Some families of 3-Equitable Graphs
Mukund V. Bapat, N.B.Limaye

Abstract: Let G be a simple graph with vertex set V and edge set E. A vertex labeling
f:V — {0,1,2} induces an edge labeling f : E — {0,1,2} defined by f(uv) =|
f(u) = f(v) |. Let vs(i) denotes the number of vertices v with f(v) = 4,i = 0,1,2.
Similarly es(i) denotes the number of edges uv with f(uv) =i,i = 0,1,2. A graph is
said to be 3-equitable if there exists a vertex labeling f such that | vy(3) — vs(j) |<
1 and |ef(i) ~ ef(5) < 1 for all i # 5,4, =0,1,2. In which case f is called a
8-equitable labeling.

In this paper we prove that following graphs are three equitable: (1) Helm graph H,
(n > 4), (2) A Flower graph FLy, (3) One point union HS*) of k-copies of Hyn,k > 1,
(4) One point union K gk) of k copies of K4, (5) A K4-snake of n blocks, each equal to

K4, (6) A C:- snake of n blocks t = 4,6 and t = 5 with n not congruent to 3 modulo 6.
Introduction

Through out this paper all graphs are finite, simple and undirected.
Let G be a graph with vertex set V and edge set E. A vertex labeling
f:V — {0,1,2} induces an edge labeling f : E — {0,1,2} defined
by f(uv) =| f(u) — f(v) |- By vs(0), vs(1) and vs(2). We mean the
number of vertices v with f(v) = 0 f(v) = 1 and f(v) = 2 respectively.
Similarly by ef(0), ef(1) and ef(2) we mean the number of edges labeled

0,1 and 2 respectively. A Graph G is said to be 3-equitable if there exists
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a vertex labeling f : V — {0,1,2} of G such that | vs(¢) —v¢(j) |[< 1 and
| ef(i) — es(j) |< 1 for all i # j,%,j = 0,1,2. I Cahit [1] introduced the
concept of 3-equitable labelings of Graphs and he proved that the cycle Cp
and the wheel W,, are 3-equitable iff n is not = 3( mod 6).

3-Equitable Labeling of Helms

Helm H,, is a graph defined as follows:

V(Hn) = {vo,v1,v2, - ,Un, w1, w2, ,Wn}

E(Hn) {'Uov,'/l <i< TL} U {'U,"UH.l/l <i< n} U {v,-wi/l <i< n}

where (i + 1) is taken modulo n. Thus H, has (2n + 1) vertices and 3n

edges.

Theorem 1: Helm graph H, is 3-equitable.

Proof: Let n=3t+rr=1,2,3.

Case (i): Let r = 1. We define f : V(Hs41) — {0,1,2} as follows:
f(vo) =0,
fw)=0 1<i<t, flugpak-1)=1 1<k<t
flvepor) =2 1<k<t, fBt+1)=2
flw) =1, f(w)=2, 2<i<t,
flwepae—1) =1, 1<k<t, flweor) =0, 1<k<E
flwser) = 2.

Case (ii): 7 = 2 We define f : V(Hz2) — {0,1,2} as follows:

flwo) =0, f(v:)=0 1<i<t,
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f(verak-1) =1 1<k <,

fvseq2) =2,

fvaeq1) =2,
fw) =2, 2<i<t,
flwepor) =0, 1<k<t,

fwep2r-1) =1,
flwstyr) =2,

Case (iii): r = 3 We define f : V(H3i43) — {0,1,2} as follows:

foera) =2 1<k<t,

f(wl) =1,

fluo) =0, f(ui)=0 1<i<t,

foegar—1) =1 1<k<t,

flogpar) =2 1<k<t~1,

f(wl) = 1)

1<k<t,

f(way2) = 1.

f(vae) =0, f(vser1) = f(vser2) = fvsess) = 2,
flwi) =2, 2<i<t, flweor—1) =1, 1<k<t,
flwegae) =0, 1<k<t-1, flws) =1,
f(waer1) =0, flwser2) =2, flwseys) =1

The chart below shows that the labeling f defined above is a 3-equitable

labeling.

