AN IMPROVED LOWER BOUND FOR $g^{(4)}(18)$

M. GRÜTTMÜLLER, I.T. ROBERTS, AND R.G. STANTON

ABSTRACT. The cardinality of the minimal pairwise balanced designs on v elements with largest block size k is denoted by $g^{(k)}(v)$. It is known that $30 \le g^{(4)}(18) \le 33$. In this note, we show $31 \le g^{(4)}(18)$.

1. Introduction

Let K be a set of positive integers. Then a pairwise balanced design PBD(v, K) of order v with block sizes from K is a pair (V, \mathcal{B}) , where V is a finite set (the point set) of cardinality v and \mathcal{B} is a family of subsets (called blocks) of V which satisfy the following properties:

- (i) every pair of distinct elements of V occurs in exactly one block of \mathcal{B} ;
- (ii) if $B \in \mathcal{B}$, then $|B| \in K$.

The value $g^{(k)}(v)$ is the minimum number of blocks in a pairwise balanced design on v elements with largest block size k. The value $g^{(4)}(v)$ was investigated in [6, 2] and was determined for all v with the exception of 17 and 18. Stinson and Seah showed $g^{(4)}(17) \leq 31$ by exhibiting a PBD(17, $\{2,3,4\}$) with 31 blocks (reported in [7]). Also, from [5] we know that $g^{(4)}(17) \geq 30$. Lower and upper bounds for v = 18 are established by Stanton in [4, 3] as $30 \leq g^{(4)}(18) \leq 33$. The study of bounds on $g^{(k)}(v)$ for arbitrary k has been subject of numerous papers. The paper by Rees and Stinson [1] is a good survey of known results.

In this paper, we study $g^{(4)}(18)$ and prove that a PBD(18, $\{2, 3, 4\}$) has at least 31 blocks.

2. Preliminaries

We begin by introducing some terminology and notation. Let g_i be the number of blocks of size i for i = 2, 3, 4. Then counting pairs of points in two ways gives

$$g_2 + 3g_3 + 6g_4 = \binom{18}{2}.$$

Date: October 21, 2003.

If $g_2 + g_3 + g_4 = 30$, then it has been shown in [4, Case 4] that $g_2 = 0, g_3 = 9$ and $g_4 = 21$. We remark here, that if there is a PBD(18, {3,4}) with 30 blocks, then by deleting one point one obtains a PBD(17, {2,3,4}) with 30 blocks. Unfortunately, as noted above, the existence of such a PBD has neither been proved nor disproved so far.

Let \mathcal{B}' be a subset of the block set \mathcal{B} . The volume(frequency) of a point x in \mathcal{B}' , denoted by $V(x; \mathcal{B}')$, is the number of blocks in \mathcal{B}' which contain x. Similarly, if X' is a subset of the point set, then $V(X'; \mathcal{B}') = \sum_{x \in X'} V(x; \mathcal{B}')$.

A point x has point type $3^{\alpha}4^{\beta}$ if x is contained in exactly α blocks of size 3 (triples) and β blocks of size 4 (quadruples). We know from [4, 3] that in a PBD(18, {3,4}) with $g_3 = 9$, $g_4 = 21$ there are 3 points of type 3^44^3 , say 1, 2, 3, and 15 points of type 3^14^5 , say 4, 5, ..., 18.

There is a unique way to arrange the 9 triples such that each of the 18 points occurs in either one or four of these triples

where every $y \in Y := \{9, 10, ..., 18\}$ is used exactly once. Moreover, 9 quadruples $Q_u, ..., Q_i$ contain exactly one of 1, 2, 3. They are of the form

 $\begin{array}{lll} Q_a: 16xx & Q_b: 1xxx & Q_c: 1xxx \\ Q_d: 25xx & Q_c: 2xxx & Q_f: 2xxx \\ Q_g: 34xx & Q_h: 3xxx & Q_i: 3xxx \end{array}$

where every x from $X := \{7, ..., 18\}$ occurs exactly twice. The remaining 12 quadruples $Q_A, ..., Q_L$ contain no point 1, 2, 3. Here, we distinguish between two main configurations. In Configuration 1 is a quadruple Q_A that contains all three points 4, 5, 6. In Configuration 2 occur the pairs 45, 46 and 56 in three distinct quadruples.

