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Abstract

A defensive alliance in a graph G = (V,E) is a set of vertices
S C V satisfying the condition that every vertex v € S has at most
one more neighbor in V — § than it has in S. Because of such an
alliance, the vertices in S, agreeing to mutually support each other,
have the strength of numbers to be able to defend themselves from
the vertices in V — S. In this paper we introduce this new concept,
together with a variety of other kinds of alliances, and initiate the
study of their mathematical properties.

1 Introduction

In this paper we introduce the study of alliances in graphs. In its simplest
form, an alliance is nothing other than a set of vertices having some collec-
tive property. But, as in the real world there are different types of alliances,
so shall we define different types of alliances.

*This work was done while the author was visiting Clemson University.
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Alliances are found in many varieties, including those formed:

(i) by people who unite by kinship or friendship;
(i) by confederations between sovereign states;
(iii) by members of different political parties;
(iv) in botany, by groups of natural orders of plants;
(v) in ecology, by groupings of closely related associations;
(vi) in business, by companies with common economic interests;

(vii) in times of war, by nations for mutual support, usually defensive in
nature, where allies are obligated to join forces if one or more of them
are attacked, but also offensive, as a means of keeping the peace, e.g.
NATO troops in a war-torn country.

With (vii) as our primary motivation, we define several types of graph
theoretic alliances. But first we will need some definitions and notation.
Let G = (V, E) be a graph having vertez set V and edge set E. If [V|=n
and |E| = m, we say that G is of order n and size m. For any vertex
v € V, the open neighborhood of v is the set N(v) = {u : wv € E}, while
the closed neighborhood of v is the set N[v] = N(v) U {v}. The open
and closed neighborhoods of sets of vertices S C V are defined as follows:
N(S) = U,es N(v), and N[S] = N(S)U S. Similarly, for a set S, the
boundary of S is the set 8(S) = J,cg N(v) - S.

A graph G’ = (V',E') is a subgraph of a graph G = (V, E), written
G'CG,ifV CVand E'CE. If SCV is a subset of the vertex set, the
subgraph induced by S is the graph G[S] = (S,ENS x S).

We say that a set S C V is a dominating set if N[S] = V, and is an
independent set if no two vertices in S are adjacent.

2 Alliances in graphs

Definition 1. A non-empty set of vertices S C V is called a defensive
alliance if and only if for every v € S, [IN[v)N S| > [IN@w)N(V = 8)|. In
this case, by strength of numbers, we say that every vertex in S is defended
from possible attack by vertices in V — S. A defensive alliance is called
strong if for every vertex v € S, [IN[v]NS} > |[IN(v)n(V — §)|. In this case
we say that every vertex in S is strongly defended.
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Figure 1: (a) The set S = {1,2,3,4} is a 1-critical defensive alliance, but
not a critical defensive alliance. (b) The set S = {1,2,3,4} is a 1-critical
offensive alliance, but not a critical offensive alliance.

Definition 2. A non-empty set of vertices S C V is called an offensive
alliance if and only if for every v € 8(S), [IN(v)N S| > |[N[v)n(V - S)|. In
this case we say that every vertex in 8(S) is vulnerable to possible attack
by vertices in S. An offensive alliance is called strong if for every vertex
v € 9(S), IN(w)N S| > IN[vJN (V — S)|. In this case we say that every
vertex in 8(S) is very vulnerable.

Any two vertices u,v in an alliance S are called allies (with respect
to S); we also say that u and v are allied.

An alliance S (defensive or offensive) is called critical if no proper subset
of S is an alliance (of the same type). Note that the property of being
an alliance (of any type) is not necessarily hereditary. For example, the
defensive alliance S = {1,2,3,4} in Figure 1(a) is 1-critical in the sense
that for any single vertex v € S, the set S — {v} is not a defensive alliance.
However, the set S — {2,3,4} is a defensive alliance. In Figure 1(b) the
set T = {1,2,3,4} is 1-critical offensive alliance, but not a critical offensive
alliance, since the proper subset 7* = {1,2} C T is also an offensive alliance.