Value | €(0) | er(1) | es(2) | vr(0) | vf(1) | vs(2)
of r

1 3t+1|3t+1|3t+1]2t+1|2t+1]2t+1
2. 3t+2|3t+2 | 3t+2 | 2t+1 | 2t+2 | 2t +2
3. 3t+3|13t+3|3t+3|2t+2 | 2t+3 | 2t+2

a

A graph similar to Helm H, is flower graph FL,. Now we proceed

to show that F!,, a flower graph is 3-equitable. A flower graph FL, is

obtained from Helm graph H, by joining each pendant vertex to the cen-

tral vertex by a separate edge. Thus for FL,,| V(FL,) |= 2n+ 1 and

| E(FL,) |= 4n.
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Theorem 2: A flower graph FL, is 3-equitable for all n > 3.
Proof: Let n=3t+7r;7r=1,2,3.
Case (i): n = 3. Define f : V(FL3s) — {0,1,2} as follows: f(v) =0,
f(v1) =0,f(v2) = 2 = f(uv3), f(wa) = 0, f(wz) = 1 = f(ws). One can see
that v£(0) = 3,v4(1) = 2,v¢(2) = 2 and ef(0) = ef(1) = ef(2) = 4.
Case (ii) : 7 = 1 and t > 0. Theorem 1 we give 3-equitable labeling of
Hj; 1. The same labeling is also a 3-equitable labeling of FLg;4;.
Case (iii) r = 2. Suppose t = 1, i.e. n = 5. We define the function
f:V(FLs) — {0,1,2} as follows: f(vo) =0, f(v1) = f(wq) = f(ws) =0,
fv2) = f(vs) = f(wz) = f(ws) =1, f(va) = f(v5) = f(w1) = 2. This gives
v7(0) = 4,v5(1) = 4,v4(2) = 3 and es(0) = 7,e4(1) = 6,v4(2) = 7. Thus f
is 3-equitable labeling.
For t > 2 we define f : V(FLgey2) — {0,1,2} as follows.
flwo) =0, f(v;i)=0 1<i<t, f(vepak—1)=1, 1<k<t
floee2) =1, fluerar) =2, 2Lk <t f(vserr) = fvser2) =2,
fw)) =2, 1<i<t, f(we2k-1)=1,1<k<t,  flwege) =2,
flwar) =0,2<k<t, fBt+1)=0, f(3t+2)=1.
Case (iv): r=3,t>0.
For t =1, we define the map f as follows: f(vg) =0 = f(v1),
flv2) = f(vs) =1, f(va) = f(vs) = f(ve) = f(w1) =2,
fwz) = f(ws) =1, f(wa) = f(ws) =0, f(ws) = 1.
Clearly ef(0) = ef(1) = e4(2) = 8. Also v£(0) = 4,vs(1) = 5,v¢(2) = 4.
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For t > 2, we define f as follows:

f(wo) =0,f(v) =0, 1<i<t, foqar—1)=1, 1<k<t,
fve2) =1, fupar) =2 2<k<t—1, f(3t)=0,

fluser) = F(3t+2) = f(usrs) =2, f(wi) =2, 1<i<t,
fwerak-1) =1, 1<k<t,  flwee) =2,

flwerze) =0,2< k< (E-1),

flwae) =1, fwser1) = f(wses2) =0, flwaers) = 1.

