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ABSTRACT. Let G be a simple graph having a
maximum matching M. The deficiency def(G) of G is the
number of vertices unsaturated by M. A bridge in a
connected graph G is an edge of G such that G-e
disconnected. A graph is said to be almost cubic (or
almost 3-regular) if one of its vertices has degree 3 +e¢, e
2 0, and the others have degree 3. In this paper we find
the minimum number of bridges of connected almost cubic
graphs with given deficiency.

1. Introduction

For our purposes, all graphs are finite, loopless and have no multiple
edges. For most of our notation and terminology we follow that of
Bondy and Murty [2]. Thus G is a graph with vertex set ¥(G) and edge
set E(G). The number of vertices is |(G)|.

A matching M in G is a subset of E(G) in which no two edges

have a vertex in common. M is a maximum matching if |M|=|M| for

any other matching M' of G. A vertex v is unsaturated by M if there is
no edge of M is incident with v. A matching M is called a 1-factor (or a
perfect matching) if there is no vertex of the graph is unsaturated by M.

The deficiency def{G) of G is the number of vertices unsaturated
by a maximum matching of G. Observe that def(G) = |(G)| —2 |M] for
any maximum matching M in G. Consequently, def(G) has the same
parity as |/(G)), and def{G) =0 if and only if G has a 1-factor.

An edge cut set of a connected graph G is a subset of £(G) whose
deletion from G results in a disconnected graph. A graph G is k-edge-
connected if there is no edge cut set of G of cardinality of less than .
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A bridge is the element of an edge cut set of cardinality one, that is an
edge of G such that G - e disconnected.

Many problems concerning matchings have been studied in the
literature, see for example [6]. The relations between edge cut-sets and
perfect matching of regular graphs have been studied in the Chartrand
and Nebesky [4] and Katerinis [5]. The following two theorems can be
found in Chartrand and Nebesky [4].

Theorem 1.1 (Petersen). Every cubic bridgeless graph has a 1-factor.

(0
Theorem 1.2 (Chartrand and Nebesky). If G is an r-regular, (r -2 )-
connected graph, r 23, having even number of vertices and G contains
at most r—1 edge cut set of cardinality r -2, then G has a 1-factor. []

From Theorem 2, when r =3, we can say that every cubic graphs
with at most two bridges has a perfect matching. Every cubic graph has
even number of vertices. So, a cubic graph G has no perfect matching if
and only if def(G) > 2. Theorem 2 has the following corollary.

Corollary 1.3. Every cubic graph G with defG) 2 2 has at least three
bridges. 0

A graph is said to be almost cubic (or almost 3-regular) if one of
its vertices has degree 3 + e, e > 0, and the others have degree 3. In
this paper we study the lower bound of the number of bridges of
connected almost cubic graphs with given deficiency def{G) =d > 0.
We show that that for every non-negative integer m not less than the
bound there exists a connected almost cubic graph G with deflG) = d
and number of bridges m.

2. The Bounds

Let G be a graph. If S is a subset of ¥(G), G- S denotes the graph
formed from G by deleting all the vertices in § together with their
incident edges. A component of G is called odd or even according as its
number of vertices is odd or even. The number of odd components of a
graph G is denoted by o(G). We need Berge’s formula ([1], p159) to
establish our results.

Berge’s Formula:

defiG)= max {o(G-S)—|S[}. 0
ScV(G)
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Our first result is on the lower bound of the number of bridges of a
connected almost cubic graph G when def{(G) is given.

Let G be a connected graph on n vertices, n~1 of which have
degree 3 and one has degree 3 +e, e 2 0, and let deffG) = d. Ifeis
even, then every vertex of G has odd degree, hence 7 is even and so d is
even; if e is odd, then only one vertex of G has even degree, hence 7 is
odd and so d is odd. Thus 4 and e has the same parity.

When d=0or 1, there exists a graph with one vertex of degree 3
+ e and the others have degree 3 having def(G) = d. The graph is
formed from a vertex v and a cycle on 3 + e vertices and join v to all
vertices of the cycle. So suppose d >2.

Theorem 2.1. Let G be a connected graph on n vertices, n—1of which
have degree 3 and one have degree 3 + e, e > 0, and def(G) =d > 2.

Then G has at least 3d e

bridges.

Proof. By Berge’s formula, there exists a vertex set § < /(G) such
that
o(G-S)=|S|+d.

Since d 2 2, then |S| 2 1.

