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Abstract: For some fixed ng > 0 we study the minimum number of vertices
or edges that have to be removed from a graph such that no component of
the rest has more than ng vertices.
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1 Introduction

We consider finite and simple graphs G = (V, E) and use standard termi-
nology as in [3]. It is a well-known folklore result that the deletion of a
centroid (or median) vertex [5, 7] in a tree of order n leads to a forest all
components of which have at most 3 vertices. Our main aim in this note is
to discuss the following related question: How many vertices (edges) do we
have to delele from a lree (graph) such lhal all cotnponents of the arising
graph have al mosl some given order?

This question leads to a kind of connectivity number whose definition
was proposed in [4]. In view of the above-mentioned property of the cen-
troid it is obvious that repeatedly deleting centroid vertices of arising com-
ponents reduces the order of the components by a factor of Lwo in each
step. Nevertheless, the resulting estimate on the number of vertices that
has to be deleted is too large in general.

A separator of a graph G of order n is a set of vertices V' such that
no component of G — V' has more than 2n vertices. There are several
deep results on the existence of small separators for special graph classes
[1, 2, 6]. As above, repeated deletion of small separators will finally lead 10
components having at most some given order.

In the next section we give best-possible answers to the above question
(mainly) for trees.

2 Results

Theorem 1 Let T = (V, E) be a tree of order n and ng > 0. There is a

set V! C V of al most [no'jrlj vertices such that all components of T — V'

have at most ng verlices.
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Proof: ‘We prove the statement by induction on Zdvr(u)ZS dr(u), where
dr(u) denotes the degree of the vertex u in T. If Zdr(u)_>_3 dr(u) =0, then
T is a path and the result is obvious.

Now let 3, (yy>3dr(u) > 0, i.e. there is at least one vertex of degree
at least three in ‘T “There are vertices u;, ug, ..., Uy, ¥1, 2, ..., Vs, w € V for
T,8 2 1 such that wyu;4y € Eforl1 <i<r—-1l,vv4 € Efor1 <i<s—1,
urw, Vw € B, dr(u1) = dr(n) =1, dr(w) =2for 2 <i <r, dp(y) =2
for2 <i<sanddpr(w) 2 3. Let T = (V, (E\ {vsw}) U {uyv,}) (cf. Figure
1).
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Figure 1.

Since Zd.f(u)ZS di(1) < 3 4,.(u)>3 dr(u), Lhereis aset V' of at most Fr
vertices such that all components of T — V' have al mosL ng vertices. Ifw €
V’, then all components of T— V' have al most ng vertices and we are done.
Hence suppose w € V. Let W be the set of those vertices of the component
of T — V’ that contains w which do not lie in {w1, eyt vy, ..., vs} and let
t = |W)|. Clearly, t <ng. Let r =ri(no+ 1) +r2 and s = $1(no + 1) + s2
such that 0 < 79, s9 < ng. We have

- t+r+s L+ 10+ 89
V'n > = .
I {'U], y Ur, V1, 1”8}'-— l n0+1 J [ n0+1 J+rl+sl
Let
V' = (V'\{u1, . ur, 1, ..., U5 }) U {Upnotny | 1 SV ST}

U {vmo+1) | 1 v <51}

Ift4+ry+53 <ng,thenlet V' =V” and if L + 79 + 59 > ng + 1, then let
V' = V"”U{w}. Clearly, all components of T — V'’ have at most ng vertices.
Since

Vv = Iv,,|+[t+7’2+szJ

ng + 1
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the proof is complete. O

The following lemma easily implies the existence of arbitrarily many trees
for which the bound in Theorem 1 is tight.

Lemma 2 Let ng > 0. Let T\ be a tree of order n; such that a minimum
set V| of vertices for which all components of Ty — V| have at most ng
vertices has cardinality | M5 |. Let Ty be any tree of order ng + 1. Let the
tree T = (V, E) consist of Tl and Ty logether with one additional edge.

Then a minimum set V' C V of vertices for which all componenls of
T — V' have al most ny verlices has cardinalily [245) +1.

Proof: By Theorem 1, thereis aset V' C V asin the statement of the lemma
with [V/| < [“':o’:"l”J = [;25]+1 = |V{|+1. Since T; has order no+1, the
set V'’ contains at least onc vertex u of T3. One component of the trec T —u
contains the tree T1 as a subgraph and hence |V/| - 1 = |V’\ {u}| 2 |V/|.
Altogether, we obtain |V'| = [ 5] +1. O

For general graphs we obtain the following corollary.

Corollary 3 Let G = (V, E) be a graph of order n and ng > 0. Let X be
a set of vertices such that G — X has no cycles.

There is a set V' C V of at most [_';o’fﬁl ] + | X| wvertices such that all
components of G — V' have al mosl ny verlices.

