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ABSTRACT

A vertex v of a connected graph G is an eccentric vertex of a
vertex u if v is a vertex at greatest distance from u; while v is an
eccentric vertex of G if v is an eccentric vertex of some vertex
of G. The subgraph of G induced by its eccentric vertices is the
eccentric subgraph of G.

A vertex v of G is a boundary vertex of a vertex u if d(u, w) <
d(u,v) for each neighbor w of v. A vertex v is a boundary
vertex of G if v is a boundary vertex of some vertex of G. The
subgraph of G induced by its boundary vertices is the boundary
of G. A vertex v is an interior vertex of G if for every vertex u
distinct from v, there exists a vertex w distinct from v such that
d(u,w) = d(u,v) + d(v,w). The interior of G is the subgraph
of G induced by its interior vertices. A vertex v is a boundary
vertex of a connected graph if and only if v is not an interior
vertex. For every graph G, there exists a connected graph H
such that G is both the center and interior of H.

Relationships between the boundary and the periphery, cen-
ter, and eccentric subgraph of a graph are studied. The bound-
ary degree of a vertex v in a connected graph G is the number
of vertices v in G having v as a boundary vertex. We study, for
each pair r,n of integers with 7 > 0 and n > 3, the existence
of a connected graph G of order n such that every vertex of G
has boundary degree r. We also study the boundary vertices of
a connected graph from different points of view.
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1 Introduction

Let G be a nontrivial connected graph. The distance d(u,v) between two
vertices u and v of G is the length of a shortest « —v pathin G. A u—v
path of length d(u,v) is called a u — v geodesic. For a vertex v of G, the
eccentricity e(v) is the distance between v and a vertex farthest from ». The
minimum eccentricity among the vertices of G is the radius rad(G) of G
and the maximum eccentricity is its diameter diam(G). A vertex v in G is
a central vertez if e(v) = rad(G), and the subgraph induced by the central
vertices of G is the center Cen(G) of G. A vertex v in a connected graph
G is a peripheral vertez if e(v) = diam(G). The subgraph of G induced by
its peripheral vertices is the periphery Per(G).

A vertex v is an eccentric verter of a vertez u if d(u,v) = e(u), that
is, every vertex at greatest distance from u is an eccentric vertex of u. A
vertex v is an eccentric vertez of G if v is an eccentric vertex of some vertex
of G (see [5, 7]). Consequently, if v is an eccentric vertex of v and w is a
neighbor of v, then d(u,w) < d(u,v). A vertex v may have this property,
however, without being an eccentric vertex of u. In [3] a vertex v is defined
to be a boundary verter of u if d(u, w) < d(u,v) for all w € N(v). A vertex
v is a boundary vertez of G if v is a boundary vertex of some vertex of G.
The subgraph of G induced by its eccentric vertices is called the eccentric
subgraph Ecc(G) of G, while the subgraph of G induced by its boundary
vertices is called the boundary 8(G) of G. We write H < G to indicate that
H is a subgraph of G. Thus for every connected graph G,

Per(G) < Ece(G) <8(G) <G.

Among all geodesics in G, let P; be one of greatest length. If P, is a
u — v geodesic, then u and v are peripheral vertices of G. For a fixed vertex
u of G, let P, be a geodesic of greatest length having initial vertex u. If P,
is a u — v geodesic, then v is an eccentric vertex of u. For a fixed vertex u
of G, let P; be a geodesic with initial vertex u that cannot be extended to
a longer geodesic with initial vertex u. If P; is a u — v geodesic, then v is
a boundary vertex of u.

A vertex in a graph is called complete (or eztreme, or simplicial) if the
subgraph induced by its neighborhood is complete. In particular, every
end-vertex is complete. The following two results appeared in [3].

Theorem A Let G be a connected graph. A vertex v of G is a boundary
vertez of every vertex of G distinct from v if and only if v is a complete
vertez of G.

