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Abstract

The distance-k domination number of graph G, 7<x(G), is the cardinality of a smallest

set of vertices, S, such that every vertex not in S is no more than distance k from at

least one vertex of S. Carrington, Harary, and Haynes showed |{V?| > 2|V+| where
VO ={veV:v<1(G-v) =7<1(G)} and V* = {v € V : 751(G - v) > 7<1(G)}. This

paper extends the result to distance-k domination, with the obvious change in definition

of V9 and V+, to show V0| > 52<|V+|. Extremal graphs are characterized when

k = 1 and some progress is mentioned on the characterization problem when k > 1.
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1 Introduction

Let G = (V, E) be a graph. Its domination number, v(G), is the size of a
smallest set, S, of vertices such that every vertex not in S is adjacent to a
vertex in S. The distance-k domination number of G is defined similarly,
except that vertices not in S must be within distance k of some vertex
in §. We designate the distance-k domination number as y<x(G). An
excellent introduction and references to distance-k domination can be found
in Henning [4]. Harary (3] introduced the names changing and unchanging
to refer to how a graphical invariant is affected by the deletion or addition
of an edge or by the deletion of a vertex. Brigham, Chinn, and Dutton [1]
studied graphs for which the domination number decreases when a vertex
is removed; and Carrington, Harary, and Haynes [2] investigated all the
possible situations for changing and unchanging of domination.

The work in [2] includes a partition of the vertices V into three sets
Vi={weV:y(G-v)=7(G)}, Vt ={veV:y(G-v) >v(G)}, and
V- ={v eV :v9(G-v) < v(G)}. The following results were shown in
that paper.

Proposition 1 Ifv € V+ and w € V~, then v and w are not adjacent.
Proposition 2 Every graph satisfies |V°| > 2|Vt|.

In this paper we generalize both results to distance-k domination and
investigate graphs for which equality in the generalization of Proposition 2
is achieved. Such graphs are called eztremal. A complete characterization
of extremal graphs is provided when k = 1, and one situation when & > 1 is
mentioned. Section 2 generalizes the inequality, Section 3 establishes nec-
essary conditions for equality, and Section 4 characterizes extremal graphs
when k= 1.
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2 An Inequality Between V° and V*

As with ordinary domination, we partition the vertex set V' of graph G
into sets V+, V0, and V— according to whether v<x(G — v) > v<k(G),
Y<k(G —v) = v<i(G), or v<x(G —v) < v<k(G), respectively. The partition
of a graph arises from the partitions of the components and it is clear
that v<x(G — v) > v<k(G) if and only if it is true for the component
of G containing v. Thus we may assume that G is connected. If D is
a minimum distance-k dominating set of G and v is a vertex of G, let
Wp(v) = {z € V(G —v) : every path in G from D to z of length k or less
must contain v}. Observe that Wp(v) N D = 0.

Lemma 3 Let D be a minimum distance-k dominating set of G. Ifv e V*,
then there exists a vertex = ¢ V* such that z € Wp(v).

Proof: Since v € V+, D — {v} is not a distance-k dominating set of
G~ v, s0 Wp(v) # 0. Let z € Wp(v) be of maximum distance in G
from D. If z € V*, then there exists 2 € Wp(z). Since every path in
G of length & or less from D to z includes v and every such path to z
includes z, it follows that z € Wp(v), which contradicts the choice of =
since dist(z, D) > dist(z, D). Thus, z ¢ V*. O

Because we consider both G and G — v, Where v € V(G), we use the
notation distg(F,v) to represent the length of a shortest path in G from v
to a vertex of F' C V(G).

Lemma 4 Let w € V~ and F be a minimum distance-k dominating set of
G —w. Ifv is adjacent to w, then distg(F,v) = k.

Proof: Clearly distc(F,v) < k. If distg(F,v) < k, then dist¢(F,w) < k,
implying F distance-k dominates G, a contradiction. O

The next result generalizes Proposition 1.
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Lemma 5 Ifve V*t and w € V™, then v and w are not adjacent.