We will show in the following sections that both Configuration 1 and Configuration 2 are impossible and, therefore, there is no PBD on 18 points with 30 blocks of size 3 or 4.

3. Configuration 1

Suppose that there is a quadruple containing 4, 5, 6 and w.l.o.g. let 7 be the fourth point in this quadruple. Then the quadruples Q_A, \ldots, Q_L have the following form

 where every $y \in Y$ occurs three times. Now complete the blocks Q_a, Q_d, Q_g as $16y_1y_2$, $25y_3y_4$ and $34y_5y_6$. Clearly all $y_i \neq 7$ and all y_i are pairwise distinct since otherwise for some y^* that occurs more than once in Q_a, Q_d, Q_g we have $V(y^*; Q_B, \ldots, Q_J) = 1$ and, therefore, $V(y^*; Q_K, Q_L) = 2$ a contradiction. Thus, we can complete Q_K, Q_L as $7y_1y_3y_5$ and $7y_2y_4y_6$. Moreover, $Q_e: 27yy, Q_f: 28y_1y, Q_h: 37yy$ and $Q_i: 38y_2y$ since y_1, y_2 cannot occur a second time together with 7 or as a pair. Also, $Q_F: 5y_1yy$ and $Q_G: 5y_2yy$.

If we count the volume of y_3, \ldots, y_6 in Q_b, Q_c we obtain 2 cases.

Case 1
$$V(y_3, ..., y_6; Q_b, Q_c) = 4$$
.
Case 2 $V(y_3, ..., y_6; Q_b, Q_c) \le 3$.

In Case 1 all 6 pairs $y_i y_j$ $(i, j \in \{3, ..., 6\})$ are covered in $Q_b, Q_c, Q_d, Q_g, Q_K, Q_L$. But $V(y_3, ..., y_6; Q_H, Q_I, Q_J) = 4$ implies that there is another pair which occurs twice, a contradiction.

In Case 2 at least one of y_3, \ldots, y_6 occurs in Q_f or Q_i , say in Q_f . Then only y_6 is possible since $2, y_3$ and y_4 appear in Q_d and y_1 and y_5 appear in Q_K . If $y_6 \in Q_f$, then we cannot insert y_6 in Q_E, Q_F, Q_G as points $8, y_1, y_2$ appear there which contradicts $V(y_6; Q_E, Q_F, Q_G) = 1$.

Therefore, neither Case 1 nor Case 2 is possible and we conclude that there is no PBD(18, $\{3,4\}$) with 30 blocks containing a quadruple with three points each of which is also in a block of size 3 with two of the points of type 3^44^3 .

4. Configuration 2

We next consider Configuration 2 in which there are 3 quadruples, say Q_A, Q_B, Q_E , each containing a pair of 4, 5, 6. Then every $x \in X$ occurs three times in blocks Q_A, \ldots, Q_L

Let $\mathcal{B}'_2 = \{Q_a, Q_d, Q_g\}, \ \mathcal{B}''_2 = \{Q_A, Q_B, Q_E\}, \ \mathcal{B}_2 = \mathcal{B}'_2 \cup \mathcal{B}''_2, \ \mathcal{B}'_3 = \{Q_b, Q_c, Q_c, Q_f, Q_h, Q_i, \}, \ \mathcal{B}''_3 = \{Q_C, Q_D, Q_F, \dots, Q_I\}, \ \mathcal{B}_3 = \mathcal{B}'_3 \cup \mathcal{B}''_3 \text{ and } \mathcal{B}_4 = \{Q_J, Q_K, Q_L\}. \text{ Define for } x \in X \ \alpha = V(x, \mathcal{B}_2), \ \beta = V(x, \mathcal{B}_3) \text{ and } \gamma = V(x, \mathcal{B}_4). \text{ Then, we obtain}$

$$\alpha + \beta + \gamma = 5$$
 and $\alpha + 2\beta + 3\gamma = 10$.

