Cutting a graph into small components

Miranca Fischermann, Dieter Rautenbach and Lutz Volkmann Lehrstuhl II für Mathematik, RWTH-Aachen, 52056 Aachen, Germany email: miranca.fischermann@amv.de, rauten@math2.rwth-aachen.de, volkm@math2.rwth-aachen.de

Abstract: For some fixed $n_0 \ge 0$ we study the minimum number of vertices or edges that have to be removed from a graph such that no component of the rest has more than n_0 vertices.

Keywords: cut; centroid; median; separator

1 Introduction

We consider finite and simple graphs G = (V, E) and use standard terminology as in [3]. It is a well-known folklore result that the deletion of a centroid (or median) vertex [5, 7] in a tree of order n leads to a forest all components of which have at most $\frac{n}{2}$ vertices. Our main aim in this note is to discuss the following related question: How many vertices (edges) do we have to delete from a tree (graph) such that all components of the arising graph have at most some given order?

This question leads to a kind of connectivity number whose definition was proposed in [4]. In view of the above-mentioned property of the centroid it is obvious that repeatedly deleting centroid vertices of arising components reduces the order of the components by a factor of two in each step. Nevertheless, the resulting estimate on the number of vertices that has to be deleted is too large in general.

A separator of a graph G of order n is a set of vertices V' such that no component of G-V' has more than $\frac{2}{3}n$ vertices. There are several deep results on the existence of small separators for special graph classes [1, 2, 6]. As above, repeated deletion of small separators will finally lead to components having at most some given order.

In the next section we give best-possible answers to the above question (mainly) for trees.

2 Results

Theorem 1 Let T = (V, E) be a tree of order n and $n_0 \ge 0$. There is a set $V' \subseteq V$ of at most $\lfloor \frac{n}{n_0+1} \rfloor$ vertices such that all components of T - V' have at most n_0 vertices.

Proof: We prove the statement by induction on $\sum_{d_T(u)\geq 3} d_T(u)$, where $d_T(u)$ denotes the degree of the vertex u in T. If $\sum_{d_T(u)\geq 3} d_T(u) = 0$, then T is a path and the result is obvious.

Figure 1.

Since $\sum_{d_{\tilde{T}}(u)\geq 3} d_{\tilde{T}}(u) < \sum_{d_{T}(u)\geq 3} d_{T}(u)$, there is a set \tilde{V}' of at most $\lfloor \frac{n}{n_0+1} \rfloor$ vertices such that all components of $\tilde{T}-\tilde{V}'$ have at most n_0 vertices. If $w\in \tilde{V}'$, then all components of $T-\tilde{V}'$ have at most n_0 vertices and we are done. Hence suppose $w\notin \tilde{V}'$. Let W be the set of those vertices of the component of $\tilde{T}-\tilde{V}'$ that contains w which do not lie in $\{u_1,...,u_r,v_1,...,v_s\}$ and let t=|W|. Clearly, $t\leq n_0$. Let $r=r_1(n_0+1)+r_2$ and $s=s_1(n_0+1)+s_2$ such that $0\leq r_2,s_2\leq n_0$. We have

$$|\tilde{V}' \cap \{u_1, ..., u_r, v_1, ..., v_s\}| \ge \left\lfloor \frac{t+r+s}{n_0+1} \right\rfloor = \left\lfloor \frac{t+r_2+s_2}{n_0+1} \right\rfloor + r_1 + s_1.$$

Let

$$\begin{array}{lll} V'' & = & (\tilde{V}' \setminus \{u_1,...,u_r,v_1,...,v_s\}) \cup \{u_{\nu(n_0+1)} \mid 1 \leq \nu \leq r_1\} \\ & \cup & \{v_{\nu(n_0+1)} \mid 1 \leq \nu \leq s_1\}. \end{array}$$

If $t + r_2 + s_2 \le n_0$, then let V' = V'' and if $t + r_2 + s_2 \ge n_0 + 1$, then let $V' = V'' \cup \{w\}$. Clearly, all components of T - V' have at most n_0 vertices. Since

$$|V'| = |V''| + \left| \frac{t + r_2 + s_2}{n_0 + 1} \right|$$

$$= |\tilde{V}' \setminus \{u_1, ..., u_r, v_1, ..., v_s\}| + r_1 + s_1 + \left\lfloor \frac{t + r_2 + s_2}{n_0 + 1} \right\rfloor$$

$$= |\tilde{V}'| - |\tilde{V}' \cap \{u_1, ..., u_r, v_1, ..., v_s\}| + r_1 + s_1 + \left\lfloor \frac{t + r_2 + s_2}{n_0 + 1} \right\rfloor$$

$$\leq |\tilde{V}'| - \left\lfloor \frac{t + r_2 + s_2}{n_0 + 1} \right\rfloor - r_1 - s_1 + r_1 + s_1 + \left\lfloor \frac{t + r_2 + s_2}{n_0 + 1} \right\rfloor$$

$$= |\tilde{V}'|.$$

the proof is complete. \Box

The following lemma easily implies the existence of arbitrarily many trees for which the bound in Theorem 1 is tight.