Proof: Suppose v is adjacent to w. Let F be a minimum distance-k
dominating set of G~w so D = FU{w} is a minimum distance-k dominating
set of G. By Lemma 3, there exists z € Wp(v). Clearly, z # w because
w € D and Wp(v) N D = . Since F distance-k dominates G — w, there
is a path from F to z of length k or less. Such paths in G — w also exist
in G from D to z and so must contain v. Thus, distg(F,v) < k — 1 which
contradicts Lemma 4. O

The generalization of Proposition 2 can be achieved by the following
construction. Let D be a minimum distance-k dominating set of G and
assume that V° is not empty. Let v; € V° and let P; be a minimum length
path from D to v;. Observe that P, necessarily contains exactly one vertex
d; € D. Suppose we have constructed paths P;, P,, ..., P, where P, is a
minimum length path from D to v; € V° and contains exactly one vertex
d; € D. If there exists v41 € VO — UL,V (P;), construct a path P, of
minimum length from D to v,y necessarily containing exactly one vertex
diy1 € D. Otherwise, V°® C Ut_,V(P;), and the construction is complete.
Note that the d; are not necessarily distinct, but the v; are. Also, while
the paths of the construction are distinct, they are not necessarily vertex
disjoint. We assume this construction and the associated notation for the
rest of this paper.

Before proceeding to the general result we need three lemmas. The first
is a technical result used in the proofs of the other two.

Lemma 6 Let D be a minimum distance-k dominating set of G, and let
z € Wp(v). Let P be a minimum-length path from D to z, and let z # v
be a vertex on the subpath of P from v to z. Then every minimum-length
path from D to z must contain v.

Proof: Let @ be a minimum-length path from D to z and P’ be the
subpath of P from z to z. Clearly, QU P’ is a path from D to z not longer
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than P, and, since z € Wp(v), Q U P/ must contain v. By the minimality

of P, P’ does not contain v, and so Q must contain v. O

Our second lemma is critical for establishing the desired relation be-
tween V0 and V+

Lemma 7 Vt C Ul_,V(R).

Proof: Suppose V* # 0 and let v € V*. By Lemma 3, there exists
z € Wp(v) — V*. Let P be a minimum-length path from D to z. Lemma
5 implies that there is a vertex z € V° on the subpath of P from v to z.
By the construction, z is on path P; for some i, and it follows from the
minimality of P; that the subpath of P; from D to z must be of minimum
length. Hence, by Lemma 6, P; must contain v. O

For each vertex d € D, we let g4 = |{i : d € P;}|, that is, the number
of paths of the construction that contain d. The third lemma eliminates a
troublesome case from the general proof.

Lemma 8 Ifde V*tN D, then qq > 2

Proof: By Lemma 7, d is on path P; for some i. Since d € V* and
v; € VO, P; contains a vertex y adjacent to d. Furthermore, since d € V'+,
(D — {d}) U {y} does not distance-k dominate G — d. Hence, there exists a
vertex in Wp(d) that is not distance-k dominated in G — d by y. Among
such vertices, choose z to be of maximum distance from d, and let P be a
minimum-length path from d to z. Observe, as in the proof of Lemma 3,
that z ¢ V+ and that P is also a minimum-length path from D to z. By
Lemma 5, P contains a vertex z € V°. By the construction, 2 is on P; for
some j, and, by Lemma 6, d is also on P;. If i = j, the minimality of P; and
P implies that the two subpaths from d to z are of equal length. Hence,
y distance-k dominates = in G — d, contrary to the choice of . Therefore,
i#j,and gy >2. 0O

We proceed to the main result of this section.
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Theorem 9 For any graph G, |V°| > 25|V