Theorem B No cut-vertez of a connected graph G is a boundary vertez
of G.
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2 Interior Vertices of a Graph

There is another set of vertices in a connected graph G that is of interest
and that is related to the set of boundary vertices of G. Let = and z be two
distinct vertices in G. A vertex y distinct from z and z is said to lie between
z and z if d(z, 2) = d(z,y) + d(y, z). A vertex v is an interior vertez of G if
for every vertex u distinct from v, there exists a vertex w such that v lies
between u and w. Let Z(G) be the set of all interior vertices of G. The
interior Int(G) of G is the subgraph of G induced by Z(G). We now see
that the interior vertices are precisely those vertices that are not boundary
vertices.

Theorem 2.1 Let G be a connected graph. A vertex v is a boundary
vertez of G if and only if v is not an interior vertez of G.

Proof. Let v be a boundary vertex of G and assume, to the contrary,
that v is also an interior vertex. Suppose that v is a boundary vertex of the
vertex u. Since v is an interior vertex of G, there exists a vertex w distinct
from u and v such that v lies between u and w. Let

P:u=uv,v2,*,V=0,Vj41,.. .,V =W

be a u — v path, where 1 < j < k. However, vj41 € N(v) and d(u,v;41) =
d(u,v) + 1, a contradiction.

For the converse, let v be a vertex that is not an interior vertex of G.
Hence there exists some vertex u such that for every vertex w distinct from
u and v, the vertex v does not lie between u and w. Let z € N(v). Then

d(u,z) < d(u,v) +d(v,z) = d(u,v) + 1.

Since v does not lie between u and z, this inequality is strict and so d(u, z) <
d(u,v), that is, v is a boundary vertex of u. ]

By Theorem 2.1, every vertex of a connected graph G is either an interior
vertex or a boundary vertex of G. If Z(G) = @, then G = 8(G) and G is
referred to as a self-boundary graph.

The following theorem gives a sufficient condition (in terms of boundary
vertices) for every vertex of a connected graph to be a peripheral vertex.

Proposition 2.2 IfG is a connected graph with the property that a ver-
tez v is a boundary vertez of a vertez u if and only if u is a boundary vertex
of v, then every vertez of G is a peripheral vertez.

Proof. Assume, to the contrary, that not all vertices of G are peripheral
vertices. Then there exists a nonperipheral vertex v that is adjacent to a
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peripheral vertex u. Let u’ be a vertex of G such that d(u,u') = diam(G).
Since v is not a peripheral vertex, d(u',v) = diam(G) — 1. Since u € N(v)
and d(u,u') > d(v,v’), it follows that v is not a boundary vertex of u’. By
hypothesis, v’ is not a boundary vertex of v; so there is a vertex v’ € N(u')
such that

d(v,v') = d(v,u') + 1 = diam(G).
This implies that v is a peripheral vertex, contrary to our assumption. -

The converse of Proposition 2.2 is not true. For example, let G be the
graph obtained from an even cycle Co; : vy,v2,- -+, vag, vy, Where k > 2,
by adding a new vertex z and joining z to v; and v;. Then rad(G) =
diam(G) = k and so G is self-centered. Thus every vertex of G is a periph-
eral vertex. Since z is a complete vertex, z is a boundary vertex of v;, but
v; is not a boundary vertex of z.

Corollary 2.3 If G is a connected graph with the property that & vertez
v is a boundary vertez of a vertex u if and only if u is a boundary vertez of
v, then G is a self-boundary graph..

The converse of Corollary 2.3 is not true. For example, consider the
graph G of Figure 1, where each vertex of G is labeled with its eccentricity.
Then {z,z’,v,7v'} is the set of peripheral vertices of G. Since u and u’ are
boundary vertices of each other and y and y' are boundary vertices of each
other, it follows that G is a self-boundary graph. On the other hand, the
vertex v is a boundary vertex of a vertex u, but u is not a boundary vertex
of a vertex v.