An offensive alliance is not necessarily a defensive alliance. Let the
complete bipartite graph K32 be defined by the independent sets V; and
V3. Since all vertices in ¥} and in V2 have more neighbors not in their own
set than they have in their own set, both V; and V; are (strong) offensive
alliances, but not defensive alliances.
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For a graph G we will consider the following classes of alliances:

A(G), the class of critical defensive alliances in G,

ﬁ(G), the class of critical strong defensive alliances in G,
Ao(G), the class of critical offensive alliances in G, and

flo(G), the class of critical strong offensive alliances in G.

Associated with each of these classes of critical alliances, are two invari-
ants, as follows:

a(G)
A(G)
4(G)
A
a0(G)
Ao(G)
a.(G)
Ay(G)

min{|S| : S € A(G)}, the alliance number of G,

max{|S] : S € A(G)}, the upper alliance number,

min{|S| : S € A(G)}, the strong alliance number,

max{|S] : S € A(G)}, the upper strong alliance number,
min{|S| : S € Ao(G)}, the offensive alliance number,
max{|S| : S € A,(G)}, the upper offensive alliance number,
min{|S] : S € A,(G)}, the strong offensive alliance number,
max{|S| : § € A,(G)}, the upper strong offensive alliance
number.

The following inequalities are consequences of these definitions:

a(G) < &(G) <A@,
a(G) < A(G),
2(G) < &(G) < A(G),
2(G) < Ao(G).

In the remainder of this paper we will only present some of the mathe-
matical properties of the four (defensive) alliance numbers. Consequently,
when we say alliance, we will always mean defensive alliance.

If S is a critical alliance of a graph G and |S| = a(G), then we say that
S is an a-set of G, and similarly, if |S] = A(G), we say that S is an A-set
of G. Likewise, if S is a critical strong alliance, and |S| = &4(G), then S is
an é-set, or if |S| = A(G), then S is an A-set.

One important kind of alliance that appears often is a global alliance.

Definition 3. A defensive alliance S is called global if it effects every vertex
in V — S, that is, every vertex in V — S is adjacent to at least one member
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of the alliance S. In this case, S is a dominating set, and one can define the
global alliance number, denoted v,(G), to equal the minimum cardinality
of a global defensive alliance in G.

Definition 4. An offensive alliance S is called global if for every vertex
ve€V -5, |N(w)NS| > |N[v]n(V — S)|. Thus, global offensive alliances
are also dominating sets, since every vertex in V — § is adjacent to at least
one vertex in the alliance S.

Both global defensive alliances and global offensive alliances are new
kinds of dominating sets. A fairly complete listing of different kinds of
dominating sets can be found in the two books by Haynes, Hedetniemi and
Slater [22, 21].

3 Concepts similar to alliances

Although the concept of an alliance in a graph is newly defined here, con-
cepts similar to defensive and offensive alliances can be found in the liter-
ature. Among the earliest of these is that of an unfriendly 2-partition of a
graph G = (V, E), which is a partition Il = {Vp, V1 }, having the property
that every vertex v € V; is adjacent to at least as many vertices in Vi_; as
it is to vertices in V;. Stated in terms of alliances, unfriendly 2-partitions
almost correspond to a partition of V into two offensive alliances. If the
definition of an unfriendly 2-partition is changed as follows, then it corre-
sponds to a partition of V into two global offensive alliances. A 2-partition
II = {Vb,W1} is called very unfriendly if every vertex v € V; is adjacent
to more vertices in Vj_; than it is to vertices in V;. A simple example of
a very unfriendly 2-partition can be seen by 2-coloring the vertices of a
connected bipartite graph G having a minimum degree of at least two. The
two color classes in such a coloring, say Vp and V;, define a very unfriendly
2-partition; each of Vp and V; is a global strong offensive alliance.