Proof: If V® = 0, then Lemmas 3 and 5 imply V~ = V, and the inequality
is trivially true. Otherwise, for each d € D, let P, P, ..., be the g4

taq
paths of the construction which contain d. Let V;}* = V' n (Ui, V(P,)),
that is, the vertices in V* that are in the union of the paths containing d,
and let V) = {v;,,v;,,...,v;,,}. By the construction, |V9| = g4. Also, each
path P; contains at most k —1 vertices other than d and v;. If g4 = 1, then,
by Lemma 8, d ¢ V* and |V;| < k — 1. In this case I’T"?‘ll > 25> 5
For g4 > 2, first observe that |V;*| < qa(k — 1) + 1, which implies |V?| >
mﬁ‘—lmﬂ/‘fl. Also observe that the function f(z) = FE=TyF1 s strictly
monotonically increasing. Therefore, |V?| > ’ﬂk%mwdﬂ Thus, if g4 > 1,
then |VJ| > 525|V}|. Summing this inequality over all d € D such that
g4 2 1, the left hand sum equals the number of paths in the construction
which is bounded above by [V?|. Also, by Lemma 7, the sum of V| over
all d with ga > 1 is bounded below by |V*|. The result follows. O

Note that the inequality of the theorem is strict if there is a vertex
d € D with g4 > 0 and gq4 # 2, or if a path contains more than one vertex
not in V'*, or if two paths intersect at a vertex not in D, or if the length
of P, is less than k for some i. We summarize this remark in the following
corollary.

Corollary 10 Let D be a minimum distance-k dominating set of a graph
G. If VO #0 and |VO| = 525 |V*|, then
otherwise ’

L ifi#j, then V(P) NV (B}) = {édi} if d; = d;

2. qa=0o0r2 forallde D,

3. for each i, P; is a path of length k containing v; € VO and k vertices
inVt, and
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4. ifve VO, then v = v; for some i and dist(v,D) =k

3 Conditions Satisfied by Extremal Graphs

The connected extremal graphs for Theorem 9, that is, ones for which
equality holds, can be divided into two classes depending on whether or
not V0 = . As was noted in the proof to Theorem 9, if V° = 0, then
Lemmas 3 and 5 imply V— = V and equality holds. Investigating the
structure of such graphs presents an interesting and difficult problem which
we will not address here. An initial discussion appears in [1]. Instead, we
turn our attention to the companion problem of investigating connected
extremal graphs for which V0 # @. This section establishes some important
structural properties for such graphs.

A V-structure is a path of length 2k. The middle vertex of the path
is the base vertex of the V-structure, and the two subpaths emanating
from the base vertex are its legs. Figure 1 illustrates two V-structures and

also establishes the notation for their vertices. Structure i refers to the
V-structure whose base vertex is v;o.

Ivtk Wik IUJk Wik
Vi k-@ Wi k-1 UJ, O Wj k-1

Wig w32
thl Wj1
Flgure 1: Structures i and j

The next two lemmas describe elementary properties for extremal graphs.

Lemma 11 Let D be a minimum distance-k dominating set of a connected
graph G, and let H be the union of the paths P; from the construction in
Section 2. If G satisfies |V0| = 725|V*+| #0, then

1. H is the union of vertez-disjoint V -structures whose base vertices are
vertices in D,
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2. the two end vertices of each of the V -structures are in VO and the rest

of their vertices are in V¥,
3. H spans G, and

4. D is the unique minimum distance-k dominating set of G.

Proof: Results 1 and 2 follow immediately from Corollary 10. Suppose
V= # 0, so there is a vertex w € V~. The shortest path from D to w
must have length no more than k and by Lemma 5 it must contain a vertex
v € VO, In this event, d(v, D) < k which contradicts Corollary 10. Thus,
V= = 0 and result 3 follows from the construction and Lemma. 7. Finally,
suppose D)’ is a minimum distance-k dominating set which contains a vertex
v ¢ D. Since H spans G, v is in a V-structure of H and since v ¢ D there is
a vertex in V' whose distance from v is less than k. Apply the construction
of Section 2 based on D’. Since G is extremal, v will appear as the base
vertex of a V-structure and by Corollary 10 no vertex of V° will be distance
less than k from v. This contradiction implies D’ C D and result 4 follows
by the minimality of D. O

We define a graph G to be extremal-feasible if G is connected and
contains a spanning subgraph H which is the union of vertex disjoint V-
structures whose set B of base vertices forms a unique minimum distance-k
dominating set of G. According to Lemma. 11, a connected extremal graph
with V0 % @ must be extremal-feasible. As we shall see, however, not all
extremal-feasible graphs are extremal. Further characterization requires
consideration of the edges in G — H.