3 2 2 3

T U Y v
G:

' 'I:." ;’ v

3 2 3

Figure 1: A self-boundary graph G

Consider the graph G of Figure 2. The boundary vertices of G are
shaded, while the interior vertices are not. Also, each vertex of G is labeled
with its eccentricity. Hence diam(G) = 5 and rad(G) = 3. Thus the central
vertices of G are those having eccentricity 3. Consequently, some central
vertices are interior vertices, while others are boundary vertices.
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Figure 2: The graph G

There also exist graphs G with diam(G) # rad(G) such that every
central vertex is a boundary vertex (see Figure 3). In the graph G of
Figure 3, the boundary vertices of G are precisely the peripheral vertices
and central vertices of G. Hence, for the graph G of Figure 2, Cen(G) and
Int(G) are disjoint. By modifying the graph G of Figure 2, we are able to
obtain a more general result.

Figure 3: The graph G
Let G be a connected graph and let S and T be two subsets of V(G).
The distance between S and T is defined as
d(S,T) = min{d(s,t) : s € S,t € T}.
Let C(G) be the set of central vertices of G.

Proposition 2.4  For each positive integer N > 1, there exists a graph
that is not self-boundary such that

d(C(G), I(G)) = N.

Proof. Let Cyn : v1,v2,...,04n,1 be a cycle of order 4N and let G be
the graph obtained from Cyy by attaching paths of length N at v; and at
V2N+1, Damely

P:'Ul = Uup, U1, ", UN andQ:va+1 = Wo, W1, ", WN.

Since C(G) = {un+1,vsN+1} and
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I(G) = {ujwi : 0<i<N-1},
it follows that d(C(G), Z(G)) = N. [

While it may be somewhat unexpected that the center and interior of
a graph can be arbitrarily far apart, it should not be surprising to learn
that these two subgraphs can be close to each other. Hedetniemi (see [2])
proved that for every graph G, there exists a connected graph H such that
Cen(H) = G. The construction used in that proof is indicated in Figure 4.
While G is the center of the graph H, it is not the interior of H since the
cut-vertices vy and v, of H are necessarily interior vertices. Furthermore,
some vertices of G may be boundary vertices as well. However, for each
graph G, there does exist a connected graph, both of whose center and
interior are G.

(51 (]
H: u Us

Figure 4: Constructing a graph with a given center

The corona cor(G) of a graph G is that graph obtained from G by
adding a pendant edge to each vertex of G.

Theorem 2.5  For every graph G, there exists a connected graph H such
that Cen(H) = Int(H) =G.

Proof. Let V(G) = {u;,u2, --,u,} and let
V(CM(G)) = V(G) U {’Ul, Vo, svn}a

where v; is adjacent to u; for 1 < i < n. Let P and Q be two copies of
the path Ps, where P : x;,%;,---,25 and Q@ : 1,72, -,ys. Let H be the
graph obtained from cor(G), P, and Q by joining each end-vertex of P
and @ to every vertex of G. The graph H is shown in Figure 5. Since
e(u;) = 3 and e(v;) = 4 for 1 < i < m, e(z1) = e(zs) = e(y1) = e(ys) = 4,
e(z2) = e(z4) = e(y2) = e(ys) = 5, and e(z3) = e(ys) = 6, it follows that
Cen(H) =G.

It remains to show that Int(H) = G. Since every vertex of G is a
cut-vertex of H, it follows by Theorem B that V(G) C Z(H). Thus it
suffices to show that every vertex of V(H) — V(G) is a boundary vertex
of H. By Theorem A, each vertex v; (1 < i < n) is a boundary vertex
of H. Certainly, the peripheral vertices z3 and y3 are boundary vertices



cor(G)

Figure 5: A graph H with Cen(H) = Int(H) =G

of H as well. Next we show that z; and z4 are boundary vertices of each
other. Observe that d(z,,z4) = 3. Since N(z4) = {z3,25}, and d(z;,23) =
d(z1,z5) = 2, it follows that z4 is a boundary vertex of z;. On the other
hand, N(z;) = {22} U V(G) and d(z4,v) = 2 for all v € {z2} U V(G).
Thus z; is a boundary vertex of z4. By symmetry, it follows that z, and
Z5, ¥1 and y4, and y2 and ys are boundary vertices of each other as well.
Therefore, Int(H) = G. m

3 Relationships Between the Boundary and
Other Subgraphs of a Graph

Since every peripheral vertex in a connected graph G is a boundary vertex of
G, the periphery and boundary of G always have a nonempty intersection.
We have also seen that the center of a connected graph and its boundary
may have a nonempty intersection as well. We now present a sufficient
condition for the set of boundary vertices of a connected graph to be the
union of the sets of central vertices and peripheral vertices.

