

ﬂG,- =P ifand only if I € F.
iel

(f) There is a family of sets G' = {GY, ...,G,,} such that

[\ G: # 0 if and only if I € F.
iel

(Notice that the intersection in (f) is taken over the complement Iof
I rather than I itself)

Proof: (a) = (d)

Consider the ideal Z = P([m]) \ F. Since m is finite, the ideal Z has
maximal elements. Define Mz to be the set of all maximal elements of Z.
Enumerate Mz into {M;,..., Mp}.

We claim that F is the family of transversals of the family
A= {fm]\ M;: 1< <p}

Indeed, denote X; = [m] \ M;. What we need to show is that F consists
of those sets I that have nonempty intersection with all sets Xj.

First, assume that I € F. Then I ¢ M;, for every 1 < j <p, so
InX;=In(m]\ M;) # 0,

120

forall1<j<p.

Conversely, 1fIr1XJ #0,1<j<p then I¢[m]\X;=Mj,s0ol ¢I.
Thus I € F.

(d) = (¢)

Let F be the family of transversals of a family A. Since I |= (Y,1) if
and only if INY # @, we get F = For, where @' = {(Y,1): Y € A} is a
set of unitary quorum constraints.

(a) = (e)

Assign to each M; € Mz a new object a; and let M = {a;,...,0p}.
Define
Gi={g;eM:ieM;}, 1<i<m.

Let I € F and suppose that for some I C [m], ({Gi : i € I} # 0. Let
a; € N{G: : i € I}. By the definition of G, it must be the case that
i € M;, for every i € I. Thus I C M;. But Z is an ideal and M; € I.
Hence I€Z=P([m])\ F, a contradiction. Thus (\{Gi:i€ I} =0.

Conversely, let (HGi:iel } @ and assume that I ¢ F, thatis I € Z.
Since m is finite, every I € Z is included in some maximal element of Z.
Let M; be maximal in Z so that I C M;. Giveni€el,i € MJ, thus, by
the definition of G;, a; € G;. But then a; € Gj for every i € I, that is
a; € ({Gi : i € I}, thus N{Gi : i € I} # 0, a contradiction. Hence I € F.

Since the implications (e) = (a), (¢) = (b) and (b) = (a) are trivial,
we get equivalence of the conditions (a) — (e).

(a) & (f)

Define F' = {I € P([m]) : I ¢ F}. Clearly, F' is a filter if and only if
is a filter and I € F if and only if I ¢ F'. The equivalence (a) < (f) now
follows easily from the equivalence (a) < (e) applied to the family 7. O

Example 2.1 is an illustration of an application of the characterization of
a family of access structures given in Theorem 2.1 (e). This condition allows
us to reduce the problem of verification if a set I is an access structure with
respect to a given set of quorum constraints to testing if the intersection of
some family of sets is empty.

Let Q be a set of quorum constraints. Denote by Go = {G1,...,Gm} a
family of sets such that -

((Gi=0if andonlyif I =Q (%)
i€l

121

whose existence is guaranteed by Theorem 2.1.

Theorem 2.1 does not tell us how to construct the family Gg for a given
set of quorum constraints Q. Yet, the proof of this theorem suggests an
algorithm for such a construction. We will provide one such algorithm and
analyze its complexity in Section 5.

Example 2.2 We are now in the position to explain the construction of
the family {G'1,...Go} in our intellectual property committee example.

To see how this family is constructed, recall the construction given in
the proof of the implication (a) = (e) of our Theorem 2.1.

It is easy to see that the ideal Zg has the following 15 maximal elements:

1. {z3,z3, 24, &5, 7, Tg, L9} (both co-chairs missing)

2. Y U {zs, %7, %8, o} where Y is a two-element subset of {z1y...,25}
(two professors only, but all the students). There are 10 such sets.

3. {z1,...,25} U {z;} where 6 < i < 9 (one student only, but all the

professors). There are four such elements.

In this manner we construct auxiliary sets Mi,..., My5. Consequently the
sets G;,1 < i < 9 will be subsets of [15). We recall that

Gi={j:z; € M;}.

This way we get the sets we listed in our motivational example.