Unfriendly 2-partitions were perhaps first introduced by Borodin and
Kostochka (3] in 1977, and have also been studied by Bernardi [2], Cowan
and Emerson [6], Aharoni, Milner and Prikry [1], and Shelah and Milner
[28]. Basic to these investigations is the simple observation that every finite
graph has an unfriendly 2-partition. In fact, any 2-partition IT = {Vp, Vi } of
V which maximizes the number of edges between V; and V; is an unfriendly
2-partition. Shelah and Milner [28] showed that not all infinite graphs have
an unfriendly 2-partition, but all graphs have an unfriendly 3-partition.
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A similar concept has been studied by Gerber and Kobler (16], who
define a vertex v in a set A C V to be satisfied if it has at least as many
neighbors in A as in V' — A. A set A is called cohesive if every vertex in
A is satisfied with respect to A. It is easy to see that every cohesive set
is a strong defensive alliance. A graph is said to be satisfiable if there is
a vertex partition into two or more non-empty sets so that every vertex
is satisfied with respect to the set in which it occurs. Such a partition is
called a satisfactory partition. Satisfactory partitions correspond, there-
fore, to partitions of V into disjoint, strong defensive alliances. It can be
seen that not all graphs have satisfactory partitions, for example complete
graphs. Shafique and Dutton [27] present some necessary and sufficient con-
ditions for graphs to be satisfiable, and show that no forbidden subgraph
characterization exists for this class of graphs.

Several authors have studied signed and minus dominating functions
in graphs, which are defined as follows. A function f : V — {-1,+1} is
called a signed dominating function if for every vertex v € V, f(N[v]) > 1.
Stated in other words, if IT = {V_;, 4} is the 2-partition defined by f-1,
then the set V; is both a global strong defensive alliance and a global strong
offensive alliance. Similarly, a function f: V — {-1,0, 1} is called a minus
dominating function if for every vertex v € V, f(N[v]) > 1. Stated in other
words, if IT = {V_,,Vp, V4} is the 3-partition defined by f~!, then the set
W is a global strong defensive alliance. Signed and minus domination have
been studied in (8, 10, 9, 11, 13, 17, 18, 23, 29).

Another concept similar to that of alliances has been studied by Dunbar,
Hoffman, Laskar and Markus [12], who define a set S C V to be an a-
dominating set, for some a, 0 < a < 1, if every vertex v € V — S satisfies
the inequality: |N(v) N S| > a|N(v)|. Thus, if & > 1/2, then every vertex
in V — S has more neighbors in S than it has in V — S. This means that
the set S is a global offensive alliance. However, if @ < 1/2, then every
vertex in V — S has at least as many neighbors in V — S as it does in S, and
therefore, V — S is a strong defensive alliance. Recently, Langley, Merz,
Stewart and Ward [25) have studied a-domination in tournaments.

Still another concept similar to that of alliances has been studied by
Dunbar, Harris, Hedetniemi, Hedetniemi, Laskar and McRae (7], who define
aset S C V to be nearly perfect if forallv e V-8, IN@w)NS| < 1. Itis
easy to see that if S is a nearly perfect set, then the complement V — S is
a defensive alliance.

A perfect dominating set is a dominating set having the property that
foralv e V-8, |N(v)NS| =1 AsetS CV isa 2-packing if for all
veV,|NpnS| <1
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It follows from these definitions that the complement of every perfect
dominating set and the complement of every 2-packing is a defensive alliance
(cf. [5, 22, 21] for discussion of perfect dominating sets and 2-packings).

One final type of set leads to alliances. A set S C V is a vertex cover if
for every edge uv € E, SN{u,v} # 0. It is well known that the complement
V —8 of any vertex cover S is an independent set. It is easy to see, therefore,
that every vertex cover of a connected graph is a global offensive alliance.