The height of a vertex is defined to be its distance from B. An edge is
horizontal if it joins two vertices of the same height. An ezterior edge is
one which joins two vertices in different V-structures. The following lemma
restricts the types of edges in an extremal-feasible graph.

Lemma 12 If a connected graph G satisfies |V°| = 52<|V+| 0, then all
of the edges in E(G) — E(H) are horizontal and exterior.
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Proof: The following are the three types of edges that are prohibited by the
definition of horizontal and exterior. In each case, we reach a contradiction
by showing a vertex known to be in V* would not be if the edge were
present.

1. vjv4, with s > t+2: vertex v; ,—1 € V* since B distance-k dominates

G- Vi,5—1.

2. vyw;, with s > ¢ > 1: vertex vio ¢ V* since (B — {vipo}) U {vie}

distance-k dominates G — v;p.

3. vy vj, with s > & vertex v,—; ¢ V* since (B — {vj0}) U {wj1}
distance-k dominates G — v; 1.

a
Lemma 12 directs our attention to the horizontal, exterior edges of G.

The following lemma provides a further reduction.

Lemma 13 Suppose G is an eztremal-feasible graph and e € E(G)— E(H)
is a cut edge of G. If G is extremal, then G — e is extremal.

Proof: Note that for any edge e, 7<x(G — ) > v<x(G). Also, if G is
extremal then e being an exterior edge implies B dominates G — e; hence,
Y<k(G —e€) = v<k(G). It follows that, if v € V*(G), thenv € V(G —e); so
[V+(G —e)| = [V*(G)|. By Theorem 9, [VO(G —¢)| > 525 |VH(G —¢)| >
7127V +(G)| = |V°(G)| where the last equality is due to G being extremal.
The result follows since |V(G —€)| = |[V(G)|. O

Lemma 13 leads us to consider horizontal exterior edges which are not
cut edges, that is, edges contained in cycles of G. We define an outer cycle
of an extremal-feasible graph G to be a cycle of G with no edges joining
base vertices of G. An outer cycle C is proper if v;o in C implies that
CnNYV; is connected. Let C be a proper outer cycle and let Vg, V3,...,V,
be the V-structures with base vertices in C, where the indices are chosen

to obey one of the cyclic orderings of C. Furthermore, by appropriately
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labeling the legs of the V-structures, we may assume that the shortest path
in C — {vp,0} which has a vertex in V; and a vertex in V;4; has end vertices
v;,s and wiyy,:. We define K(C) to be the graph obtained by taking the
union of C with Vy, V4,...,V,. A vertex in V(C)N B is said to be anchored
if it is adjacent to a vertex in B — V(C).

Let V; be a V-structure contained in K(C) where C is a proper outer cy-
cle. For each V; there are non-negative integers s and ¢ such that CnV; is the
path < v;5,v55-1,...,%i,1,%,0, Wi 1y .., Wig—1, ;¢ >. We define the base
subpath of V;, denoted bsp;(C), to be the path < v;4_1,...,vi1,vi0, i1,
...yWie—1 >. The definition of outer cycle implies that neither s nor ¢
equals 0, hence bsp;(C) is not empty (it always contains at least v; ). Also,
if G is extremal, then every vertex in bsp;(C) must be in V+. A vertex
w € bsp;(C) is V*-feasible if K(C) — w contains an anchored vertex free
path P such that |V(P)| > (2k + 1)(|[V(P) N (B — {vip})| +1). C satisfies
the cycle condition if every vertex in U2_ybsp;(C) is V *-feasible. Note that,
if V(C) N B is empty, then C vacuously satisfies the cycle condition.

The following theorem provides a necessary but not sufficient condition
for extremality.