Let us conclude this section with a corollary of Theorem 2.1.

A family of sets G is a k-threshold family if the intersection of every k—1
sets from G is nonempty, but the intersection of any k distinct sets from G
is empty. Applying Theorem 2.1 for the filter Fx = {A € P([m]) : |4| > k}
we get the following corollary.

Corollary 2.2 Let m > 2. Then for every integer k, 2 < k < m, there is
a k-threshold family G such that |G| = m. o

Let us conclude this section with a solution of a generalization of the
‘problem of scientists working on a secret project’ that was the original
motivation of Shamir’s problem.

122

Suppose that the set of groups of scientists permitted to open a cabinet
with secret documents is described by a set of constraints rather than just
a single constraint considered in the original problem. By our Theorem 2.1,
we can assign to every scientist a set G; such that a group I of scientists
is allowed to open the cabinet if and only if (;c; Gi = 0. This equality
is equivalent to U;c;(M \ G;) = M, where M = |J; G;. Now, we install
| M| locks labelled with members of M in the cabinet and the ith scientist
receives keys to the locks belonging to the set M \ G;. Clearly, all locks can
be opened by a group of scientists if and only if Uier(M\ G;) = M which
(by Theorem 2.1) is satisfied if and only I is a group of scientists permitted
to open the cabinet.

3 Other types of constraints

Motivated by applications in cryptography, in the previous section we have
been considering access structures defined by sets of positive quorum con-
straints. It turns out that negative quorum constraints have some motiva-
tions in secret sharing schemes as well (see [1], [8]).

Suppose the college intellectual property committee considered in Ex-
ample 2.1 contains one additional person z;o (the dean?) who has a veto
right, i.e. a meeting of the committee is legal if the presence conditions
formulated in Example 2.1 are satisfied and the dean does not use his veto
right to cancel legality of the meeting. This veto right can be formulated
as a negative quorum constraint ~({z10}, 1). Clearly, we can generalize the
veto right to a group of persons instead of just one person by assuming that
legality of a meeting can be cancelled if any k members of a certain special
group of persons Y are in favor of the cancellation but it can not be done
by any k — 1 persons in Y. This is equivalent to the negative constraint
(Y, k). ‘

As we have seen in our discussion in Section 2 a set of quorum constraints
determines a filter. Thus a negative quorum constraint, i.e. a literal of the
form n = =(Z, k) determines an ideal. In other words, the family of sets that
do not satisfy (Z, k) forms an ideal. Consequently, any family of negative
quorum constraints also determines an ideal.

We will call positive quorum constraints and their negations, quorum
literals.

Notice that the lattice dual to (P([m]),C) is (P([m]), D). Thus the
lattice (P([m]), C) is isomorphic to its own dual. The isomorphism is es-

123

tablished by the mapping ¢ : I + I, where I = [m]\ I. Under the mapping
¢, the filters are mapped onto ideals and conversely, ideals are mapped to
filters. Thus we get a theorem dual to Theorem 2.1. Before we formulate
it, we need some additional definitions.

A negative quorum constraint ¢ = ~(Y, k) is antiunitary if k = |V, i.e.
a set I satisfies such a constraint if and only if ¥ € I. As before we will

write I |= ¢ if I satisfies such constraint. Let A be a family of sets. A set
T is an antitransversal of A, if A ¢ T. for every A € A.

Let Q be a set of negative quorum constraints. Denote by Zg = {I C
[m] : T k= Q} the ideal of sets satisfying all negative quorum constraints in

Q.
Theorem 3.1 The following conditions are equivalent.

(a) A family I C P([m]) is an ideal in P([m]).
(b) There is a set of negative quorum constraints Q such that T =1Iq.
(c) There is a set of antiunitary quorum constraints Q' such that T = g

(d) There is a family of sets A such that T is the family of antitransversals
of A.