There are three possible types (α, β, γ) for a point $x \in X$: $T_1: (2, 1, 2)$, $T_2: (1, 3, 1)$ and $T_3: (0, 5, 0)$. Denote the number of points of type T_i

by λ_i (*i* = 1, 2, 3). Then,

$$\lambda_1 + \lambda_2 + \lambda_3 = 12$$
 and $2\lambda_1 + \lambda_2 = 2|\mathcal{B}_2| = 12$.

At most 3 points can occur in Q_1, \ldots, Q_L twice, so $\lambda_1 \leq 3$ and we record the four cases for $(\lambda_1, \lambda_2, \lambda_3)$: (3, 6, 3), (2, 8, 2), (1, 10, 1) and (0, 12, 0).

Before we consider these cases in more detail, we note that no point of type T_1 can occur in two of \mathcal{B}'_2 . Otherwise, the existence of a point x^* of type T_1 with $Q_a = 16x^*x_1$, $Q_d = 25x^*x_2$ would imply that $x^* \in Q_C, Q_J, Q_K$. So x_1, x_2 do not occur in Q_J or Q_K and hence x_1 and x_2 cannot be of Type T_1 . So x_1, x_2 must be of Type T_2 , with x_1, x_2 in Q_L . Thus, x_1, x_2 occur at least twice each in Q_A, \ldots, Q_I , and so they cannot occur in \mathcal{B}''_2 . So they both occur at least twice in \mathcal{B}''_3 , and hence in Q_D (as x^* in Q_C). This is a contradiction as x_1, x_2 in Q_L . So a T_1 -point occurs in exactly one block from each of block sets $\mathcal{B}'_2, \mathcal{B}''_2, \mathcal{B}''_3$ and in exactly two of the blocks from \mathcal{B}_4 . Also, it is worth noting that if x_1, x_2 are of Type T_1 then they appear together in a block of \mathcal{B}_1 (as each occurs twice in the 3 blocks in \mathcal{B}_4), so they are not in any other block together (including the triples). Call this (*).

- 4.1. The Case $(\lambda_1, \lambda_2, \lambda_3) = (3, 6, 3)$. Let x_i be the points of type T_1 and z_i the points of type T_3 (i = 1, 2, 3). As $z_j \notin \mathcal{B}_2$ and $V(x_i; \mathcal{B}_3) = 1, x_i \notin \mathcal{B}_3''$ every pair x_1z_i (i = 1, 2, 3) must be covered in a triple (at most one pair) or a block from \mathcal{B}_3 (at most two pairs). Thus, x_1 must occur together with a pair z_iz_j in a block from \mathcal{B}_3' . Similarly, x_2, x_3 occur together with a pair z_iz_j . Thus, every pair z_iz_j is covered in \mathcal{B}_3' . Furthermore, $V(z_1, z_2, z_3; \mathcal{B}_3'') = 9$ implies that a pair z_iz_j appears again in a block from \mathcal{B}_3'' which is a contradiction.
- 4.2. The Case $(\lambda_1, \lambda_2, \lambda_3) = (2, 8, 2)$. Let x_i (i = 1, 2) be the points of type T_1 , y_j (j = 1, ..., 8) the points of type T_2 , and z_k (k = 1, 2) the points of type T_3 . W.l.o.g. we have quadruples

$$\begin{array}{lll} Q_a: 16x_1y_1 & Q_d: 25x_2y_4 & Q_g: 34 -- \\ Q_A: 45x_1y_2 & Q_B: 46x_2y_5 & Q_E: 56 -- \\ Q_J: x_1x_2y_7y_8 & Q_K: x_1y_1y_5y_6 & Q_L: x_2y_1y_2y_3 \end{array}$$