The table below shows that f is a 3-equitable labeling.

vr(0) | vr(1) [ vs(2) [er(0) | er(1) [ef(2)
2041 [ 264+1 (2t +1 |4t +1 | 4t+2 | 4t+1
24+1|2t+2 | 2t+2 | 4t+3 [ 4t +2 | 4t+3
20+2 |2t +3 | 2t+2 |4t +4 | 4t+4 | 4t +4

W N =] =

O

One point union HS of k-copies of Helm H,, is defined as follows: The
k-copies of H,, are labeled as Hy, 1 Hp,2,... Hy k. The common vertex to all
copies is the central vertex vy.

v (Hf(,k)) = {V0,V1,is+++» UnisWi,is+ -y Wni | 1 <i<k.}

E (Hf(lk)) = {V0v;,i, ¥5,iVj4+1,0,V5,iWji | 5=1,...,n,i=1---k},
where j + 1 is taken modulo n. Note that | V(H,(,")) |=2kn + 1 and
| E(H,("‘)) |= 3kn. We prove that H® is 3-equitable for £ > 1. We treat

the cases n = 4, 5,6 separately and give a common proof for n > 7.

Theorem 3: H is 3-equitable for all positive integers n > 4 and k£ > 1.

Proof: First we discuss the 3-equitable labeling of H, ,gk). In Theorem 1 we
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proved that Hj is 3-equitable. For k > 2, we define four different labelings

of Hy.

Type A: Define f : V(H,) — {0,1,2} as follows: f(vo) = f(v4) =

f(ws) =0, f(n1) = f(vs) = f(w1) =2, f(vz) = f(ws) = flwz) = 1.

Type B: Define f : V(Hy) — {0,1,2} as follows: f(v) = f(vs) =

f(wa) = f(v1) =0, f(vs) = fwr) = flws) =1, f(v2) = flws) = 2.

Type C: Define f : V(Hy) — {0,1,2} as follows: f(vo) = f(v4) =

flwz) = f(v2) =0, f(v1) = f(ws) = f(wr) = f(ws) =2,f(vs) = 1.

Type D: Define f : V(H,) — {0,1,2} as follows: f(vo) = f(v1) =

flwz) =0, f(vg) = f(vs) = f(ws) = f(wa) =1, f(v2) = f(wr) = 2.

Case (i): k = 2. We give labeling A to both Hy,; and Hy 2.

Case (ii): k = 3t +r where r = 0 or r = 2. We give labeling A to Hy,

and Hy . For 1 < a < t, we give labeling B to Hj 34, labeling C to Hy 3a+1

and labeling D to Hj 3q+2.

Case (iii): k = 3t + 1. We give labeling A to Hy,; For 1 < a <t, we give

labeling to C to Hy 3a—1, labeling D to Hy 3, and labeling B to Hyza+1-
Since all the labelings A, B, C, D label the edges equitably, the resulting

labeling is equitable on the edges of Hgk). Following table shows that it

labels the vertices also equitably.
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k vr(0) | vr(1) | vs(2)

1 3 3 3

2 5 6 6
k=3t | 3k-t | 3k-t+1 | 3kt
k=3t+1 | 3k-t 3k-t 3k-t
k=3t+2 | 3k-t-1 3k-t 3k-t

For Hék). We define below 3 types of labelings called B, C and D which
suitably can be used to construct a 3-equitable labeling of Hék).
Type B: Define f : V(Hs) — {0,1,2} as follows: f(v) = 0, f(v1) =
flws) = f(ws) =0, f(v2) = f(v3) = f(w2) =1, f(va) = flvs) = f(wr) =
flws) =2.
Type C: Define f : V(H;) — {0,1,2} as follows: f(0) = 0, f(v1) =
f(vs) = f(wq) = 0, f(vs) = f(wr) = f(ws) = f(ws) =1, f(v2) = f(va) =
flwz) =2.
Type D: Define a function f : V(Hs) — {0,1,2} as follows: f(vp) =
0,f(v1) = 0,f(vs) = 0,f(va) = flvs) = 1, f(ve) = fwr) = 2,f(w2) =
flws) =0, f(ws) =1, fws) =2.

One can easily see that B and C are 3-equitable labelings but D is not.
However, each of them label the edges equitable.