(e) There is a family of sets H = {Ha, ..., Hn} such that

() H: # 0 if and only if I € L.
el

(f) There is a family of sets H' = {H}, ..., Hp,} such that

[H! =0 if and only if I € L.
iel
()

Consider any set @ consisting of quorum literals. @ splits in a natural
fashion into the union Q' U Q" where @’ consists of positive quorum con-
straints in Q’, and Q"' consists of negative quorum constraints in Q. Define
Sq = {I C [m]: I E Q}. An intersection of a filter and an ideal will be
called a segment. Segments are characterized by the following property. A
subfamily § C P([m]) is a segment if X1, X2 € § and X; CY C X; imply
that Y € S. Bringing together Theorems 2.1 and 3.1 we get the following
result.

124

Theorem 3.2 The following conditions are equivalent.

(a). A family S C P([m]) is a segment in P([m]).
(b) There is a set of quorum literals Q such that S = Sq.

(c) There are families of sets G = {G1,...,Gm} and H = {H;,...,Hp)}
such that

I €S if and only if ((|Gi =0 and [H; # 0).

iel iel

(d) There are families of sets G' = {GY,...,G},,} and H' = {H{,...,H..}
such that

I €8 if and only if(nGz-zﬁ and nH{-_- 0).
i€l iel

4 Some issues related to expressive power

In the proof of Theorem 2.1 we have shown how a description of a filter by

means of a set of positive quorum constraints can be used to construct a

set of unitary quorum constraints determining the same filter. This trans-

formation, in effect, can be treated as a kind of logical operation. Namely,

when a filter is specified by a conjunction of a set Q of positive constraints,

we constructed a set of unitary constraints @’ so that the conjunction of
Q' specifies the same filter. Thus we may think about this transformation"
as a form of normal form computation.

Once this position is taken, namely that positive constraints ave atoms
of some logical language, it is natural to consider other formulas of that
logical language, not only conjunctions of atoms. The characterization
theorem for ideals can be interpreted in these terms as stating that ideals are
determined by conjunctions of negated atoms, and our result on segments
as a characterization of segments by means of sets of literals.

Notice that filters can be described by means of disjunctions of positive
constraints. Indeed, take C consisting of all minimal elements of the filter
F. Then the formula ¢ = \/;¢(C, |C|) characterizes the filter 7. That is
the family of those sets T that satisfy the formula ¢ coincides with F.

125

Thus we noticed that a filter has a description both as a conjunction
and. as a disjunction of atoms. In fact, the fact that we deal with a filter
is really related to the positive formulas. A formula is called positive if
it is built out of atoms by means of conjunctions and disjunctions. The
following is easily provable by induction on the length of a formula.

Proposition 4.1 If @ ts a positive formula then the famzly of those sets
X that satisfy ¢ forms a filter. (w]

We will denote that filter , and we will say that ¢ represents a filter
F, if F = F,. Clearly, filters may have multiple representations. To see
this, write any positive formula ¢, take the filter 7, and then write the
representation of that filter by means of a conjunction of atoms and yet
another as a disjunction of atoms. This raises the question whether the
complexity of description of a filter can be somehow measured. To this
end, let us assign to a formula ¢ the number m(yp) of atoms occurring in ¢.
Call m(yp) the size or measure of p. Assign to a filter F its measure u(F)
by

: p(F) = min{m(yp) : F, = F}.
In principle, the result of our Theorem 2.1 is that as concerns the descrip-
tions of filters, all we need are conjunctions of atoms. But we will see that
when it comes to the measure of complexity, the formulas we are allowed
to use make a lot of difference.

To set up the stage, notice that Shamir’s filter [9] consisting of all subsets
of X of the size greater or equal than k has a very simple description, namely
we can describe it by means of a single constraint. Thus this filter has the
measure equal to 1.

Notice that whenever we define filters using formulas of our language,
there is a hidden parameter - the set X itself. We will now construct a family
of filters that have very complex descriptions if only the conjunctions are
allowed, but each of them has the measure equal to 2. In fact, that filter has
the following property: if only. conjunctions of atoms are allowed then the
shortest description is of the order O(].A|) where A is the largest antichain
in P(X). Thus our construction will provide us with a filter that is truly
pathological - description via the conjunction of atoms is huge, the measure
drops to the least possible value, namely, 2, if disjunctions are also allowed
(Shamir filters are the only filters with descriptions of size 1).