Since y_7 and y_8 are undifferentiated, we may write $Q_g: 34y_3y_7$ and $Q_E: 56y_6y_8$. Now, 4 requires elements y_1,y_4,y_6,y_8,z_1,z_2 , 5 requires elements y_1,y_3,y_5,y_7,z_1,z_2 and 6 requires elements y_2,y_3,y_4,y_7,z_1,z_2 . This forces blocks

$$Q_C: 4y_4y_8 - Q_D: 4y_6 - Q_F: 5y_1y_7 - Q_C: 5y_3 - Q_F: 6y_2y_7 - Q_F: 6y_3 - Q_F: 6y$$

If we have $Q_H: 6y_2y_7y_4$ and $Q_I: 6y_3z_1z_2$, we cannot fill in the Q_G block. So we write $Q_H: 6y_2y_7z_1$ and $Q_I: 6y_3y_4z_2$. This forces $Q_F: 5y_1y_7z_2$, $Q_G: 5y_3y_5z_1$, and then $Q_C: 4y_4y_8z_1$, $Q_D: 4y_6y_1z_2$ or $Q_C: 4y_4y_8y_1$, $Q_D: 4y_6z_1z_2$. But the first possibility gives a repeated y_1z_2 . So we have

 $\begin{array}{ll} Q_C: 4y_4y_8y_1 & Q_D: 4y_6z_1z_2 \\ Q_F: 5y_1y_7z_2 & Q_G: 5y_3y_5z_1 \\ Q_H: 6y_2y_7z_1 & Q_I: 6y_3y_4z_2 \end{array}$

But x_1 must appear once more in triples, say $2x_1-$, and once more in quadruples $3x_1-$, and it is missing elements y_3, z_1, z_2 . But all three pairs y_3z_1, y_3z_2, z_1z_2 have been used up. So we have a contradiction.

4.3. The Case $(\lambda_1, \lambda_2, \lambda_3) = (1, 10, 1)$. Let x be the point of type T_1 , z the point of type T_3 and assume $x \in Q_a, Q_A, Q_J, Q_K$. If xz appears in a triple, then xy_1y_2 is contained in a block from \mathcal{B}'_3 where y_1, y_2 are of Type T_2 . But, $V(x, y_1, y_2; \mathcal{B}_4) = 4$ which is a contradiction.

As $x \notin \mathcal{B}_3''$, xzy_1 (with y_1 of type T_2) occur in a block from \mathcal{B}_3' , and hence $V(z;\mathcal{B}_3'')=3$. Then we can let $Q_A:45xy_2$ and $Q_L:y_1y_2y_3y_4$ with the y_i of Type T_2 . We know $V(y_1,\ldots,y_4;\mathcal{B}_2'\cup\mathcal{B}_3')=8$ and, hence, $5 \leq V(y_1,\ldots,y_4;\mathcal{B}_3')\leq 6$. If $V(y_1,\ldots,y_4;\mathcal{B}_3')=5$, then we obtain $V(y_1,\ldots,y_4;\mathcal{B}_3'')=7$ and a pair y_iy_j which is already covered in Q_L . Assume $V(y_1,\ldots,y_4;\mathcal{B}_3'')=6$ and $V(y_1,\ldots,y_4;\mathcal{B}_3'')=6$. As z is already paired with y_1 , each pair zy_i (i=2,3,4) occurs in a block from \mathcal{B}_3'' . So we can assume $Q_H:6zy_2-$. Let $Q_d:25u_1u_2$ and $Q_g:34u_3u_4$. Note that u_1,\ldots,u_4 must be of Type T_2 (as $45x\subset Q_A$ and $z\notin \mathcal{B}_2$). Also u_1,\ldots,u_4 cannot be in \mathcal{B}_2'' . As $y_2\in Q_A,y_2\notin Q_d$ or Q_g , so y_2 is distinct from u_1,\ldots,u_4 . To be paired with G, $V(u_1,\ldots,u_4;Q_H,Q_I)=4$, which implies that three of u_1,\ldots,u_4 occur in Q_I , a contradiction.