Proof: Applying Theorem 1 to the components of the forest G — X yiclds a
set V" of at most | T+ X1 | vertices such that all components of G = X - V"
have at most g vut,lces The conclusion follows for V/ = X uV”. O
Corollary 3 is tight for arbitrary np € No = {0,1,2,...}. For ng = 0 this
is obvious and for ng > 1 consider a connected graph G that consists of {
disjoint cycles Cy,,+2 of length ng +2 and ! — 1 additional edges. Clearly, a
set V’ as in Corollary 3 which is of minimum cardinality contains at least
two vertices in each of the ! cycles, i.e. |V’| > 2. Now Corollary 3 implies
|V’| < 2l and thus |V'] = 2l

The graphs in the above example are cacti, i.e. all their cycles are
edge-disjoint. The following figure shows graphs which are not cacti and
for which the bound in Corollary 3 is also tight. (We leave the details and
generalizations to the reader.)
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Figure 2.
For cacti we can deduce a corollary of Theorem 1 also in the following way.

Corollary 4 Let G = (V, E) be a cactus of ordern and ng > 0. There isa
set V! C V of at most 2| 727 | vertices such that all components of G - V'
have at most ng verlices.

Proof: Let E’ be a set of edges that contains exactly one edge of cach cycle
of G. Applying Theorem 1 to the tree T = (V, L'\ E’), we deduce that
there is a set V” C V of at most [ 2| vertices such that all components
of T— V" have at most ng vertices. Let the set V' C V arise in the following
way. For each vertex u € V" that does not lie in a cycle of C let u € V.
For each vertex u € V” that lies in a cycle of G let u,u’ € V' where v’ is a
vertex incident with the edge of the cycle in E’. Clearly, |V’| < 2|V”| and

all components of G — V' have at most ng vertices. O

Now we turn to the deletion of edges. Since we have Lo delete n — nyg
edges from star K ,— to obtain components of order at most ng > 1, it is
reasonable to impose an upper bound on the maximum degrec in this case.

Lemma & Let T = (V, E) be a tree of order n and mazimum degree A > 2.
Letnp € N = {1,2,3,...} withngo < n. There is an edge € in T such thal
there is one component of order n’ of T — e with 3227 < n' < ng.

Proof: We root the tree at an endvertex r. This implies Lthat every vertex
has at most A — 1 children. For u € V let the set V<, consist of  and all
its descendants.

We mark all vertices u € V with [Vcy| > £%. Note that r is marked,
since |Ver| =n > ng 2 Z"—"‘ Let v € V be a marked vertex with maximum
distance from r. This implies that no child of v is marked. (Note that this
statement is trivially true, if v has no children.)

If ¥’ is a child of v, then |V¢y| < 3% which implies [Vey| < %0—1'
Now,

ng — 1
A-1

<14+(A-1)

%0 < [Vl < Hw}l + = ng.

A-17

U W

v’is child of ¥

This implies that v is not the root r. The desired result now follows for the
edge e between v and the parent of v and the proof is complete. O
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Proposition 6 Let T = (V, E) be a iree of order n and mazimum degree
A >2. Letng € N.
There is a set I’ of al most [ré'q—TT | edges such that no component of

T ~ E’' has more than ng vertices.

Proof: Since n — l‘TﬁTJ [A2:] < [A—“_?T-l, the desired result follows easily
by repeatedly applying Lemma 5. O

Note that if ng < A — 1, then [T——TJ = n, i.e. the bound given in

Proposition 6 is trivial, since a tree has n — 1 edges. Whereas Lemma 5
is best-possible for, for example, complete (A — 1)-ary trees, Proposition 6
can still be improved. We will illustrate this for ng = 2. Our motivation
to include the resull is to show arguments that casily generalize to other
special cases but will lead o extremely tedious and lengthy case analyses.

Proposition 7 Lelt T = (V, E) be a tree of order n and mazimum degree
A > 2. There is a set I’ of al most [MnJ edges such thal no component
of T — E' has more than 2 verlices.

Proof: Let T be a counterexample of minimum order. It is easy to sce that
the diameter of T is at least 3. Let P : vov;...v; be a longest path in T with
l>3.

Let T=T — (({v;} U Ny *(v1)) \ {v2}). Since T is a counterexample of
minimum order, there is a set £’ of at most |_A L(n —dy(v1))] edges of T

such that no component of T — £’ has more than two vertices. Now the set
E' = E' U {uv; | u € Np(v)\ {vo}} has al most

[AA—ln_l_dTXn) _1}

< %)

edges and no component of T — £’ has more than two vertices. O

lAA‘ Ln - dT(vl))J +dr(v) -1

It is easy to see that Proposition 7 is (asymptotically) best-possible for
complete (A - 1)-ary trees.
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