Theorem 14 If a connected graph G satisfies |VO| = 2= |V*| # 0, then

every proper outer cycle in G satisfies the cycle condition.

Proof: Suppose C is a proper outer cycle in G which does not satisfy
the cycle condition. Then there exists w € UZ_ybsp;(C) which is not V+-
feasible. We will inductively construct a distance-k dominating set of G—w
of size |B| which will imply that w ¢ V*+ and thus G is not extremal. By
relabeling V-structures and considering another cyclic ordering of C, if
necessary, we may assume w = vp, for some r € {0,1,...,k —1}. Let
By = B — {v0,0,v1,0, .- ,Ya,0}

Let Lo be the path < wvor41,V0,r42,.--,%,k >, and let L; be the
< a. Also, let R; be the path <

path < Vi,0, Vi1« ooy Vi > for 1 <1

Wi 1, W;,2,..., Wi,k > forl <1< aandlet R,4 be the path < Vo,r—1, V0,r-2,
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.4y 0,0,Wo,1, - - -, Wo,k >. Finally, for 0 < i < a let P; be the shortest path
in C — w with end vertices in L; and R;4;.

By construction, Lo U Py U R; is a tree T. Since w is not V*-feasible
the diameter of T is no more than 2k; hence, the radius of T is at most k
and there exists a vertex in T which distance k-dominates T. Among such
vertices choose zg to be the one closest to wy,; in T. If 2o does not distance
k-dominate v, o, there exists a path, Q, in T of length 2k with one end at
wy,; which implies [V(Q)| = 2k + 1 = (2k + 1)(|V(Q) N (B - {vo0)}| + 1).
Also, V(Q) N B =0, so, Q is trivially anchor free.

Let i < a and suppose we have found vertices {zo,z1,...,Zi-1} such
that BoU {zo,z1,...,%i-1} distance k-dominates LoUR; U...UL;_; UR;.
We choose z; in L; U P; U R4, as close as possible to w;41,1 in the tree
L; U P; U Ry, subject to the condition that By U {zg,z1,...,Ti-1,%:}
distance k-dominates Lo U Ry U...U L;_; U R; U L;. There are two cases
to consider.

Case 1. Bo U {zo,21,...,%;—1} distance k-dominates v;o. As in the
base case, since w is not V*-feasible, the vertex z; distance k-dominates
(Li —vi0) U P; U Riyy. Thus, z; distance k-dominates R;;; and By U
{zo,z1,...,2i—1,x;} distance k-dominates LoUR; U...UL;_UR;UL;U
Riyy. If z; does not distance k-dominate v;41 0, then there exists an anchor
free path, Q, in L; U P; U Ry, with one end at w;41,) such that [V(Q)| =
2k+1=(2k+1)(IV(Q) N (B - {voo})| +1).

Case 2. BoU{zo,x1,...,Zi-1} does not distance k-dominate v; o (which
incidentally implies that v; ¢ is not an anchor). Inductively, there exists an
anchor free path Q in LoU Ry U...U L;_; U R; with one end at w;; such
that |V(Q)| = (2k + 1)(|V(Q) N (B — {vo,0})] + 1). If z; does not distance
k-dominate R;,,, then there exists a path, @', in L; U P; U R, of length
2k + 1. Since w is not V*-feasible, the tree (L; — v;0) U P; U Riy; has
diameter at most 2k. Thus, v; must be an end vertex of Q' and Q' U Q
is an anchor free path with |V(Q' U Q)| = 2k + 2 + (2k + 1)(]V(Q) n
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(B - {vo,o})| +1) = 2k +1)([V(Q' UQ)IN (B - {o,0})| +1) +1 vertices,
contrary to w not being V*-feasible. Thus, z; distance k-dominates R;;,
and By U {zo, 1, ...,Ti—1,%;} distance k-dominates LoUR, U...UL;_; U
R;UL;UR;yy. If BoU {xg,1,...,Zi—1,Z:i} does not distance k-dominate
vi41,0, then there exists a path, Q', in L; U P; U Ry with one end at
wi+1,1 such that [V(Q')| = 2k + 1. If v; is not in Q’, then Q' satisfies the
inductive requirements. If v; ¢ is in Q’, then QU @’ is an anchor free path
in LoURyU...UL;URiy with 2k +1)(|V(QU Q') N (B - {voe})| +1)
vertices.