For a connected graph G, let B(G) = V(8(G)) denote the set of bound-
ary vertices, £(G) = V(Ecc(G)) the set of eccentric vertices, and P(G) =
V(Per(G)) the set of peripheral vertices of G.

Proposition 3.1 Let G and H be two graphs, where G does not have a
unique vertez of eccentricity 1 and H i3 disconnected. Then there ezists a
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connected graph F such that
Cen(F)=G, Per(F)=H, and 8(F) =GUH.

Proof. Let H = H, U H,, where H, is a component of H. Let F be
the graph obtained from G and H by (1) adding two new vertices  and y
and (2) joining z to each vertex in G U H; and joining y to each vertex in
G U H,. The graph F is shown in Figure 6.

<<

Figure 6: The graph F

We now show that F' has the desired properties. Observe that e(z) =
e(y)=3,e(u) =2ifue V(G),and e(u) =4ifu € V(H). ThusC(F) =G
and Per(F) = H. It remains to show that 8(F) = GUH. Since Per(F) C
O(F), it suffices to show that V(G) C B(F). Let u € V(G). We consider
two cases.

Case 1. eg(u) = 1. Since G does not have a unique vertex of eccen-
tricity 1, there exists a vertex v in G distinct from u such that eg(v) = 1.
Therefore, dr(u,v) = 1 and Np(u) = V(G) U {z,y}. Since dr(v,w) =1
for all w € Np(u), it follows that u is a boundary vertex of v.

Case 2. eg(u) # 1. Then there is a vertex v in G that is not adjacent
to u. Since dr(u,v) = 2 and dp(v,w) < 2 for all w € Np(u), it follows that
u is a boundary vertex of v. Thus §(F) =G U H. ]

We have seen graphs G for which Z(G) # 0. In each case, if 8(G) #
Per(G), then 8(G) is disconnected. However, this need not happen in
general. For an integer n > 4, consider the Cartesian product P; x P, of
P; and P,, where P; : u;,uz,u3 and P, : v1,vs,...,v,. For each pair i, j
of integers with 1 <4 < 3and 1 < j < n, let w;; = (u;,v;). Let G be
the graph obtained from P; x P, by adding the edges w2,1W1,2, W2,1W3,2,
W n W1 n—1, W2,nW3,n—1 and those edges in the set

{we,jw1,j—1, W2, ;W1 j41, W2, j W3, j—1, W jW3 541 : 2 < § <n—1}.
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Note that
I(Gn) = {wg,j 12 S] Sn—l}

P(Gn) = {wi1,w2,1,Ws1, W n,Wen, W3n}

Hence 3(Gy) # Per(Gn). On the other hand, 8(G,) contains Cp42 as a
spanning subgraph and so is connected.

4 The Boundary Degree of a Vertex

Since an interior vertex v of a nontrivial connected graph G is not a bound-
ary vertex of G, it follows that v is not a boundary vertex of any vertex of
G. On the other hand, every boundary vertex is the boundary vertex of at
least one vertex of G. We define the boundary degree b(v) of a vertex v in a
connected graph G of order n > 2 as the number of vertices u in G having
v as a boundary vertex. Thus 0 < b(v) < n — 1, where b(v) = 0 if and only
if v is an interior vertex of G. At the other extreme, we have the following
consequence of Theorem A.

Corollary 4.1 Let G be a graph of order n > 2 and let v be a vertez of
G. Then b(v) =n — 1 if and only if v is complete.

In the graph G = C5 + K of Figure 7, the vertex z is an interior vertex
and so b(z) = 0. On the other hand, u is a boundary vertex of w,z, and
2z, but not of » and y. Hence b(u) = 3 and, by symmetry, b(v) = b(w) =
b(z) = b(y) = 3 as well. Thus G contains an odd number of vertices of odd
boundary degree.