Since the introduction of the concept of alliances in graphs by the au-
thors in August, 2001 [24], several papers have been written, and are in
preparation, on this topic (cf. [4, 14, 15, 19, 20, 26]).

4 Properties of the alliance and strong al-
liance numbers, a(G) and a(G)

We first observe that any critical (strong) alliance S in a graph G must
induce a connected subgraph of G. This is obvious, since any component
of G|[S] is a strictly smaller alliance (of the same type).

Proposition 1. For any critical alliance S in a graph G, the subgraph G[S)
induced by S is connected.

It is obvious that there are only two kinds of alliances of cardinality one:
an isolated vertex (a vertex of degree zero) and an end vertex (a vertex of
degree one).

Proposition 2. For any graph G,
(i) a(G) = 1 if and only if there ezists a vertez v € V such that
deg(v) < 1.
(i) &(G) =1 if and only if G has an isolated vertez.
Corollary 1. For any tree T and path P, a(T) = a(P,) = 1.
The following characterizations of graphs for which a(G) = 2 and graphs

for which a(G) = 2 are immediate consequences of Proposition 1, and
depend on the minimum degree of a vertex in G, denoted 6(G).

Proposition 3. For any graph G,

(i) a(G) = 2 if and only if 6(G) > 2 and G has two adjacent vertices of
degree at miost three.
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(i) a(G) = 2 if and only if §(G) > 1 and G has two adjacent vertices of
degree at most two.

The wheel W, is the graph which consists of a cycle Cy, of length n, and
a central vertex which is adjacent to every vertex of the cycle.

Corollary 2. For any cycle C,, wheel W,, and path P,,

(1) a(Cn) = &(Pn) = &(Cr) = a(Wy) = 2.
(i) a(W,) =[]+ 1.

Proof.

(i) Any two adjacent vertices on C, or on the cycle of the wheel W,
constitute an alliance of C, and W,, respectively.

(#) If S is an G-set of the wheel W,, then no vertex of G[S] can have
degree one, since every vertex in W, has degree at least three. Thus,
the minimum degree of a vertex in G[S] is at least two. The only
induced subgraphs of W, having minimum degree at least two are
the cycle Cy, or subgraphs containing the central vertex (of degree n).
It follows, therefore, that the only d-sets of W, contain the central
vertex and at least half of its neighbors on C,,. (]

The following characterizations, of graphs for which a(G) = 3 and
graphs for which a(G) = 3, are again consequences of Proposition 1.

Proposition 4. For any graph G,

(i) a(G) = 3 if and only if a(G) # 1, a(G) # 2, and G has an induced
subgraph isomorphic to either (a) P, with vertices, in order, v, v and
w, where deg(u) and deg(w) are at most three, and deg(v) is at most

five, or (b) isomorphic to K3, each vertex of which has degree at most
five.

() &(G) = 3 if and only if &(G) # 1, &(G) # 2, and G has an induced
subgraph isomorphic to either (a) P3, with vertices, in order, u, v and
w, where deg(u) and deg(w) are at most two, and deg(v) is at most
four, or (b) isomorphic to K3, each vertex of which has degree at most
four.
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Similar characterizations of graphs for which ¢(G) = k and &(G) = k
are possible, in principle, since for any value of k, there are only a finite
number of connected graphs of order k, and the vertices in each of these will
have certain degree restrictions. Unfortunately, the number of connected
graphs of order k grows exponentially with k.

The m x n grid graph is the Cartesian product Gp, n = Pr,OP,.
Theorem 1. For the m x n grid graph G n,

(i) a(Gm.n) =1 if and only if min{m,n} = 1.
(ii) a(Gmn) = 2 if and only if min{m,n} > 2.
(i) a(Gmun) = 2 if and only if min{m,n} < 3.
(iv) &(Gmn) = 3 if and only if min{m,n} = 3.
(v) &(Gm ) =4 if and only if min{m,n} > 4.

Proof.

(i) This is obvious from Proposition 1.
(ii) This follows from Proposition 2(%).