" To this end, let X be of even size, |X|=m =2n,n > 1, and let zg be
a fixed element of X. Define C;, = {C'C X : |C| = n and zo¢ € C}. Now,

126

let @ = {(C,1): C € C;,}. The set of positive constraints Q determines a
filter that we will denote F,.

It is easy to see that the size of @ is ('::11) Thus our description of F,
as a conjunction of atoms is of the size ':_'_'11) Notice that the collection
Cz, forms an antichain. Moreover, the complement of any set from C,, does

not belong to Fg,.

We will now show that any description of F,, by means of a conjunction

of atoms must have the size that is greater than or equal to (72]).

To this end we will prove the following two results.

Proposition 4.2 Let (T, k) be any constraint satisfied by all elements of
Fzo. Then k =1, and for some C € C,,, CCT. ~

Proof: Case 1. |T| < n.

Then Z = X \ T has size bigger than n. Hence Z must meet all con-
straints in @ because whenever (C,1) € @ then |Z| + |C| > m and so
ZNC #0ie Z|(C,1). Hence Z € F,,. But then it must be the case
that Z |= (T, k) which is a contradiction since TN Z = @. Thus this case is
impossible.

Case 2. [T| > n.

Notice that {zo} belongs to the filter F,. Thus it must be the case
that {zo} |= (T, k). Then, obviously, k = 1, and zo € T. But since |T| > n,
T has a subset belonging to Cz,. o

Proposition 4.3 If F is a filter defined by a set R = {{C,1): C € C} of
unitary constraints such that C is an antichain then for every set of unitary
constraints R' defining ¥, RC R'.

Proof: Suppose R’ defines F but {(Co,1) & R’, for some Cp € C. Since
X \ Co ¢ F because it does not satisfy the constraint (Co, 1) € R, there
is a constraint (C1,1) € R’ such that C; N (X \ Co) = @, i.e. C1 C Co.
Since (Co, 1) € R', Cy # Co. Now, (X \ C1)NCo # B and, for every C € C,
C # Co, (X \ C1) NC # @, for otherwise C C C; C Co contradicting the
assumption that C is an antichain. Hence, X \ C; € F, a contradiction
because X \ C; does not satisfy the constraint (Cy,1) € R'. a

Now we are able to show that Q is the simplest description of F;, by
means of conjunction. Indeed, by Proposition 4.2, any description of that

127

filter by means of conjunction of constraints Q' must consist of only unitary
constraints. Since C, is an antichain, @ is the simplest description of ¥,
by means of conjunction by Proposition 4.3.

In order to see that F, has a description of size 2 when the disjunctions
are allowed, we will now look at the minimal elements of the filter F,,.

Proposition 4.4 The following are all the minimal elements of Fz,.

(a) {zo}
(b) all (n + 1)-element subsets of X \ {zo0}.

Proof: Clearly, {zo} is a minimalset belonging to our filter. Next, it is easy
to see that each (n + 1)-element subset A of X \ {zo} belongs to the filter
because, for each C € Cq,, |ANC| = |A|+|C|-|AUC| > n+1+n—m=1.
Next, proper subsets of such 4 have at most n elements and do not contain
zg. Therefore their complements contain subsets in C;,. Hence proper
subsets of such sets do not belong to the filter, and so all the sets listed in
(b) are minimal in our filter.

Conversely, let C' be a subset of X that is a minimal element of our
filter. If C contains 29 then C = {2¢}. Otherwise, C is included in the set
X \ {zo0}. The requirement that C satisfies all constraints in @ reduces to
the fact that C has nonempty intersection with all (n — 1)-element subsets
of X \ {zo}. The minimal sets satisfying these conditions are precisely
(n + 1)-element subsets of X \ {zo}. This shows that C is one of the sets
in (b). a}

Now form the following formula ¢
= ({zo},) V(X \ {zo},n +1).

Clearly m(p) = 2.
Proposition 4.5 The formula ¢ determines the filter F,.

Proof: By Proposition 4.4 the minimal elements of the filter ¥, are: {zo}
and all (n + 1)-element subsets of X \ {zo}. The first of these satisfies the
first disjunct, the remaining ones the second one. Since every element of
the filter F,, contains a minimal one, every element of our filter satisfies
one of the disjuncts in ¢, thus ¢ itself.