That Hp is 3-equitable, is proved in theorem 1.
Case (i): k = 2. Define f by assigning labeling B to one copy of Hs and
labeling C to the second copy of Hs.
Case (ii) £ > 3. Let k = 3t + r,r = 0,1,2. This means the number of

vertices is 10(3¢ + r) + 1 and the number of edges is 15(3t + r).
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We assign labeling B to Hs ,, labeling C to Hs 2. After this stage sequence
of B, C and D will be repeated periodically, i.e. for 1 < a < ¢, we assign
labeling B to Hg 34, labeling C to Hg 3,41 and labeling D to Hs 3q42. Since,
all the labeling B C, and D label the edges equitably, f also labels the edges
equitably.

The following table gives the label distribution of vertices which clearly

shows that f is a 3-equitable labeling..

S OM T ONETO)

10t 10t 10t + 1.
10t +3 | 10t +4 | 10t + 4
106 +7 | 106+7 | 10t 47

N = O] 3

For (Hs)® we define f : V(H®) —» {0,1,2} as follows: f(v) =0,
f(ure) = f(wre) = flwse) = fwe,e) =0,
fva,e) = flvae) = flwae) = flwae) =1,
f(vse) = f(vs,e) = f(ve,e) = flws,) = 2.
Clearly vy (0) = 4k+1,vs(1) = 4k, v;(2) = 4k and e7(0) = e (1) = es(2) =

6k, i.e. f is a 3- equitable labeling of Hé").

Nowletn > 7. Letn=3t+r,r =1,2,3,t > 2. Let the k copies of H,
be numbered as Hy, 1, -« , Hppk.
Case i: 7 = 1. We define three types of labelings of H,, as given below:

Type A: Define f : V(H3t+1) — {07 172} as f('UO) = 0)

f(i) =0, f(ueg2i-1) =1, f(veg2i) =2 = f(vae1), 1 <0 <
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flw) =1, f(wi) =2 = f(wze41),2 i <t

FWe2i-1) =1, fwega:) = 0,1 <i <t

Type B: Define f : V(Hspp1) — {0,1,2} as f(vo) =0,
fv) =0,1<i<¢, flve41) =0, fvege) =2,
fverzio1) = 1, f(vsesr) = f(ver2i) =2,1<i <8,
flw) =1, flw)=21<i<t,
fweszio1) =1, f(wer2:) = 0,1 < i < ¢,

flwse—1) =0, flws) =1, flwsr) =2

Type C: Define f : V(Hs1) — {0,1,2} as f(vo) =0,
fl)=0,15i<t,
flue41) =1, f(ver2) =0, flvaet) =2,
fvegaio1) = 1, f(veeas) = 2,1 < i <ty
flw)) =1, flwey2i1) =1,1<i<t,
fwi) =2, flwey2:) =0,1<i < ¢,

f(wer2) =2, f(waey1) = 0.

Following table gives the label distributions of the labelings A4, B, C.

Type | vs(0) | ve(1) | vs(2) | €7 (0) | es(1) | €f(2)
A 204+1 2t +1 | 2t+1 | 3t+1 | 3t4+1(3t+1
B 2t +2 2t 2t0+1 | 3t+1 | 3t+1|3t+1
C 20+2 | 2t +1 2t 3t+1|3t+1|3t+1

Label vertices of H,; as in type A if i = 1( mod 3), as in type B if

i = 2( mod 3) and as in type C if i = 0( mod 3). Note that the common
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vertex receives label zero in all the three labelings A, B, C. Since all these

labelings are equitable on the edges, the resulting labeling is equitable on

the edges. Following table shows that the label distribution on the vertices

is 3-equitable:

Value of k& vy (0) vy(1) vr(2)
3m+1 [m(6t+2)+2t+1|m6t+2)+2t+1 | m(6t+2)+2t+1
Im+2 |m(6t+2)+4t+2 | m6t+2)+4t+1 | m(6t +2) + 4t + 2

3m m(6t +2) +1 m(6t + 2) m(6t + 2)

Case ii: r = 2. Again we define three types of labelings for H, as follows:

Type A: Define f: V(Hsey2) — {0,1,2} as f(vo) =0,

F(i) =0, f(veg2i) = 2,1 <@ < ¢, f(v41) =0,

Fver2i-1) = 1,1 < i < 8, f(vse41) =0, f(vse2) =2,

flw) =1, f(weye) = flwi) =2=,1<i < ¢,
fwesr) = 1= f(wats2) = fwesa), Flwees) =0 = f(waes1),

Fwegzim1) =1, f(wes2:) =0,3<i < &

’rype B: Define f : V(H3t+2) — {0’ 1’2} as f('vO) = 0’

f) =0,1<i<t, f(ve41) =0, f(veg2) =2,

Fues2i-1) = 1, f(vat41) = f(vaes2) = fvesai) = 2,1 < i < t,

f(wl)= 1; f(wt) =2’1<ist,
fwes1) = flwere) =1, fwess) = f(wega) =0,

f(weg2io1) =1, f(wesai) = 0,2 <8 < ¢,

Flwser2) =1, flwseyr) = 2.
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Type C: Define f : V(Hais2) — {0,1,2} as f(vo) = 0,
f) =0, f(ver2i-1) =1, flveeai) =2, 1<i <,
f(vse41) =0, fluseq2) =2,
fw1) =1, flwse1) =0, f(wses2) =1 = fwesa),
flweg2) =2,

flwi) =2, f(weg2i-1) = 1, fwee2:) = 0,1 < i < g,

All the three labelings are equitable on the edges. Each label is received

by 3t+2 edges. The table below gives the label distributions on the vertices.

Type | vs(0) | vs(1) | vf(2)
A [2t+3[2t+1|2t+1
B |2t+2|2t+1]2t+2
C |2t+2[2t+2 |2t +1

Assign labeling B to Hy,; and labeling C to Hy 2. For ¢ > 2 to Hy;
assign labeling B if i = 0( mod 3), labeling C if ¢ = 1( mod 3) and labeling
A if i = 2( mod 3). If k = 1 the labeling B is 3-equitable. Clearly, for k¥ > 1
the resulting labeling is equitable on the edges and each label is assigned
to k(3t + 2) edges. The table below shows that this labeling is equitable on
the vertices also.

k vs(0) vs(1) vy (2)
k=3m m(6t + 4) m(6t + 4) m(6t+4)+1
k=3m+2 | m(6t+4)+4t+3 | m(6t+4)+4t+3 | m(6t+4) + 4t +3
F=3m+4 | m(6t+4) +8t+5 | m(6t +4) + 8t +6 | m(6t +4) + 8t + 6

Case iii: r = 3. Again we define a labelings for H, as follows:
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f(vwo) =0,

fva) = 0= f(vse-1), f(vse1) = f(vses2) = flvsees) =2,
fi) =0, f(veg2i-1) =1, flveai) = 2,1 <i < ¢,

fw) =1, flwe1) =0, flwegz) =1,

f(wse-1) = f(wae) = f(wsers) =1, f(wse1) =0,
fwsey2) =2,

fwi)=2,2<i<t,

fwegzia) =1, fweg2s) =0,1 <P < &

Clearly vs(0) = 2t + 3,v4(1) = vy(2) = 2t + 2 and ef(0) = ef(1) =
ef(2)=3t+3. In Héﬂ_a we assign this labeling to all the blocks. One can

easily see that the resulting labeling is 3-equitable. a

K4-Snake And K,-Star

A K, snake of length n with vertex set V and edge set E is a graph
defined as follows: V = {v,vs,...,v,}U{a;,bi/i =1,2,...,n},
E = {vwi41/1<i<n} U {aivi, aiviy1, aibi, bivi, bivig1 /1 < i < n}. Here

i + 1 is taken modulo n. Clearly, | V |=3n +1,| E |= 6n.

Theorem 4: a K;4-Snake on n blocks is 3-equitable, n > 2.