(ii) This follows from Proposition 3 (i), since any such grid graphs have
two adjacent vertices of degree two.

(iv) This follows from Proposition 4(ii)(a), since the first column of G35
is an é-set of cardinality three.

(v) This follows from the fact that a grid graph Gmgn, where
min{m,n} > 4, does not have an induced subgraph as defined in
Proposition 4(ii)(a) or (ii)(b). a

For several values of k it is possible to completely determine the value
of both a(G) and &(G) for the class of k-regular graphs, that is, graphs
in which every vertex has degree k. In order to present these results we
need the following definition. The length of a smallest cycle in a graph G
is called the girth of G, and is denoted girth(G). Note that, by definition,
a cycle C of length girth(G) does not contain any chords, that is, an edge
between two non-consecutive vertices on C.
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Theorem 2. For any graph G = (V, E),

(i) i G is 1-regular, then a(G) = 1 and 4(G) = 2.

(i) if G is 2-regular, then a(G) =2 and 4(G) = 2.

(#i) if G is 3-regular, then a(G) = 2 and a(G) = girth(G).

(iv) if G is 4-regular, then a(G) = girth(G) and &(G) = girth(G).
(v) if G is 5-regular, then a(G) = girth(G).

Proof.

(i) This follows from Propositions 2(i) and 3(ii).
(i) This follows from Proposition 3.

(#i) In a 3-regular graph, any two adjacent vertices form an alliance.
Therefore, a(G) = 2. In order to show that &4(G) = girth(G), let
S be an é-set of a 3-regular graph G. Consider the induced subgraph
GI[S]. This graph can have no vertex of degree one, since then it would
not be strongly defended. Thus, G[S] has minimum degree at least
two, and must contain at least one cycle. Let C be a shortest cycle
in G[S]. It is easy to see that C is a strong alliance in G. Therefore,
G[S] = C. It follows that any shortest cycle is a strong alliance in G,
and hence, &(G) = girth(G).

(iv) The same argument used in the proof of (iii) above can be used to
show that a(G) = girth(G) and &(G) = girth(G), if G is a 4-regular
graph, since any smallest cycle in G is both a critical alliance and a
critical strong alliance.

(v) Again, the same argument used in the proof of (i) above can be
used to show that a(G) = girth(G) if G is a 5-regular graph, since
any smallest cycle in G is a critical alliance (but not a strong alliance)
in G. a

Corollary 2(ii) shows that, for the class of wheels W,, the value of
@(G) can be arbitrarily large. The next two observations provide two more
classes of graphs for which ¢(G) and &(G) can be arbitrarily large.
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Proposition 5. For the complete graph K.,

(1) a(Ka) = [3].
(ii) a(Kn) = |3]+1.
Proposition 6. For the complete bipartite graph Kpmpn, 2 < m <n,

(%) a(Kmn) = l%.l + lpz‘J
(#) &(Kmn) = [Z]1+[3].

In fact, while a(T") = 1 for all trees T', the value of &(T") can be arbitrarily
large. Consider only the star Kjn, where 4(K1,,) = [3] + 1. Note in
this case that an end vertex does not define a strong alliance. Thus, any
connected subgraph which defines an a-set of K ,, must contain the vertex

of degree n. But since this vertex must be strongly defended, at least half
of its neighbors must be in any strong alliance.

5 Bounds for a(G) and a(G)

We have seen that both a(G) and &(G) can equal one for some graphs G.
We also note that the entire vertex set V' is always an alliance and a strong
alliance. Thus,

Proposition 7. For any graph G of order n,
1<a(G) <a(G) <n.

Although the lower bound is sharp for graphs with isolated vertices or
with end vertices, the upper bound can be improved slightly.

Proposition 8. For any connected graph G of order n having minimum
degree 6(G),

(i) a(G) < n - [(G)/2],
(1) a(G) <n—|8(G)/2],

and these bounds are sharp.
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Proof.