Lemma 2 Let $n_0 \geq 0$. Let T_1 be a tree of order n_1 such that a minimum set V_1' of vertices for which all components of $T_1 - V_1'$ have at most n_0 vertices has cardinality $\lfloor \frac{n_1}{n_0+1} \rfloor$. Let T_2 be any tree of order n_0+1 . Let the tree T=(V,E) consist of T_1 and T_2 together with one additional edge.

Then a minimum set $V' \subseteq V$ of vertices for which all components of T-V' have at most n_0 vertices has cardinality $\lfloor \frac{n_1}{n_0+1} \rfloor + 1$.

Proof: By Theorem 1, there is a set $V' \subseteq V$ as in the statement of the lemma with $|V'| \le \lfloor \frac{n_1 + n_0 + 1}{n_0 + 1} \rfloor = \lfloor \frac{n_1}{n_0 + 1} \rfloor + 1 = |V_1'| + 1$. Since T_2 has order $n_0 + 1$, the set V' contains at least one vertex u of T_2 . One component of the tree T - ucontains the tree T_1 as a subgraph and hence $|V'|-1=|V'\setminus\{u\}|\geq |V_1'|$. Altogether, we obtain $|V'| = \lfloor \frac{n_1}{n_0+1} \rfloor + 1$. \square

For general graphs we obtain the following corollary.

Corollary 3 Let G = (V, E) be a graph of order n and $n_0 \geq 0$. Let X be a set of vertices such that G - X has no cycles.

There is a set $V' \subseteq V$ of at most $\lfloor \frac{n-|X|}{n_0+1} \rfloor + |X|$ vertices such that all components of G-V' have at most n_0 vertices.

Proof: Applying Theorem 1 to the components of the forest G-X yields a set V'' of at most $\lfloor \frac{n-|X|}{n_0+1} \rfloor$ vertices such that all components of G-X-V'' have at most n_0 vertices. The conclusion follows for $V'=X\cup V''$. \square Corollary 3 is tight for arbitrary $n_0 \in \mathbb{N}_0 = \{0, 1, 2, ...\}$. For $n_0 = 0$ this is obvious and for $n_0 \geq 1$ consider a connected graph G that consists of l disjoint cycles C_{n_0+2} of length n_0+2 and l-1 additional edges. Clearly, a set V' as in Corollary 3 which is of minimum cardinality contains at least two vertices in each of the l cycles, i.e. $|V'| \ge 2l$. Now Corollary 3 implies $|V'| \leq 2l$ and thus |V'| = 2l.

The graphs in the above example are cacti, i.e. all their cycles are edge-disjoint. The following figure shows graphs which are not cacti and for which the bound in Corollary 3 is also tight. (We leave the details and generalizations to the reader.)

Figure 2.

For cacti we can deduce a corollary of Theorem 1 also in the following way.

Corollary 4 Let G = (V, E) be a cactus of order n and $n_0 \ge 0$. There is a set $V' \subseteq V$ of at most $2\lfloor \frac{n}{n_0+1} \rfloor$ vertices such that all components of G - V' have at most n_0 vertices.

Proof: Let E' be a set of edges that contains exactly one edge of each cycle of G. Applying Theorem 1 to the tree $T=(V,E\setminus E')$, we deduce that there is a set $V''\subseteq V$ of at most $\lfloor \frac{n}{n_0+1}\rfloor$ vertices such that all components of T-V'' have at most n_0 vertices. Let the set $V'\subseteq V$ arise in the following way. For each vertex $u\in V''$ that does not lie in a cycle of G let $u\in V'$. For each vertex $u\in V''$ that lies in a cycle of G let $u,u'\in V'$ where u' is a vertex incident with the edge of the cycle in E'. Clearly, $|V'|\leq 2|V''|$ and all components of G-V' have at most n_0 vertices. \square

Now we turn to the deletion of edges. Since we have to delete $n - n_0$ edges from star $K_{1,n-1}$ to obtain components of order at most $n_0 \ge 1$, it is reasonable to impose an upper bound on the maximum degree in this case.

Lemma 5 Let T = (V, E) be a tree of order n and maximum degree $\Delta \geq 2$. Let $n_0 \in \mathbb{N} = \{1, 2, 3, ...\}$ with $n_0 < n$. There is an edge e in T such that there is one component of order n' of T - e with $\frac{n_0}{\Delta - 1} \leq n' \leq n_0$.

Proof: We root the tree at an endvertex r. This implies that every vertex has at most $\Delta - 1$ children. For $u \in V$ let the set $V_{\leq u}$ consist of u and all its descendants.