4.4. The Case $(\lambda_1, \lambda_2, \lambda_3) = (0, 12, 0)$. Let $y_1, \ldots, y_6 \in X$ be the points in \mathcal{B}'_2 and $z_1, \ldots, z_6 \in X$ be the points in \mathcal{B}''_2 . We start with counting pairs $y_i y_j$. Clearly, 3 pairs $y_i y_j$ appear in \mathcal{B}''_2 . Each block from \mathcal{B}''_3 contains exactly one point z_k and two points y_i, y_j . So 6 pairs $y_i y_j$ are covered in \mathcal{B}''_3 . Furthermore, each block from \mathcal{B}_1 contains exactly two points z_k, z_l and two points $y_i y_j$ since otherwise the existence of a block $Q_L: z_k z_l z_m y_i$ or $Q_L: z_k z_l z_m z_n$ would imply $V(Q_L; \mathcal{B}'_3) > 6$, a contradiction. So 3 pairs $y_i y_j$ appear in \mathcal{B}_4 . For the remaining 3 pairs $y_i y_j$, let p be the number of pairs in the triples and hence there are (3-p) pairs in \mathcal{B}'_3 . There are three types of blocks in \mathcal{B}'_3 : uyyz, uyzz and uzzz ($u \in \{1, 2, 3\}$). We refer to blocks of these types as A-blocks, B-blocks and C-blocks, respectively. A point p which is contained in a triple p must occur in a p-block. Thus, there are exactly p-blocks are exactly p-blocks. Thus, there are exactly p-blocks.

A-blocks, 2p B-blocks and (3-p) C-blocks. Moreover, if a point z is contained in a triple uyz, then z occurs in a B-block and a C-block. We obtain at least (3-p) B-blocks from the (6-2p) uyz triples and, thus, $2p \ge 3-p$. So $1 \le p \le 3$ and we need to consider 3 cases for p.

In Case p = 3 let the triples be

$$1y_1y_2$$
, $2y_3y_4$, $3y_5y_6$, $1z_1z_2$, $2z_3z_4$ and $3z_5z_6$.

Note, that we cannot have $1y_1y_2$, $1y_3y_4$ as this would imply that the pair y_5y_6 appears in a triple and in Q_a . Now, $Q_a:16y_4y_5$, $Q_d:25y_1y_6$ and $Q_g:34y_2y_3$. Thus, $y_3,y_6 \in Q_b,Q_c$ and there is a unique way to fill in y_1,\ldots,y_6 into the blocks from \mathcal{B}_3'' and \mathcal{B}_4 . In particular, $Q_L:y_3y_6=-$. Moreover, z_1,z_2 cannot occur together with y_3,y_6 in \mathcal{B}_3' and only with one of y_3,y_6 in \mathcal{B}_3'' . Hence, both z_1,z_2 must occur in Q_L , a contradiction.

In Case p=2 we have triples of the form

$$u_1y_1y_2$$
, $u_2y_3y_4$, $u_3y_5z_4$ and $u_4y_6z_2$

where $u_i \in \{1, 2, 3\}$. It follows that y_5, y_6 must occur together in an A-block. If $u_3 = u_4$, then y_5, y_6 must also occur together in a block from \mathcal{B}_2' , a contradiction. Whence, $u_3 \neq u_4$. If $u_4 \neq u_1, u_2$ (say $u_4 = 3$), then beside the A-block containing y_5, y_6 we find from $V(y_1, \ldots, y_5; Q_g, \ldots, Q_i) = 5$ that there is a second A-block. This implies p = 1, again a contradiction. Finally, assume $u_4 = u_3, u_2 = u_4$. Then $V(y_1, \ldots, y_6; Q_g, \ldots, Q_i) = 6$ and we obtain again two A-blocks. Thus, p = 2 is not possible.