(i) Let S C V be any set of cardinality n — [6(G)/2]. It is easy to see
that every vertex in S is defended, and thus that S is an alliance.

(i) Let S C V be any set of cardinality n—[6(G)/2]. It is easy to see that
every vertex in S is strongly defended, and thus that S is a strong
alliance.

It is easy to see that these bounds are sharp for complete graphs. 0

The example in Proposition 5(%) shows that a(G) can be at least as large
as [§], for a graph of order n. This led the authors in [24] to conjecture
that this is the maximum value that a(G) can have for any graph G. This
was subsequently proved in [14].

Theorem 3. For any graph G of order n,

@< [3)

The graph G = Kan + Ko, illustrated for n = 4 in Figure 2 is an
example where G(G) = [4] + 1. This example led the authors to conjecture
in [24] that this is the maximum value that @(G) can achieve. This was
subsequently proved and even improved slightly in [14].

Theorem 4. For any graph G of order n,
i) = |2
a(G) = [2J +1.

For the following class of graphs, the upper bound in Theorem 3 can
be improved slightly. Let A(G) denote the edge connectivity of a connected
graph G, which equals the minimum number of edges in a set, whose re-
moval from G results in a disconnected graph. Note that for any connected
graph G, AM(G) < §(G), that is, a connected graph G can always be discon-

nected by removing all of the edges incident to a vertex of minimum degree
5(G).

Let IT = {V},V2} be a bipartition of the vertices of a connected graph
G, such that there are A(G) edges between vertices in V; and vertices in Va.
If either |Vi| = 1 or |V2| = 1, then we say that Il is a singular \-bipartition,
while if both V; and V; have at least two vertices, then we say that ITis a
non-singular A-bipartition.
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Figure 2: A graph G for which 4(G) = [3]+ 1.

Proposition 9. For any graph G of order n, for which A(G) < §(G),
a(G) < &(G) < |3)-

Proof. Let I1 = {V4,V2} be a A-bipartition of G , and assume that |V;] <
|Va|. Since A(G) < §(G), we know that II is a non-singular A-bipartition.
Clearly, |V3| < |%]. We claim that the set V) is a strong alliance, and
therefore, 4(G) < 3.

This follows from the observation that if V; contains a vertex u that is
not strongly defended, then the modified partition I’ = {V; — {u},V2 U
{u}} is a bipartition having fewer edges between the two sets than II,
contradicting the assumption that II is a A-bipartition. a

Corollary 3. For any graph G of order n having a non-singulor
A-bipartition,

a(G) £ &(G) < | 3.

One other upper bound can be given for a(G) involving Cartesian prod-
ucts.

Proposition 10. For any Cartesian product graph G10G3,

(i) a(G10G2) < min{a(G1)a(C2),a(G1)a(Ga)}-
(i) a(G10G?) < a(G1)a(G2)-
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Proof.

(i) Let S, and S; be an a-set and a-set of Gy,respectively, and let T,
and T; be an a-set and d-set of Ga, respectively. It is straightforward

to see that the Cartesian product sets S, x T;, and S; x T, are both
alliances in G = G;0G,.

(4) As in the proof of (), it is easy to see that S; x T} is a strong alliance
in G10G,. O

6 Alliances in infinite graphs
In this section we briefly consider the values of a(G) and &(G) in several
classes of infinite graphs.

Proposition 11.

(i) For the one-way infinite path P o, a(P ) = 1, while (P1,00) = 2.
(i) For the two-way infinite path Poo 0o, a(Peo,00) = 8(Pi,00) = 2.
 (i#) For the infinite grid Goo,c0, a(Goo,00) = &(Goo o) = 4.

(iv) For the infinite d-dimensional grid G%, = PoooD...0Ps oo
(d times), a(G%,) = a(G%,) = 2¢.

(v) For the rooted, infinite binary tree To oo, a(Toeo) = 2, while
&(T2.oo) = 00.