128

Conversely, if C is a filter determined by the formula ¢, then two cases
are possible. Either C satisfies the first disjunct, that is contains zo. Then
clearly C belongs to F,,. Or C satisfies the second disjunct, and it contains
some minimal element of F,,. Thus also in this case C € F,. "o

Thus we see that, by definition p(F,,) < 2. But it is easy to verify
that p(Fz,) # 1, for n > 2. We leave a simple proof of this statement to
the reader. Since a single negated constraint —(T, k) defines an ideal not a
filter, we proved that our filter F;, has no description of length 1, and so

w(Fzo) = 2.

Similarly we can find an example of a filter whose description via dis-
junctions is of order O(|.A]) but there is a description via a conjunction of
size 2.

Let 7. be the filter whose minimal elements are precisely the members
of C;, = {C' C X :|C|=nand 2o € C}. One can check similarly as in the
case of F;, that the shortest description of F; using disjunctions is the
disjunction of the constraints (C,n), C € Cxz,, whose size is O(|.4]). On the
other hand F; is the access structure with respect to the set of quorum
constraints Q’ = {({z0},1), (X \ {zo}, n — 1)} of size 2.

In view of the examples the following extremal problem seems to be
of interest. Given an integer m, find the maximum value of yx(F) over
the set of all filters F C P([m]). With the notation p(m) = max{u(F) :
F is a filter in P([m])}, the problem is to investigate and estimate the val-
ues of p(m)

In the arguments below we will use several times the following relation-
ship between quorum constraints.

Proposition 4.6 If X; C X, and n2 < n1, then
I (X1, n,1) implies I |= (X2, n2). (1)

We now have the following property.

1 (l"‘J) <#lm) < (1"*1)

Proof: The inequalities are trivially true for m = 1 so assume that
m > 2. It follows from Theorem 2.1(c) that every filter 7 C P([m]) can be

Proposition 4.7

129

defined as a conjunction of unitary constraints Q' = {(C,1) : C € C}, for
some C C P([m]). By Proposition 4.6 we may assume that C is an antichain
so Sperner s lemma implies

Hence p(m) < (‘l;.l)'

On the other hand consider nonempty antichains being subsets of the
LZth level of P([m]), i.e. of L = {C € P(Im]) : |C| = |2]}. Clearly

there are 2(1’?‘1)_ 1 of them and each such antichain defines a filter whose
minimal elements are the elements of the antichain. Therefore we have at
least 2(1§1) distinct filters in P([m]). Notice that the number of possible
constraints (C,t), C C [m], 1 <t < |C] is equal to 312, i(T) = m2m-1,
Let us count all possxble formulas of size at most k (with k atoms) composed
of constraints and the symbols A and V. Assume that they are written in
the reverse Polish notation so they are strings of length at most 2k — 1
over an alphabet of m2™~! 4 2 symbols. The number of such strings is
b (m2™1 4 9)%=1 50 we have at most

my2k
Z(mqm— + 9)2: 1 < Z m2m 2i-1_ 9, (n::zrr{ < (mzm)%

i=1 i=1

-)Ik ‘ m +1051" ' d)alt m
-_—a < -~ y

Itk < gh((3)) then 27 < 21#1) o there is a filter F, for which
> 1 This countmg argument demonstrates that u(m) >
3m [1. g

wF
(5 a

5 Algorithms

From the point of view of applications it is important to design an algorithm
which, for an input set of constraints @ constructs a family of sets Gg
satisfying the condition () (Condition (x) was introduced after the proof
of Theorem 2.1). A general idea of such an algorithm is described in the
proof of the implication (a) = (e) in Theorem 2.1. To construct the family
Gq we need to find all maximal elements of the ideal Zg = P([m]) \ Fo.
We shall follow this approach in our Algorithm 2.