Proof: Case (i): n is even. Define f: V — {0, 1,2} as follows:

f(wi) =0,1<1i<mn,f(a;) = f(b;) =1if ¢ is odd and

f(a;) = f(b;) = 2if i is even . Clearly, v7(0) = n + 1,vp(1) = v¢(2) = n

and ef(0) = ef(1) = ef(2) = 2n.
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Case (ii): n = 2m + 1,m € N. First we consider the case of n = 3. We
define f as follows: f(v1) =0, f(v2) =1, f(v3) =0 = f(vq),

f(a1) =0, f(b1) =2, f(a2) = 1= f(b2), f(as) = 2 = f(bs). note that

v7(0) = 4,v5(1) = 3 = v4(2),e£(0) = ef(1) = e7(2) = 6. Thus a K4-Snake
on 3-blocks of K, is 3-equitable.

For K4 snake with 2m+1 blocks m > 1, we first take 3-equitable labeling
of K4-snake with 2m — 2 blocks, as defined in case (i). This labeling is
extended to a 3-equitable labeling by using labeling of K4-Snake of length
3 given above. Note that v;(0) = 2m + 2,v¢(1) = 2m + 1,v4(2) = 2m +

1,e£(0) = ef(1) = ef(2) = 4m + 2. That completes the proof. O

A K4-Star K, g") is one point union of n-copies of K4. The vertex set is
{vo}U{vir | 1<i<3,1<k<n.} and the edge set is
{fvovie | 1<4<3,1 <k nfU{vigvigre | 1<i<3,1<k<n}.

Here 7 + 1 is taken modulo 3.

Theorem 5: K™ is 3-equitable for all n > 2.

Proof: vy is the common vertex of all copies of Kj.

Case (i): n is even. Define f : V (K,g")) — {0, 1,2} as follows:

f(u1e) = 1,if t is even and f(vy,) = 0if ¢t is odd, f(ve:) = 1 if ¢ is even

and f(vz:) = 2if t is odd, f(vs,s) = 0if t is even and f(v;.) = 2if ¢ is odd.
One can easily check that v;(0) =n + 1,v¢(1) = n = vs(2),

e(0) = es(1) = es(2) = 2n.

Case (ii) : n = 2m + 1. For K{”, define £ : V (K{¥) — {0,1,2} as
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follows. f(v1,1) = f(ve,1) = f(v3,1) =1, f(vr,2) = f(v2,2) =2, f(v32) =0,
f(v1,3) = 1, f(va,3) = 2, f(vs,3) = 0. Note that ef(0) = ef(1) = ef(2) =
6,v7(0) = 3,vp(1) = 4,v(2) = 3.

To obtain an labeling of K{*™*") first obtain the labeling of K{*™%)
using case (i) above. Extend this labeling by using labeling of K f’).
Note that vs(0) = 2m + 1,vs(1) = 2m + 2,v¢(2) = 2m + 1, and

ef(0) = ef(1) = ef(2) = 4m + 2. This completes the proof. a

Ci-Snakes, t = 4,5,6

A Cy-snake S(cq,n) of length n is defined inductively as follows: For
n = 1 we take Cy. If a Cys-snake of length n — 1 is constructed, then by
identifying a non-cut vertex of an end block with one vertex of one more
copy of C4 we obtain a Cy-snake of length n. We note that every non-end
block has two cut vertices and they may or may not be adjacent. A block
is said to be of type A if the two cut vertices in a Cj block are adjacent

and of type B if they are at a distance two.

The figure below gives 3-equitable labelings of all possible C4-snakes of
length 3 or sections of length 3 of a bigger Cy-snake. The cut points and the
potential cut points in the end blocks are indicated by bold circles around

them. In each figure the right most block has two vertices labeled zero.
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In all these labelings we have vg(0) = 4,v5(1) = v£(2) = 3,

er(0) = es(1) = es(2) = 4.

Theorem 6: Cj;-snake S(Cy,n) of length n is 3-equitable for all positive
integers n.

Proof: When n = 1,2 one can easily check that S(Cy,n) is 3-equitable.