T w

Figure 7: The graph G = Cs + K

To show that no vertex in a connected graph G of order n > 3 has
boundary degree n — 2, we present the following lemma.
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Lemma 4.2  Let G be a graph of order n > 3 and let v be a vertez of G.
If 2,y € N(v) such that zy ¢ E(G), then v is not a boundary vertez of
ory.

Proof. Since d(v,z) =1 and d(y, z) > 2, it follows that d(v,z) < d(y, z).
Moreover, since y € N(v), it follows that v is not a boundary vertex of z.
Similarly, v is not a boundary vertex of y. n

Proposition 4.3  Let G be a graph of order n > 3. Ifv is not a complete
vertez of G, then b(v) < n — 3.

Proof. If v is not a complete vertex of G, then there exist z,y € N(v)
such that zy ¢ E(G). By Lemma 4.2, v is not a boundary vertex of z and
y. Since v is also not a boundary vertex of itself, b(v) <n —3. u

Corollary 4.4 Let G be a graph of order n > 4 and v be a vertez of G.
Then
b(v) € {0,1,2,---,n—3,n —1}.

Next we show that the restriction on the boundary degrees stated in
Corollary 4.4 is the only restriction.

Theorem 4.5  For each pair k,n of integers with k € {0,1,2,---,n —
3,n—1} and n > 3, there exists a connected graph G of order n containing
a vertex of boundary degree k.

Proof. Since the result is true for k = 0 and ¥ = n — 1, we may assume
that 1 <k <n-3. Let G = Kj41 + Kn—k—1. Let v € V(Ki41). We show
that b(v) = k. Since V(K p—k—1) € N(v) and V(K ,_,_;) is an independent
set, it then follows by Lemma 4.2 that the vertex v is not a boundary
vertex of any vertex in V(Kn_x—1). Next we show that v is a boundary
vertex of every vertex in V(Ki41) — {v}. Let u € V(K1) — {v}. Then
N(u) = V(G) — {u}. Since d(u,v) = 1 and d(w,v) = 1 for all w € N(u),
it follows that d(w,v) < d(u,v) for all w € N(u), which implies that v is a
boundary vertex of u. Therefore, b(v) = k. =

For each integer n € {5,6,7}, Figure 8 shows a graph of order n for
which the set of boundary degrees of its vertices is precisely {0, 1,2,...,n—
3,n—1}. Whether such a graph exists for each integer n > 8 is not known.

A connected graph G is r-boundary degree regular (or r-boundary regu-
lar) if every vertex of G has boundary degree r.

Proposition 4.6  For each integer r > 1, there exists an r-boundary
regular graph.
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Figure 8: Graphs with boundary degrees 0,1,2,...,n—3,n —1

Proof. Let G = K41 x Cy. For each integer i with 1 < i < 4, let G;
be a copy of K4 in G with V(G;) = {vi,1,vi2,- - -, Vir+1}. Then for each
i(1<i<4)andj (1 <j<r+1), the vertex v;; is adjacent to v;
for all k with 1 < k < 7+1, k # j, and v;; is adjacent to ¥i41,; and
v;i—1,j, where addition and subtraction are computed modulo 4. We show
that G is an r-boundary regular graph. Let v € V(G). Assume, without
loss of generality, that v = v;,;. Since d(v,w) = 3 = diam(G) for each
w € V(Gs) — {v3,1}, it follows that v is a boundary vertex of w, and so
b(v) 2 |[V(G3) — {vs,1}] = r. Next, we show that v is not a boundary vertex
of any vertex in V/(G) — (V(G3) — {v3,1}). Let u € V(G) - (V(Gs) — {v3,1}).
We consider three cases.

Case 1. u = v3,;. Then d(v,u) = 2. Since v; 2 € N(v) and d(v; 2,u) =
3, it follows that v is not a boundary vertex of u.

Case 2. u € V(G1) — {v11}, say v = v12. Then d(v,u) = 1. Since
v2,1 € N(v) and d(vs,1,u) = 2, it follows that v is not a boundary vertex of
u.