Proof.

(i) Clearly the one end vertex in the one-way infinite path P, o, forms
an alliance, while any two adjacent vertices in P o, form a strong
alliance.

(i) Any two adjacent vertices in the two-way infinite path Py, o form
both an alliance and a strong alliance.

(iii) Any four vertices forming a 4-cycle in the infinite grid Goo oo form
both an alliance and a strong alliance.

(iv) Any 2¢ vertices forming a P§ in the infinite d-dimensional grid G2,
form both an alliance and a strong alliance.

170




(v) In the infinite binary tree T3 o, any two adjacent vertices form an
alliance, but not a strong alliance. In T, every vertex has one
parent and two children, that is, every vertex has degree three, except
the root, which has degree two. It follows, therefore, that no finite,
connected set S of vertices in T3, can be an alliance, since in such a
set S, the induced subgraph G[S] would necessarily have to have an
end vertex, since there are no cycles in T3 o, and this vertex would
not be strongly defended. Thus, é(T3,) is not finite. However, any
two-way infinite path in T3 o, is a strong alliance. a

Theorem 5. For the rooted, infinite ternary tree Ts o,

Proof. In the infinite ternary tree T3 0, €very vertex has one parent and
three children, that is, every vertex has degree four, except the root, which
has degree three. It follows, therefore, that no finite, connected set S of
vertices in T3, can be an alliance, since in such a set S, the induced
subgraph G[S] would necessarily have to have an end vertex, since there
are no cycles in T3 o, and this vertex would not be defended. Thus, a(T3 )
is not finite. However, any two-way infinite path in T3 o is an alliance, and
in fact, is a strong alliance. O

7 Properties 9f the upper alliance numbers,
A(G) and A(G)

In this section we consider several results about the two upper alliance
numbers A(G) and A(G).

Table 1 provides an overview of results previously established for a(G)
and &(G), and indicates corresponding results for both A(G) and A(G).

The facts that both A(P,) = 2 and A(P,) = 2, for n > 4, follow from
the observation that in a path, any two adjacent vertices, neither of which
is an end vertex, form a critical alliance, and a critical strong alliance.
Since any critical (strong) alliance S must induce a connected subgraph,
the only possible critical (strong) alliances in a path are themselves paths.
But since they would contain two adjacent vertices, S could not be critical
if it contains more than two vertices.

_ The same reasoning applies to the observation that A(C,) = 2 and
A(Cn) = 2, for n > 3, where again a largest critical (strong) alliance
consists of two adjacent vertices.
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Class a(G) A(G) &(G) A(G)
2

1-regular 1 1 2

Paths 112,n>24}2,n>3|2,n>3
Trees 1 any k any k any k
Cycles 2 212,n23|12,n2>23
3-regular 2 2 | girth(G) | lee(G)

4-regular | girth(G) lce(G) | girth(G) | lee(G)
5-regular | girth(G) lee(G) ? ?

Table 1: Overview of alliance numbers for several classes of graphs.

The fact that A(G) can be arbitrarily large, even for trees, is perhaps
best illustrated with the subdivided star, S(K ). This is the tree which is
obtained from the star K , by subdividing every edge, that is, removing
each edge uv and replacing it with two new edges uz and zv. It is easy
to see that the set S obtained from a subdivided star by including the one

vertex of degree n and | %] of its neighbors is a critical alliance of maximum
order.

Since 4(K1,n) = | 3] + 1, and since &(G) < A(G), it follows that A(G)
can be arbitrarily large, even for trees.

In a 3-regular graph G, any two adjacent vertices form an alliance.
Therefore, no larger critical alliances are possible, and A(G) = 2.