In the last Case p = 1 we can assume that we have triples of the form

$$1y_1y_2$$
, $1z_1z_2$, $2y_3z_3$ and $2y_4z_4$,

or of the form

$$1y_1y_2$$
, $1y_3z_3$, $2z_1z_2$ and $2y_4z_4$

In both cases $V(y_1, y_2; Q_d, Q_g) = 2$, $V(y_1, \ldots, y_4; Q_g, \ldots, Q_i) = 4$ and $Q_g : 34y_1y_3$ as y_1, y_2 cannot occur together. Thus, Q_h is a B-block containing y_1 and Q_i is a B-block containing y_4 (y_5, y_6 occur together with 3 in a triple and cannot be in Q_i). But y_4 needs to belong to an A-block, a contradiction.

We conclude that there is no PBD(18, $\{3,4\}$) with 30 blocks where the three points each of which is also in a block of size 3 with two of the points of type 3^44^3 do not occur as pairs in distinct quadruples.

5. Conclusion

In a PBD(18, $\{2, 3, 4\}$) with 30 blocks there must be three points of type 3^44^3 and a further three points each of which is also in a block

of size 3 with two of the 3^44^3 -points. We have shown that the latter three points do not occur together in a common quadruple (Configuration 1), nor is the opposite true (Configuration 2), and have therefore established:

Theorem 5.1. There does not exist a PBD on 18 points with 30 blocks of size at most 4. Thus, $g^{(4)}(18) \ge 31$.

We remark that with this result we have also established:

Corollary 5.2. There does not exist a PBD on 17 points with 30 blocks of size at most 4 in which the block set contains either a subset of four blocks of size 2 and three blocks of size 3, or a subset of one block of size 2 and five blocks of size 3 which are mutually non-intersecting.

REFERENCES

- R.S. Rees and D.R. Stinson. On the number of blocks in a perfect covering of v points. Discr. Math., 83:81-93, 1990.
- [2] R.G. Stanton. The exact covering of pairs on nineteen points with block sizes two, three and four. JCMCC, 4:69-78, 1988.
- [3] R.G. Stanton. An improved upper bound on g⁽⁴⁾(18). Cong. Numer., 142:29-32, 2000.
- [4] R.G. Stanton. A lower bound for $g^{(4)}(18)$. Cong. Numer., 146:153-156, 2000.
- [5] R.G. Stanton. An improved lower bound for g⁽⁴⁾(17). unpublished, :-, 2003.
- [6] R.G. Stanton and D.R. Stinson. Perfect pair-coverings with blocks sizes two, three and four. J. Combinatorics, Information and System Science, 8:21-25, 1983.
- [7] R.G. Stanton and A.P. Street. Some achievable defect graphs for pair-packings on seventeen points. JCMCC, 1:207-215, 1987.
- M. GRÜTTMÜLLER, DEPARTMENT OF MATHEMATICS, UNIVERSITY OF ROSTOCK, 18051 ROSTOCK, GERMANY

E-mail address: m.gruettmueller@mathematik.uni-rostock.de

I.T. ROBERTS, SCHOOL OF ENGINEERING, NORTHERN TERRITORY UNIVERSITY, DARWIN, NT, 0909, AUSTRALIA

E-mail address: ian.roberts@ntu.edu.au

R.G. STANTON, DEPARTMENT OF COMPUTER SCIENCE, UNIVERSITY OF MANITOBA, WINNIPEG, CANADA R3T 2N2

E-mail address: stanton@cc.umanitoba.ca