130

Let us start, however, with a simpler (but in most cases slower) algo-
rithm which makes use of an observation that in the proof of the implication -
(a) = (e) in Theorem 2.1 we can replace the set Mz of maximal elements
of the ideal Z by the ideal Z itself. Let M = {ai,...,a,}, where ¢ = |Z].
Define G; = {a; € M :i € 4;}, 1 < i < m. One can easily check that
the family of sets Gg = {G1,...,Gm} defined this way satisfies (x). This
observation leads us to the first (generic) algorithm.

Let Q = {(A1, k1), ..., (A¢, k:)} be our input set of constraints.

Algorithm 1

1 ZI:=0;

2 for all subsets B C [m] do

3 {fori=1,..,tdo

4 {if |BN A;| < k; thenZ :=Z U {B}}
5 end for (2) };

6 GieGm:i=0;

7 for every B = {iy,...,i,5} €T do

8 {for j=1,..,sp do

9 { Gi; = G,'J-U{ag}}

10 end for (7) };
11 stop;

In lines 1-5 of this algorithm we find all sets in [n] which are not access
structures with respect to the input set of constraints @, i.e. we fiad all the
elements of the ideal Zg. This ideal is then used to construct the desired
family Gq in lines 6-10. ‘

Let us discuss time complexity of Algorithm 1 by counting the number
of executions of the most embedded loops. The number of passes of the
loop in lines 3-4 is equal to ¢2™. The loop in lines 8-9 is executed

Z sp < m|Z| < m2™
BeI

times. Hence the worst case running time of Algorithm 1 is O({(m+t)2™). In
practice, if the number ¢ of quorum constraints is small and the constraints
are not very restrictive (i.e., the ideal Z is small} then the actual running
time of this algorithm may be quite satisfactory.

There is another disadvantage of Algorithm 1, however. The sets of the
family Gg constructed by this algorithm may be very large. For example, if

131

our set of quorum constraints is @ = {{[m], m)} then Zg = P([m]) \ {[m]}
and each set G; constructed by Algorithm 1 has 2™ — 1 elements. On the
other hand, for an optimal” family G = {G1,..., Gm} with the required
property (%), G;i =[m]\ {i},i=1,..,m,s0 |Gs| = m — 1.

Therefore we shall introduce another, subtler, algorithm which requires
to use only the maximal elements of the ideal Zg in the construction of a
family Gg instead of the entire ideal Z.

We shall need several auxiliary facts. The first of them will be used to
reconstruct the set of maximal elements of the ideal Zg out of the set of
unitary quorum constraints Q.

Proposition 5.1 Let @ = {(X1,1),..., (Xp,1)} be a set of unitary quo-
rum constraints such that X,,..., X, form an antichain in P([m]). Then
the sets Y; = [m]\ X, 1 < j < p, are precisely the mazimal elements of

Zo.

Proof: If M is a maximal element of Zg then X; N M = @ for some j,
1<j<p SoM C[m]\Xj. If there is an z so that z € ([m]\ X;) \ M
then X;N(MU{z}) =0 so MU{z} € Zg. This contradicts the maximality
of M in Zg. Hence M = [m]\ X;.

Conversely, for every j, 1 < j < p, [m]\ X; € Tq. Let z € X;. Then
X; N (((m]\ X;) U{z}) = {z} #0.
Moreover, for j; # ja,
N (([m]\ X3,) U {z}) 2 X, N ([m] \ X;,) # 0

because otherwise X;, C Xj, contradicting to our assumption that the sets
Xj, 1< j < pform an antichain. Thus ([m] \ X;) U{z} does not belong to
Iq for any z, that is [m] \ X; is a maximal element in Zg, as required. D

The next proposition allows us to reduce an arbitrary quorum constraint
to a set of unitary quorum constraints.

Proposition 5.2 Let ¢ = (X,k), k > 2, be a quorum constraint. Then
I |= q if and only if for every z € X, I E(X\{z},k-1).

Proof: Assume I |= g. Choose 2 € X. If ¢ € I then I contains at least
k — 1 elements of X different from z. Thus I (X \ {z},k—-1). fz ¢ I,
then I contains at least k elements of X \ {2}, and, a fortiori, £ —1 of them.