After a + 1 iterations we will have generated vertices {zo,z1,...,Za}

such that BoU{xo, x1,...,Z.} distance k-dominates LoUR;U.. .UL,UR, ;.
This implies By U {zo, 71, .. .,Z;} distance k-dominates G — w. We observe
that |Bo U {Z¢,Z1,...,Za}| = |Bo| +a+1=|B|;s0ow ¢ V* and G is not
extremal. O

As an application of this theorem we have the following corollary which
provides further insight into the structure of extremal graphs.

Corollary 15 If a connected graph G satisfies |V°| = 5,c2_—1|V+[ # 0, the

following pairs of edges cannot occur:
1. v wj, and vj,w; s withs>t>1, and
2. v; swj,, and wjw;, with s >t > 1.

Proof:

1. Let C be the proper outer cycle v; ¢, Wj,t, Wj,t—1,- - -y Wj,1, V5,0, Vj 1+~ »
Vj,9, Wi ey Wi,s—1,- - Wi,1, 4,0, Vi 1.+, ¥ie. Lhen K(C) = V;uV; U
Vi Wj,t Uvj sWi 5. Let P be a path in K(C) —v;0. If [V(P)NB| > 1,
then V(P)N B = {vj0} and (2k + 1)([V(P) N (B — {vip})| + 1) =
2(2k + 1) = |V(K(C))| = |V(P)|. Otherwise, V(P)N B = 0 and
either V(P) is a subset of V(L; — v;0) U V(R;) or V(P) is a subset
of V(L; — vj,0) UV(R;). In either situation, |V(P)| < 2k < (2k +
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)(|[V(P) N (B — {vio})| +1). Thus, in all cases v;p is not V+-
feasible which implies C does not satisfy the cycle condition violating
Theorem 14.

. Let C be the proper outer cycle v; s, W s, Wj,s—15- - - y W ts Wi 2, Wi,t—1,
e Wi 1, V50, Vi, - -5 Viye. Here, K(C) = ViU < i 6, W) oy Wia—1y++ 1y
wje, Wi,e >. Let P be a path in K(C) —v; ;. If [V(P)NB| =1
then (2k + 1)(|V(P)N (B — {vip})| +1) = 2(2k+1) > 2k +1 +
s—t+1=|V(K(C))| = |V(P)]. On the other hand, suppose P is
a path in K(C) — v s—1 — vio. If P is the path v;1,vi1,...,0is-2,
then |V(P)| = s — 2 < k < 2k + 1. Otherwise, P contains at most
k — s + 1 vertices in the left leg of V; and at most k vertices in the
right leg of V;. Since K(C) has only s — ¢ + 1 vertices not in V;, we
have |V(P)| < (k—s+1)+k+(s—t+1) =2k—t+2 < 2k+1 (where
the last inequality follows from the assumption that ¢ > 1). Thus,
i,s—1 is not V*-feasible and C does not satisfy the cycle condition,

once again violating Theorem 14.

Characterization of Extremal Graphs When
k=1

In this section we show the necessary condition given in Theorem 14 is

sufficient when k = 1, that is, for the case of normal domination (we will

see in Section 5 that this is not true for all k). Since k = 1, we will use the

terminology of normal domination. In particular, a private neighbor of a

vertex d in a dominating set is a vertex dominated only by d. Throughout

this section we will assume G is an extremal-feasible graph. We begin with

a construction.

