Algorithms for the Analysis and Synthesis of
Tree Structured
Communication Networks

Dorota M. Huizinga and Ewa Kubicka

Abstract

This paper describes a comprehensive approach to the analysis and
synthesis of tree structured communication networks. First, a class of
models for tree structured communication networks is proposed. Then,
performance parameters such as communication delays and network
reliability are defined, and efficient algorithms for calculating these
parameters are provided. Subsequently, an application of a powerful, tree
generating algorithm to the synthesis of optimal communication networks is
described. The universal approach of this algorithm allows for its use in
conjunction with the proposed model and the algorithms for calculating
values of performance parameters. The paper shows sample optimal tree
structured networks resulting from applying the synthesis algorithm for
various optimization parameters.

1. INTRODUCTION

The cost-effective analysis and synthesis of communication networks has been
the subject of broad research in the past decade [Ahuja, et al., 1993,
Balakrishnan et al., 1991, Berry et al., 1994, Berry et al., 1995 and Berry et al.,
1997, Sharma, et al., 1991,]. Since most nontrivial network synthesis problems
are NP-complete [Berry, et al., 1995], the proposed solutions usually rely on
heuristic approaches and deliver sub-optimal results [Banerjee et al, 1992, Berry
et al., 1994, Berry at al., 1997, Minoux, 1989]. The cost functions in network
synthesis problems are defined to model network behavior. These models reflect
all-purpose network performance parameters as well as application-specific
parameters. Examples of all-purpose parameters include the well studied latency,
throughput, or fault tolerance [Stallings, 1999]. Examples of application-specific
parameters consist of the average inter-node distance used in the design of the

JCMCC 48 (2004), pp. 55-88

interconnection networks [Dandamudi et al., 1990] or a minimum end-to-end
delay used in multimedia conferencing [Ramanathan at el, 1992].

Thus, an effective network synthesis methodology must be based on a sound
model with realistic and efficiently computable cost functions that reflect the
values of the performance parameters of the model.

The work presented in this paper addresses the above issues by proposing a
novel, comprehensive approach to the analysis and synthesis of tree structured
communication networks. Tree structured communication networks are of great
importance as they describe topologies of hierarchical systems, can be used to
define efficient packet routing in non-tree structured systems, or can be applied
as access networks to other network structures [Bermry et al., 1995]. Such
networks are the focus of our work.

Specifically, in this paper, we propose a class of models for tree structured
communication networks. The class is general enough to encompass a variety of
performance parameters. For this class of models, we describe efficient,
dynamic programming algorithms that calculate the following performance
parameters: the worst case many-to-one communication delay, the worst case
many-to-many communication delay, the average many-to-many communication
delay, and the average size of a subnetwork. The values of these parameters
define cost functions for the application of the network synthesis algorithm
outlined in the subsequent part of this paper. The algorithm is based on the
efficient generation and examination of all trees of a given order. It has been
shown in our previous work [Kubicka, 1996], [Huizinga et al., 1997] that the
number of steps per tree performed by this exhaustive algorithm is bound by a
constant that does not depend on the number of nodes in the tree. Thus, to our
knowledge, this is the fastest algorithm in its category. Expanding on our
previous work, this paper illustrates the application of this algorithm to the
synthesis of tree structured networks in conjunction with the algorithms for
calculating network performance parameters. Sample optimal networks
generated by the synthesis algorithm for various optimization parameters are
shown in the last part of the paper. In conclusion, we discuss strengths and
limitations of this work, and we outline future directions of our research.

In the next section the class of models for tree structured communication
networks is defined. The algorithms that calculate network performance
parameters are described in section three. Section four illustrates the application
of the network synthesis algorithm and shows sample results of this application.
The conclusion and future work are outlined in section five.

56

2. THE CLASS OF MODELS

Consider a tree structured communication architecture consisting of n
processors (nodes), where n is an integer greater than zero. This configuration
can be viewed as a rooted tree of order n, i.e. a tree consisting of n nodes (see
Fig.1). Let’s denote this tree by T.

Root node) Vi
/V\...
\

Leaf node Vn

Fig.1. A tree structured data communication network with n nodes labeled v,
through v,.

An internal node of the hierarchy T, can send/receive packets directly to/from its
children and its parent. A leaf node can directly communicate only with its
parent node, and the root node can directly communicate only with its children.
If a node sends a packet to another node in a tree network, then there is exactly
one path that this packet could travel. The time needed to travel this path
depends on the path length and the congestion at each of the path nodes. The
average communication delay between any two nodes for tree network T is one
of its essential parameters. An O(n®), dynamic programming algorithm
evaluating this parameter is described in the next section. However, synthesizing
(constructing) a tree network that minimizes the average of communication
delays between any two nodes is much more challenging. This is because the
number of trees grows exponentially with the tree order n [Beyer et al., 1980,
Wright et al., 1986].

In general, there are a number of parameters essential for evaluating network

performance. Examples of such parameters include the worst case many-to-one
communication delay, the average many-to-many communication delay, or the

57

average size of the sub-network. We will denote any of these parameters by
OptimizationParametexr.

The class of the system models described below encompasses a wide range of
such network parameters which can be calculated using a bottom-up approach.

The following paragraph outlines the model and its assumptions.