Let n =3t +r,7r =0,1,2. A Cy-snake S(Cy,n) of length n has 3n + 1
vertices and 4n edges.
Case i: r = 0. If t = 1, we have already given 3-equitable labeling of
S(C4,3) above. Moreover, in these labelings both the end blocks have ver-

tices with label 0 as potential cut vertices in a bigger snake.
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Now let n = 3t,t > 1. We take a Cy-snake of length 3t and break
it up into ¢ copies of S(Cy,3). Each copy has one of the 8 possibilities
{AAA,AAB,BAA,BBA,ABB,ABA, BAB, BBB}. We can now label them
as shown in the figure above and then splice them again to form the original
snake.

One can easily see that in the resulting labeling v;(0) = 3t + 1,
vs(1) = v7(2) = 3t,e4(0) = es(1) = ez(2) = 4t. Hence S(C4, 3t) is
3-equitable.

Case ii: r = 1. Consider a Cy snake S(Cjy, 3t + 1). Label 3t consecutive
blocks as in case 1. The cut vertex in the last block will have label zero.
Label the last block as {0211} in a cyclic manner. Here the label zero was
already present. Clearly in this labeling v7(0) = 3¢t + 1 = v#(2), and

vp(1) =3t +2,e5(0) = ef(2) =4t +1,e5(1) = 4t + 2.

Case iii: r = 2. Consider C;-snake of length 3¢ + 2. The non-end blocks
form a Cj-snake of length 3t. Take a 3-equitable labeling of this truncated
snake. At one end, label the last block as {0,0,2,2} in a cyclic manner.
One of the vertex with label zero is from the labeling of the truncated
snake. At the other end, label the last block as {0,2,1,1} in a cyclic man-
ner. Again the vertex with label zero is from the labeling of the truncated
snake. Clearly in the resulting labeling vs(0) = 3t + 2 = y(1),

vp(2) =3t +3,e4(0) = ep(2) =4t +3,e5(1) = 4t + 2.

Hence by S(Cy4,n) is 3-equitable for all n.
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Remark: If we consider Cs-snake there are again two types of blocks; one
in which two cut vertices are adjacent and another in which two cut vertices
are at a distance 2. We have constructed basic labelings of all combinations
of three such blocks. None of these labelings are 3-equitable. However by
joining two such segments suitably we could construct 3-equitable label-
ings of every S(Cs,6). Using same techniques as in Theorem 6, we could
construct 3-equitable labeling of S(Cs,n),n = 0,1,2,4,5 (mod 6). When
n = 6t + 3 the number of edges is 30¢ + 15. If we want a 3-equitable label-
ing then we must have ef(1) = ef(0) = es(2) = 10t + 5. However, in any
block which is Cs any labeling of the vertices with labels 0, 1,2 creates even
number of edges with label 1. Hence e;(1) can never be 10¢ + 5.

For a Cg-snake S(Cs,n) of length n, in every block the distance between
two cut points is 1 or 2 or 3, that is there are three types of blocks. We
could give 3-equitable labeling for S(Cs,n) using same techniques. Thus

we have following:

Theorem 7: (a) A Cs-snake S(Cs,n) is 3-equitableiffn = 0,1,2,4,5 (mod 6).

(b) A Cg-snake is 3-equitable for every natural number n.

The problem of C;-snake becomes complicated since in any block two
cut vertices can be at a distance 3,1 < s < [%] . However, if t = 25+ 1
and n = 6m + 3 the snake S(C;,n) has 3(2m + 1)(2s + 1) edges. That
means for a 3-equitable labeling we must have ef(1) = (2m + 1)(2s + 1)

which is not possible. Hence S(C;,n) is not 3-equitable when ¢ is odd and
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n = 3( mod 6). These results motivates us to make following conjecture:
Conjecture: If t > 3 and n are two natural numbers every C;-snake is
3-equitable if either ¢ is odd and n is not congruent to 3 modulo 6 or ¢ is

even.
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