Let v be a base vertex of an extremal-feasible graph G with neighbors

y and z in the same V-structure, and let D be a minimum dominating
set of G — v. Define Hy, a subgraph of G, to be the union of the V-
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structures of G whose base vertices are not in D along with y and z. Let
U=V(Hp) — (BUD) = {u3,uz,...,ur} and let W = {wy,ws,...,wi} be
a set of not necessarily distinct vertices of D such that (w;,u;) is an edge of
G for 1 € i < k (such edges must exist since D dominates G — v). Finally
define H; to be the subgraph of G with vertex set V(Hp) UW and edge
set E(Hp) U {wsu; : 1 < i < k}. Observe that this construction implies
V(H,) N BN D = §. Figure 2 illustrates these concepts.

Z

Graph G with a minimum dominating set D for G — v

VoY
Subgraph Hp of G — v
Subgraph H; of G — v with vertices in D circled

Figure 2: Development of subgraphs Hy and H,

The following lemma is immediate from the construction.

Lemma 16 No edge in H, joins two vertices of D or two vertices of B.
Furthermore, if < z,y,z > s a path in Hy and {z,y,2} N B = 0, then
yeW.

Lemma 17 If G satisfies the cycle condition, then y and z are in different
components of Hi.

Proof: Suppose y and 2z are in the same component of H;. Then H,
contains a path P joining v and z. Adding edges zv and vy to P creates
an outer cycle C in G. (Note that when k£ = 1 every outer cycle is proper).
Since G satisfies the cycle condition, v is V*-feasible so there exists an
anchor-free path Q =< qi,¢2,...,q: > in K(C)—v such that t > 3(|V(Q)n
(B—{v})|+1) =3(lV(Q)NB|+1). We choose Q to be of minimum length.
If {g1,42,93} N B # 0 then < g4,...,q; > is an anchor free path with ¢t — 3
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vertices. This contradicts the minimality of Q since t —3 > 3(|V(Q) N B| +
1)-3=3(|V(Q—{q1,92,93})N(B)|+1). Thus, {q1,92,93}NB = @; and, by
Lemma 16, go € W C D. Similarly, g;—1 € W. Note that t = |V(Q)| > 4,
so, g2 and g, are distinct. Further, < ¢s,...,q:—1 > is an anchor-free
path between two vertices of D neither of which dominates a base vertex
of the path. Let Q' be a shortest subpath of Q with distinct end vertices
s’ and t’ both in D and neither dominating a base vertex of Q’. Suppose
V(Q')N D contains a vertex r distinct from s’ and ¢'. Since r € D, it is not
a base vertex and hence dominates at most one base vertex. This implies
that either r does not dominate a base vertex in the subpath of Q' from r
to §’, or r does not dominate a base vertex in the subpath of Q' from r to ¢/,
contradicting the minimality of Q'. Thus V(Q') N D = {s',t'}. Lemma 16
indicates s’ and ¢’ are not adjacent in H;, and thus Q’ contains at least one

base vertex b. The vertex in D which dominates b cannot be a base vertex
of H, since V(H;)N BN D = {. Also, the vertex of D which dominates b

cannot be a base vertex outside of H; because b is not an anchor. Therefore,
the vertex of D which dominates b must be in Q’. As b is not dominated
by s’ or ¢/, we have contradicted the fact that V(Q')n D = {s',t'} and
conclude that y and z cannot be in the same component of H;. O

Lemma 18 If G satisfies the cycle condition and E is a component of Hj,
then |V(E)ND| > |BNV(E)| +1.

Proof: Suppose w is a vertex of E. If w € (DUU), w is dominated by
V(E) N D. Otherwise w is a base vertex and is dominated by a vertex in
either V(E) N D or B — V(E). On the other hand, if w is not in E, the
entire V-structure containing it also is not in E and hence w is dominated
by B —V(E). It follows that G is dominated by (V/(E)n D)U(B - V(E)).

By the construction, V(E)N D # 0. Since V(H,)NBND =9, (V(E)N
D)U(B-V(E)) # B. By the uniqueness of B, |(V(E)ND)U(B-V(E))| >
|B|. Since V(EYNBND =0, |(V(E)yNnD)U(B-V(E))| = |V(E)nD|+
|B — V(E)|. Furthermore, |B| = |B — V(E)| + |B N V(E)|. The result
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follows. O

Lemma 19 If G satisfies the cycle condition and D is a minimum domi-
nating set of G — v for some base vertex v, then D is the disjoint union of
DN B with DNV (H,).