By lcc(G) we mean the maximum length of a chordless cycle in a graph
G. We have previously observed that any chordless cycle in a 3-regular
graph forms a critical strong alliance. Therefore, it follows that in a 3-
regular graph G, A(G) 2 lec(G). But A(G) < lee(G), since any critical
strong alliance S in a 3-regular graph G, that has cardinality greater than
lcc(G), must necessarily contain a cycle in G[S)]. Since a smallest cycle in
GI[S] is a critical strong alliance, it follows that G[S] itself must induce a
chordless cycle.

Similar arguments can be used to show that for 4-regular graphs G,

A(G) = lcc(G) and A(G) = lce(G), and for 5-regular graphs, A(G) =
lee(G).
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8 Other types of alliances

We have only considered defensive alliances in this introductory paper on
Alliances in Graphs. Clearly, many other types of alliances can be defined.
Of particular interest for further study are the following:

1. Offensive alliances and strong offensive alliances ([14]).
2. Global alliances ([19])

3. Dual alliances ([4])

Definition 5. An alliance is called dual if it is both defensive and
offensive.

4. Open alliances

Definition 6. An alliance is called open if it is defined completely in
terms of open neighborhoods, that is, aset S C V is an open defensive
alliance if for every vertex v € S, |[N(v)N S| > |[N(v) N (V = S)|.

Notice that with this definition, every strong alliance is also an open
alliance. Notice also that an open alliance is a cohesive set, as defined
earlier (16, 27).

5. Weighted alliances

Definition 7. An alliance S is called weighted if associated with every
vertex v € V is a weight (or a strength) wt(v), and we require that

for every vertex v € S, 3 enpins WHE) = Xyenwynv-s) WHW).

9 Algorithmic complexity questions

This paper has not considered any algorithmic complexity issues, but there
are many to consider, including, for example, the following NP-complete-
ness questions:

(CRITICAL) ALLIANCE
INSTANCE: A graph G and a positive integer k.
QUESTION: Does G have a (critical) alliance of size at most k?
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(CRITICAL) STRONG ALLIANCE
INSTANCE: A graph G and a positive integer k.
QUESTION: Does G have a (critical) strong alliance of size at most k?

McRae, Goddard, Hedetniemi, Hedetniemi and Kristiansen have shown
that ALLIANCE and STRONG ALLIANCE are both NP-complete, even
when restricted to bipartite or chordal graphs [26]. But many complexity
questions remain unanswered, including the following sample:

OFFENSIVE ALLIANCE
INSTANCE: A graph G and a positive integer k.
QUESTION: Does G have an offensive alliance of size at most k?

GLOBAL ALLIANCE
INSTANCE: A graph G and a positive integer k.
QUESTION: Does G have a global alliance of size at most k?

DUAL ALLIANCE
INSTANCE: A graph G and a positive integer k.
QUESTION: Does G have a dual alliance of size at most k7

CRITICAL (STRONG) ALLIANCE
INSTANCE: A graph Gandaset SCV.
QUESTION: Is S a critical (strong) alliance of G?

In addition, the following questions are of some interest:

1. Given a graph G and a vertex v € V, define the alliance number of
v, a(v), to equal the smallest defensive alliance containing vertex v.
How difficult is it to determine a(v)?

2. Given a graph G and two vertices u,v € V, what is a(u,v), that is,
the smallest cardinality of an alliance containing both u and »?

3. Given a graph G, define the alliance packing number P,(G) to equal
the maximum number of pairwise-disjoint, defensive alliances con-
tained in G. Similarly, define the alliance partition number, ¥, (G),
to equal the maximum order of a partition Il = {W}, Va,...,Vi} of V,
such that each block of the partition V; is a defensive alliance? What
is the alliance packing number or the alliance partition number of a
grid graph G n?
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4. What does it mean to say that an alliance is weak? For example, one
could say that an alliance S is weak (or 1-critical) if for every vertex
v € S, S - {v} is no longer an alliance.

5. Define the kth alliance number ax(G) to equal the smallest cardinality
of a defensive alliance having the property that it can defend itself
from any k simultaneous attacks. What can you say about ax(G)?
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