Case 3. u € V(G2) or u € V(G4), say u € V(G2). If u = va,, then
d(u,v) = 1. Since v; 2 € N(v) and d(v1,2,u) = 2, it follows that v is not a
boundary vertex of u. Thus we may assume that u € V(Gz2) — {v2,1}, say
u = v2,2. So d(u,v) = 2. Since v4; € N(v) and d(vy4,1,u) = 3, it follows
that v is not a boundary vertex of u.

Thus v is not a boundary vertex of any vertex in V(G)—(V(G3)—{vs,1}),
implying that b(v) < r. Therefore, b(v) = r. B

Let 7 and n be integers with 0 < 7 < n—1 such that at least one of these
integers is even. If r is even, then we write r = 2k; while if r is odd, we
write r = 2k + 1. We define a graph Gy,n. Let V(Gr,n) = {v1,v2,-**,vn}.
If r is even, then

E(Grn)={vivj:li—j| <k or |i—j|>n—k}.
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If r is odd, then
E(Gr.n) = E(Gr—l,n) ) {’Ui’Uj : Ii _JI = n/2}

Then G,,5 is an r-regular graph of order n. Furthermore, each graph G, ,
that is not complete has the property that for every two adjacent vertices
u and v, N[u] # N[v].

Although Proposition 4.6 states that an r-boundary regular graph exists
for every positive integer r, no conditions on the order of the graph are
stipulated. This brings up the following question.

Problem 4.7  For which pairs r,n of positive integers, does there exist
an r-boundary regular graph of order n?

The following result is well-known.

Theorem C There exists an r-regular graph of order n if and only if r
and n are integers such that 0 < r < n — 1 and at least one of r and n is
even.

We give a partial answer to Problem 4.7. The following well-known
result will be useful.

Theorem D If G is a graph of order n such that degv > (n — 1)/2 for
every vertez v of G, then G is connected and, in fact, diam(G) < 2.

Theorem 4.8  For every pair r,n of positive integers such thatn > 2r+1
and at least one of r and n is even, there ezxists an r-boundary regular graph
of order n.

Proof. Let G =Gn—r-1,n. Thus G is an (n —r—1)-regular graph of order
n. Since n —r —1 > (n —1)/2, it follows by Theorem D that diam(G) = 2.

Let v € V(G). Thus deggv = n — r — 1. Hence there are exactly r
vertices u of G such that d(u,v) = 2. Since diam(G) = 2, it follows that
d(u,w) < 2 for every w € N(v). Therefore, v is a boundary vertex of u and
b(v) >r.

Next let z € N(v). We show that v is not a boundary vertex of z. Since
N{z] # Nv], there exists a vertex y such that zy ¢ E(G) and vy € E(G).
Hence d(z,v) =1 and d(z,y) = 2. Since v is not a boundary vertex of z,
it follows that b(v) = r. .

In addition, for n > 2, the complete graph K, is (n — 1)-boundary
regular of order n. Thus K is 1-boundary regular of order 2. We have
already noted that there is a 1-boundary regular graph of even order n > 4.
That there is no 1-boundary regular graph of any odd order is verified next.
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Theorem 4.8  There is no nontrivial connected graph of odd order that
ts 1-boundary regular.

Proof. Assume, to the contrary, that there exists a connected 1-boundary
regular graph G of odd order n = 2k + 1. Since every vertex of G has
boundary degree 1, there are at most k — 1 pairs {z,z'} of vertices of G
such that each of z and 2’ is a boundary vertex of the other. Hence there
is at least one pair {z,y} of vertices such that z is a boundary vertex of y,
but y is not a boundary vertex of z.