Proof: Let w be a vertex of D — B, r be a private neighbor of w, and b be
the base vertex in the V-structure containing w. If b ¢ D, then w € H,. If
b € D, then r is not in the V-structure containing w. Since r is a private
neighbor of w and w € D — B, r cannot be dominated by a base vertex in
D sor € Hp implying w € H;. In either case w € DNV (H,) so (D-B) C
(DNV(Hy)). But V(H;) N BN D = @ implies (D — B) = (DN V(H,)).
Thus D = (DN B)U (D — B) = (DN B)U (D NV(H;)) and the union is
disjoint. O

Lemma 20 If G satisfies the cycle condition and v is a base vertex of G,

thenveVt.

Proof: Let D be a minimum dominating set of G — v. By Lemma 19,
|D| = |DNB|+|DNV (H,)|. Lemma 18 implies | D| > |DNB|+|BNV (H,)|+
n where n is the number of components in H;. By Lemma 17, n > 2, so
|D| > |DnB|+|BNV(H;)|+2. Also, B={v}U(DNB)U(BnV(H,))
implying |B| -1 =|D N B|+ |BNV(H,)|. Therefore, [D| > |B|-1+2=
|Bl+1=9(G)+1landveV+. O

We are now in a position to state the characterization theorem which
follows immediately from Lemmas 11 and 20 and Theorem 14.

Theorem 21 Fork =1, G is extremal if and only if G is extremal-feasible
and every cycle of G satisfies the cycle condition.

5 A Special Case Characterization for Arbi-
trary k

When k is greater than one, the characterization problem appears to be
significantly more difficult, apparently because of the intricate way in which
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cycles joining the V-structures can be constructed. As an indication of this,
we state below without justification (the proof will be presented elsewhere)
the relatively complex result for a simple case involving a single outer cycle
C with one additional edge e joining two base vertices of C. This addition
of e creates two shorter cycles C; and C,, using e and some of the edges
of C in each. Let s; be the number of vertices in C; which are not in
V-structures whose base vertices are in C;, where i = 1,2. The following
theorem presents the characterization for this class of graphs.

Theorem 22 Let k > 2 and G be a graph obtained from an eztremal-
feasible graph by adding a single proper outer cycle C whose exterior edges
join end vertices of the V -structures, edge e between two base vertices of C,
and arbitrary edges between base vertices not in C. Then G is extremal if
and only if

1. G — e is extremal and
2. either

(a) both s; >0 and s3 >0 or

(b) at least one of sy and s, is at least 2k-1.

Consider the graph shown in Figure 3. It is of the type under consid-
eration here. Notice that k¥ = 3 and, without loss of generality, s, = 0,
and s2 = 4. Thus it fails to meet the requirements given in Theorem 22
for extremal graphs. On the other hand, it does obey the cycle condition.
To see this, observe that u and v are the only base vertices in the outer
cycle C. If any vertex of the V-structure containing v that is at distance
at most two from v is removed, the vertices numbered 1 through 8 form a
path with 8 = 2k+1+1 vertices. Since this path contains no base vertices,
the cycle condition is satisfied. A similar argument shows any vertex that
is distance at most two from u and is in the V-structure containing u also
leaves a path with 2k + 2 vertices. It follows from this example that the
necessary condition for extremality is not sufficient for k > 2.
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Figure 3: Example of a non-extremal graph

6 Concluding Remarks

There is much work remaining to be done on the question discussed in this
paper. Although it appears that a complete characterization of extremal
graphs for arbitrary k¥ may be difficult, it is reasonable to expect that
subproblems will be amenable to solution. In particular, graphs containing
a single cycle where all exterior edges in the cycle are at the same level
might be classifiable. It does not appear that the general situation for
k = 2 is appreciably easier than for arbitrary k > 1.
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