We mark all vertices $u \in V$ with $|V_{\leq u}| \geq \frac{n_0}{\Delta + 1}$. Note that r is marked, since $|V_{\leq r}| = n > n_0 \geq \frac{n_0}{\Delta + 1}$. Let $v \in V$ be a marked vertex with maximum distance from r. This implies that no child of v is marked. (Note that this statement is trivially true, if v has no children.)

If v' is a child of v, then $|V_{\leq v'}| < \frac{n_0}{\Delta - 1}$ which implies $|V_{\leq v'}| \leq \frac{n_0 - 1}{\Delta - 1}$. Now,

$$\frac{n_0}{\Delta - 1} \le |V_{\le v}| \le |\{v\}| + \left| \bigcup_{v' \text{ is child of } v} V_{\le v'} \right| \le 1 + (\Delta - 1) \frac{n_0 - 1}{\Delta - 1} = n_0.$$

This implies that v is not the root r. The desired result now follows for the edge e between v and the parent of v and the proof is complete. \square

Proposition 6 Let T = (V, E) be a tree of order n and maximum degree $\Delta \geq 2$. Let $n_0 \in \mathbb{N}$.

There is a set E' of at most $\lfloor \frac{n}{\lfloor \frac{n_0}{\Delta-1} \rfloor} \rfloor$ edges such that no component of T-E' has more than n_0 vertices.

Proof: Since $n - \lfloor \frac{n}{\lfloor \frac{n_0}{\Delta - 1} \rfloor} \rfloor \lceil \frac{n_0}{\Delta - 1} \rceil < \lceil \frac{n_0}{\Delta - 1} \rceil$, the desired result follows easily by repeatedly applying Lemma 5. \square

Note that if $n_0 \leq \Delta - 1$, then $\lfloor \frac{n}{\lceil \frac{n_0}{\Delta - 1} \rceil} \rfloor = n$, i.e. the bound given in Proposition 6 is trivial, since a tree has n-1 edges. Whereas Lemma 5 is best-possible for, for example, complete $(\Delta - 1)$ -ary trees, Proposition 6 can still be improved. We will illustrate this for $n_0 = 2$. Our motivation to include the result is to show arguments that easily generalize to other special cases but will lead to extremely tedious and lengthy case analyses.

Proposition 7 Let T=(V,E) be a tree of order n and maximum degree $\Delta \geq 2$. There is a set E' of at most $\lfloor \frac{\Delta-1}{\Delta} n \rfloor$ edges such that no component of T-E' has more than 2 vertices.

Proof: Let T be a counterexample of minimum order. It is easy to see that the diameter of T is at least 3. Let $P: v_0v_1...v_l$ be a longest path in T with $l \geq 3$.

Let $\tilde{T} = T - ((\{v_1\} \cup N_T(v_1)) \setminus \{v_2\})$. Since T is a counterexample of minimum order, there is a set \tilde{E}' of at most $\lfloor \frac{\Delta-1}{\Delta}(n-d_T(v_1)) \rfloor$ edges of \tilde{T} such that no component of $\tilde{T} - \tilde{E}'$ has more than two vertices. Now the set $E' = \tilde{E}' \cup \{uv_1 \mid u \in N_T(v_1) \setminus \{v_0\}\}$ has at most

$$\left\lfloor \frac{\Delta - 1}{\Delta} (n - d_T(v_1)) \right\rfloor + d_T(v_1) - 1 = \left\lfloor \frac{\Delta - 1}{\Delta} n + \frac{d_T(v_1)}{\Delta} - 1 \right\rfloor$$

$$\leq \left\lfloor \frac{\Delta - 1}{\Delta} n \right\rfloor$$

edges and no component of T - E' has more than two vertices. \square

It is easy to see that Proposition 7 is (asymptotically) best-possible for complete $(\Delta - 1)$ -ary trees.

References

- [1] N. Alon, P. Seymour and R. Thomas, A separator theorem for non-planar graphs, J. Am. Math. Soc. 3 (1990), 801-808.
- [2] N. Alon, P. Seymour and R. Thomas, Planar separators, SIAM J. Discrete Math. 7 (1994), 184-193.
- [3] G. Chartrand and L. Lesniak, Graphs and digraphs, Chapman & Hall, London, 1996, 422 pp.
- [4] F. Harary, Conditional connectivity, Networks 13 (1983), 347-357.
- [5] C. Jordan, Sur les assemblages des lignes, J. Reine Angew. Math. 70 (1869), 185-190.
- [6] R.J. Lipton and R.E. Tarjan, A separator theorem for planar graphs, SIAM J. Appl. Math. 36 (1979), 177-189.
- [7] B. Zelinka, Medians and peripherians of trees, Arch. Math. (Brno) 4 (1968), 87-95.