Let m be the number of odd components of G- S each of which
is joined to S by a bridge. Let v be the vertex of degree 3+e inG. If v
€ § or e=0, then each odd component of G- S is joined to S by odd
number of edges. Hence

3|S| +e 2 m+3(o(G-S)-m)
=m+3(|S| +d-m),
3d-e

m22 .
2

If veg Sand e 2 1, then at most one odd component of G- is
Jjoined to S by even number of edges. Hence

3|S| 2m+2+3(0(G-S)-m-1)
=m+2+3(|S| + d-m-1),
3d -1
2

m2
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3d-e
2 ’
this completes the proof since the number of bridges of G is at least m.

0

In Theorem 2.1, if e = 0, then we get the following corollary.
This corollary is also a corollary of Lemma 2.2 of Caccetta and
Purwanto in [3].

Corollary 2.2. Every connected cubic graph G with def(G) =d 2 2

2

has at least % bridges. 0

In Theorem 2.1, if e=0 and def(G) =d is replaced by def(G) 2
2 (G has no 1-factor) then we get Corollary 1.3 (Petersen).

3. Constructions

In this section we will show that for every non negative integer m not
less than the bound in Theorem 2.1, there exists a connected almost
cubic graph G with deflG) = d and number of bridges m. This will
imply that the bound in Theorem 2.1 is sharp. We will use the
following graphs in our constructions.

Let p be a positive even integer, and g = 3_2p_ . Construct a graph

H,, as follows. Take two empty graphs K p and Eq with vertices
Uy Upsesllp and VIsV2sen Vg respectively. Foreveryi, 1 < i < p, join

u; toevery v;, j=i+k (modgq), k=0, %,p. The resulting graphs

H,, has p+q vertices, p of which of degree 3 and g others of degree

2, and has no bridge.
Construct a graph H|, as follows. Take a cycle on five vertices

V1, V2, V3, Vg, Vs, vy and join v, to v, and vy to v5. The resulting graph
H, has one vertex of degree 2 and four others of degree 3. Then
construct a graph H;, i 2 1, as follows. Take a cycle on four vertices
Vi»V3,V3,V4, v, and join v, to v4. The resulting graph, say L, has two
vertices of degree 2 and two others of degree 3. Then take a copy of H,
with a vertex of degree 2 named u,, and take i copies of L, say
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Ly,Ly,....,L; with vertices of degree 2 in L; are u; and w;, 1<j<i.
For every j, join w; to u; ;. The resulting graph H; has an odd
number of vertices, one of which of degree 2 and all others of degree 3,
and has i bridges.

Construct a graph H, as follows. Take a graph H,, and a cycle
on four vertices. Then join the vertex of degree 2 in H,_, to one vertex
of the cycle. The resulting graph H; has an odd number of vertices,
three of which of degree 2 and all others of degree 3, and has i bridges.

Now we are ready to state and prove our result.

Theorem 3.1. Let d, e and m be non-negative integers, e 2 0, d 22, d
3d2—e. Then there exists a

and e have the same parity, and m2

connected graph having one vertex of degree of degree 3 + e and the
others of degree 3, has def(G) = d, and has m bridges.

Proof. We construct our graph according to the value of d.
Case 2<d < § :

3d-e

Since d < %, then <0. Take one cycle on 3 + e —3d

vertices. If m > 1, then take one copy of H,,and d -1 cycles each of

which on three vertices; if m = 0, then take d cycles each of which on
three vertices. Join all the vertices of degree 2 in these graphs to one
new vertex. The resulting graph G, is a connected graph having one
vertex of degree 3 + e and all other vertices of degree 3, has def(G,) =
d, and has m bridges.

Case § <d<e+2:

Take e—<;+2 3d-e

cycles each of which on three vertices. If m= 7

—-e

then take m copies of Hy; if m> 3d , then take 3‘1—2-?- -1 copies

of H, and one copy of H ,,_, . Join all the vertices of degree 2 in
m— +
2
these graphs to one new vertex. The resulting graph G, is a connected
graph having one vertex of degree 3 + e and all other vertices of degree
3, has def(G,) =d, and has m bridges.
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Case d2 e+4:

3d-e . - 3d -

If m= , then take

3;‘2:_ —1 copies of H, and one copy of H 3d-e,,- Say the vertices
——
2
of degree 2 in these graphs are u,,u,,...,us,_, respectively. Take a
2

graph Hd o302, with vertices of degree 2 are v;,v,,...,v (d_e) For
)

everyi, 1 <i< (T) 1, join u; to v;, and for every 3(—) <i
< M, join u; to v3(d_e) . The resulting graph G, is a connected
"2

graph having one vertex of degree 3 + e and all others of degree 3, has
def(G) = d, and has m bridges. 0
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