132

Conversely, assume that I j~q. Then INX|<k-1. fINX =0
then since ¥ > 2, IN (X \ {z}) = @ for any z € X and in particular
IE(X\{z}, k— 1). Otherwise, select € INX. Then |IN(X\{z})| < k— 2
thus I j& (X \ {z},k—1).

Iterating Proposition 5.2 we get the following result.
Corollary 5.3 Let ¢ = (X, k), where k > 2, be a quorum constraint. Then
I = g if and only if for every (k — 1)-element subset Y of set X, I |
(X\1,1). a)
We now have all the facts necessary for writing our Algorithm 2.

Let Q@ = {{A4;, ki) : i = 1,..., p} be a set of quorum constraints. Since, by
(1), I = (A4,n,1) implies I = (4,n3), for n; > na, we can assume without
loss of generality, that A; # Aj, for i # j. Define, for every A € P([m]),

[k f(AK) = (A k) €Q
94= 11 0 otherwise.

In the algorithm we represent the input set of quorum constraints @ by the
set {ga : A € P([m])}. Let {ap : B € P([m])} be a set of elements which
will contain all constructed sets Gy, ...,Gm in Gg.

Algorithm 2

1 fori=mm-1,..,1do

2 { for all subsets A C [m] such that |A| =i do

3 {if g4 > 1 then

4 { for every a € A do g4_{q} ‘= max(ga—{a},94 — 1) :
5 ga:=0}

6 end for (2) }

7 endfor (1) };

8 V:i=0

9 M: =0

10 fori=1,2,..,mdo

11 { for all subsets A C [m] such that |A| =i do

12 {if A€V then forevery a € [m] - Ado V:=VU{AU{a}};
13 if (A¢V and g4 = 1) then do

14 {V:=vu{d}

15 M = MU {[m] - 4};

16 for every a € [m] — A do

17 {V:=VUu{du{a}} }

133

18 end if (13) }

19 end for (11) }

20 end for (10) };

21 Gryeey G =0

22 for every B = {iy,...,is5} € M do
23 {forj=1,..,sp do

24 { Gi, ==Gi;U{as} }

25 end for (22) };

26 stop;

For a detailed discussion of the correctness of this algorithm we refer
the reader to [6].

It was shown in [6] that the running time of Algorithm 2 is O(m2™).
On the other hand (see [6]), for @ = {([], | 3]}} to print the family Gq
alone we need m(l’.L‘J'i2) = Q(m?/22™) time.

£ 4

For negative quorum constraints we can prove results dual to Propo-
sitions 5.1 and 5.2 and Corollary 5.3. Consequently, we can design an
algorithm for finding, for a given set of negative quorum constraints @, a
family # = {Hi,..., Hn} so that for every I C [m], I |= Q if and only if

n{Hi:iGI}#@.
Below we sketch how it can be achieved.

The following three facts can be shown in an analogous way as their
counterparts for positive quorum constraints.

Proposition 5.1’ Let Q = {~(X1,|X1|},...,(Xp,|Xp|}} be a set of an-

tiunitary quorum constraints such that X,,...,X, form an antichain in
P([m]). Then the sets Xj, 1 < j < p, are precisely the minimal elements
of the filter Fq = P([m]) — Zg. o

Proposition 5.2’ Let ¢ = —(X,k), k < |X| - 1, be a negative quorum
constraint. Then I |= q if and only if for everyz € X, I = (X \ {2}, k).
(]

Corollary 5.3' Let ¢ = =(X, k), where k < |X|— 1, be a negative quorum
constraint. Then I |= q if and only if for every k-element subset Y of X,
I'E=-(Y, k). (m}

134

. Below we introduce Algorithm 3. It finds, for a given input set of
negative quorum constraints Q on [m], a family #q = {Hy, ..., Hn} so that
for every I C [m], ;¢; Hi # @if and only if I = Q.

Let @ = {—(A4i,k;) : i = 1,...,p}. As in Algorithm 2 we can assume
that A; # Aj, for i # j. Similarly, we define, for every A € P([m]),

ki (A, k)= (A, k) € Q
94= 1 0 otherwise.

Algorithm 3 works in a very similar way to Algorithm 2. Only the lines 3,
4, 13 and 15 in Algorithm 3 are different from the corresponding lines in
Algorithm 2.