Let v1,v2 € V(G) such that v, is a boundary vertex of v;, but v; isnot a
boundary vertex of v;. Since every vertex v has an eccentric vertex, which is
necessarily a boundary vertex of v, it follows that v, is the unique eccentric
vertex of v; but v, is not an eccentric vertex of v,. Then e(v1) < e(vz).
Continuing in this manner, we arrive at a sequence v;,vs,...,v, of £ > 3
distinct vertices of G such that

e(n1) < e(vz) <...<e(ve)

and such that the unique eccentric vertex of v, is v;, where 1 < j < ¢—1.
We cannot have 2 < j < £ - 1, for otherwise, b(v;) > 2. Thus v; is the
unique eccentric vertex of v,. However, then,

e(v) <e(vz) < ... <e(ve) < e(vy),

which is a contradiction. ™

It can also be shown that there is no 3-boundary regular graph of order
6. Whether there exists a 3-boundary regular graph of order 7 is not known.
Indeed, we have the following open question.

Problem 4.10  Does there exist a pair r,n of odd integers such that there
is an r-boundary degree regular connected graph of order n?

5 Boundary Vertices Revisited

We conclude this paper by looking at boundary vertices from another point
of view. First, we present the following result.

Proposition 5.1 Let G be a connected graph containing vertices u and
v such that v is a boundary vertex of u. If u lies in an z — v geodesic for
some vertez ¢ of G, then v is also a boundary vertez of x.

Proof. Since v is a boundary vertex of u, it follows that d(w,u) < d(v,u)
for all w € N(v). Because u lies on an z — v geodesic, d(v,z) = d(v,u) +
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d(u,z). Thus, if w € N(v), then d(w,z) < d(w,u) + d(u,z) < d(v,u) +
d(u,z) = d(v, z). Therefore, v is a boundary vertex of z. [

For a vertex v in a nontrivial connected graph G, a u — v geodesic P is
called a ray at v if u lies in no z — v geodesic for all z € V(G) — {u}. If P
is a u — v ray at v, then u is called a ray vertez of v. In other words, if u
is a ray vertex of v and lies on an z — v geodesic, then z = u. We denote
the set of ray vertices at v by R(v). Since all eccentric vertices of v are in
R(v), it follows that R(v) # 0.

Proposition 5.2 Let v be a vertez in a nontrivial connected graph G.
Then every vertex of G lies on some ray at v.

Proof. Let R(v) = {v1,v2,--,vx}. Assume, to the contrary, that there
exists a vertex w € V(G) such that w lies on no v — v; geodesic in G for
alli (1 <i<k). Thus w ¢ {v} U R(v). So there exists a vertex z such
that w lies in some v — z geodesic in G. Among all such vertices z, let =*
be one whose distance from v is maximum. We claim that z* € R(v); for
if z* ¢ R(v), then there exists ' € V(G) such that z* lies in some v — '
geodesic @ in G. Let P be a v — =* geodesic of G containing w. Also, let
@1 be the v — z* subpath of @ and Q; the z* — z' subpath of Q. Thus @,
is a v — z* geodesic in G. Then the v — 2’ path P’ obtained from P and Q.
is a v — 2’ geodesic containing w. Since d(v,z') > d(v,z*), this contradicts
the maximality of z*. Thus z* € R(v), as claimed. =

Corollary 5.3 Let v be a vertez in a nontrivial connected graph G. If v
is a boundary vertez of G, then v is a boundary vertez of at least one ray
vertez of v.

Proof. Since v is a boundary vertex of G, it follows that v is a boundary
vertex of some vertex » in G. If u € R(v), we have the desired result.
Thus we may assume that u ¢ R(v). By Proposition 5.2, there exists
v' € R(v) such that u lies in some v — v’ geodesic in G. It then follows from
Proposition 5.1 that v is a boundary vertex of v’ in R(v). n

We are now in a position to give an alternative description of the set of
boundary vertices of a vertex.

Proposition 5.4 Let G be a nontrivial connected graph and let v €
V(G). Then R(v) is the set of boundary vertices of v.

Proof. Certainly, every boundary vertex of G is a ray vertex of G. Thus
it suffices to show that every ray vertex of G is a boundary vertex of G.
Assume, to the contrary, that there exists a vertex u € R(v) such that
u is not a boundary vertex of v. Then there exists w € N(u) such that
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d(w,v) > d(u,v). Since w and u are adjacent, d(w,v) = d(u,v) + 1. This
implies that u lies in some v — w geodesic in G, which is a contradiction. &
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