Algorithm 3

1 fori=mym-1,..,1do

2 { for all subsets A C [m] such that JA| = i do

3 {if gs < |A|+1 then

4 { for every a € A do ga—{4} = min(ga—_{a},04) ;
5 ga:=0}

6 end for (2) }

7 endfor (1) };

8 V=0

9 M:=0

10 fori=1,2,..,mdo
11 { for all subsets A C [m] such that |[A] =i do
12 {if A€V thenforeverya € [m]—AdoV:=VU{AU{a}};

13 if (A€ V and g4 = |A| + 1) then do
14 {Vi=vu{d)

15 M= MU {4}

16 for every a € [m] — A do

17 {V=Vu{du{e}} }

18 end if (13) }

19 end for (11) }

20 end for (10) };

21 Gl) veey Gm = 0;

22 for every B = {i1,...,is5} € M do
23 {forj=1,..,s5 do

24 {Gi; :=G;;U{as} }

25 end for (22) };

26 stop;

135

Clearly, Algorithm 3 has the same running time as Algorithm 2, i.e.
O(m2™).

6 Conclusions

In this paper we give several characterizations of filters, ideals and seg-
ments in Boolean lattices of subsets of a finite set ordered by inclusion.
One of them uses so-called quorum constraints (or their negations) and
characterizes filters (respectively ideals and segments) as a families of sets
satisfying these constraints. This is a natural way of defining these fami-
lies motivated by applications. Another characterization allows us to test
membership of sets in filters (respectively ideals and segments) by verifying
whether or not some specific sets have an empty intersection. This charac-
terization has important consequences in a problem of distribution of keys
in cryptography.

Several problems remain open. First, an algorithm of verification if a
given set belongs to a filter that we give is computationally expensive. It
would be important, especially from the point of view of applications, to
find a faster algorithm solving this problem.

Second, in our paper we consider only a certain type of constraints. It
seems that there are more kinds of constraints that are worth to examine.
For example, a constraint requiring that the putative set I contains more
elements of some set Y than of some other set Z can not be expressed as
a conjunction of quorum literals that we consider in this paper. In fact, it
may happen that the family of sets I satisfying such a constraint is not a
segment.

The third problem is a question how to find, for a given filter, a minimal
set of quorum constraints which determine the filter. Similar problems can
be formulated for ideals and segments. A general solution of this problem
is hard because in a special case it reduces to the problem of covering edges
of a graph by a minimum number of cliques. The decision version of this
problem is known to be NP-complete (see [2]).

References

[1] C. Blundo, A. De Santis, L. Gargano and U. Vaccaro, Secret sharing
with veto capabilities, in Algebraic Coding, First French-Israeli Work-

136

2
3]

[4]
5]

[6]

7]
(8]

[9]

shop (ed. G. Cohen, S. Litsyn, A. Lobstein and G. Zemor), Lecture
Notes in Computer Science 781 (1993), 82-89.

M. R. Garey, D. S. Johnson, Computers and Intractability, Freeman,
New York, 1997.

Handbook of Combinatorics (ed. R. L. Graham, M. Grotschel, L.
Lovasz), Elsevier, Amsterdam, 1995.

E. Kranakis, Primality and Cryptography, Wiley, 1986.

C. L. Liu, Introduction to Combinatorial Mathematics, McGraw-Hill,
New York, 1968.

Z. Lonc and M. Srebrny, A Combinatorial Algorithm for Sharing a
Key, in Advanced Computer Systems (ed. J. Soldek and J. Pejas),
391-404, 8th International Conference ACS’2001, Kluwer, 2001.

M. Mignotte, How to Share a Secret, Lecture Notes in Computer
Science, vol. 149, 371-375, Springer—Verlag, 1983.

S. Obana and K. Kurosawa, Veto is impossible in secret sharing
schemes, Information Processing Letters 58 (1996), 293-295.

A. Shamir, How to share a secret, Communications of the ACM, 22
(1979), 612-613.

[10] D. R. Stinson, Cryptography, Theory and Practice, CRC Press 1995.

137