1. For tree network T of order n, let’s denote an optimization parameter to be
calculated by OptimizationParameter.

2. For each node of T, OptimizationParameter is evalvated in the
"bottom up" manner. This means that for node v; 1 <i<n, with m children,
denoted vj,,vi,,..-,Vi, OptimizationParameter(v;) is a
function £ of the optimization criteria calculated for all children, topology
of the subtree "below" v, denoted by Top (v;), and system dependent
parameters p1 , . . ,Py- Therefore:

OptimizationParameter (v)=f (OptimizationParameter(vj,),
.. ,OptimizationParametex (vj_) ,Top(vi) ,pP1,...,Py)

For a leaf node, the value of the optimization parameter is set to a constant.

3. The value of the optimization parameter calculated for root v, of tree T,
constitutes the final performance result for this tree, i.e.
OptimizationParameter (v,).

Note, that since function “fr used in calculating
OptimizationParametexr(v;) can be an arbitrary cost function, the
above model encompasses a wide range of the networking scenarios.

In the next section we will describe dynamic programming algorithms for

determining values of various network parameters. The algorithms are consistent
with the class of models described above.

3. ALGORITHMS FOR CALCULATING NETWORK PARAMETERS
The subsequent sections describe algorithms for determining communication

delays and reliability in tree networks. We will use the following notation for
calculating communication delays.

58

For a tree network T, of order n, let Tjnj+ denote the maximum initialization
time, i.e. the maximum time needed for the system startup. Let Tnot denote the

maximum communication delay between a child node and a parent node, i.e. the
maximum time needed for a child node to send a packet directly to its parent, or
the other way around. Let Teong denote the congestion parameter, i.e. the
parameter that determines the impact of traffic congestion on packet delivery
delay in the system.

Let the node’s v outdegree, i.e. the number of children for node v, be denoted
by od(v). Let Penalty (v) be defined for node v as a function of od (v),
i.e. the function that reflects the impact of the node outdegree on the node’s
transmission delay for each packet. Thus, Tcong*Penalty (od(v)) depicts

node’s delay due to its traffic congestion.

For any two nodes in a tree network, there is exactly one path between them. The
communication delay between the extreme nodes of this path depends on the
number of path links, transmission time along each path link (Tpet) and traffic

congestion delay at each path node v (Teong*Penalty (od(v))).

The algorithms 1, 2, and 3 use the above assumptions in calculating properties of
communication networks.

3.1 Worst Case Many-To-One Communication Delay

A routing problem is said to be many-to-one if more than one transmission
packet can have the same destination [Leighton, 1992]. The worst case many-to-
one communication delay is a parameter that determines the maximum amount
of time necessary for an arbitrary node to communicate with a designated node
in a network. Accurate estimation of this parameter is essential especially in
real-time time applications, where the guaranteed worst case timing behavior is
often critical.

In order to present our many-to-one communication model, let’s consider a tree
network system shown in Fig.1. Without loss of generality, let’s assume that the
designated node in our many-to-one communication medel is the root of a tree
network. We will call DelayToOne the optimization parameter in this system.
Thus, DelayToOne is an instance of OptimizationParameter in our
class of communication models, and it represents the worst case communication
delay from any node to the root. For each node in tree T, there is exactly one
path to the root.

Let arrayTree, be an array of size n, representing tree network T such that
arrayTree[i] corresponds to the i’th node of T in the preorder traversal.
Thus, for the many-to-one communication delay model, each entry i, where
1<i< n, of the arrayTree, will hold the structure called nodeRecord:

59

nodeRecord = {
int NumberOfChildren; /mumber of children for this node
int FirstChild;
int RightSibling;
int Parent:;
float DelayToOne; //worst case all-to-one delay for subtree
//rooted at this node

Presented below algorithm 1 calculates the worst-case communication delay
from any node to the root. The algorithm progresses in the bottom-up manner,
treating each node v as a root of a subtree rooted at v, and calculating the value
of the slowest path from any of the leaf nodes to v. For each node v, this value is
stored in variable DelayToOne. Thus, the value of DelayToOne for a parent
node is calculated by finding the maximum of DelayToOne among its
children, and adding to it Thet+Tcong*Penalty (od(v)) .

Algorithm 1 — Computation of the worst case many-to-one communication
delay.

//Given : arrayTree[l..n] of nodeRecord structures corresponding to
tree

// network T

// Objective: find the worst case many-to-one communication delay in T

1 for (v=n; v= 1; v=v-1) //Examine all records of the arrayTree starting from
/fthe ", ending with I*'

2 currentNode=arrayTree[v];

3 if (currentNode.NumberOfChildren==0) // It's a leaf node

4 currentNode. DelayToOne=T, ;

5 ebsef /t’s a non-leaf node

6 slowestChildDelay ToOne=findMaxChildDelay ToOne(currentNode)

// search all the children of the current node to find the child that
//maximizes DelayToOne and
// store its DelayToOne value in variable slowestChildDelayToOne
7 currentNode.DelayToOne =
slowestChildDelayToOne
+T et Teong X Penalty(arrayTreefi]. NumberOfChildren);
}

Theorem 1.

Algorithm 1 calculates the worst case many-to-one communication delay for a
tree network T, defined above. The value of this worst case delay is stored in the
variable DelayToOne of nodeRocord corresponding to the root of T; (i.e. in
arrayTree[l] .DelayToOne).

Proof.

We proceed by the Strong Form of Induction on n, where n is the order of tree T.
Step 1 of induction.

Let n=1. It is clear that for a tree consisting of just one node, algorithm 1
trivially finds the worst case delay by the direct assignment of T;.;. to the
arrayTree[l] .DelayToOne (line 4 of algorithm 1).

Inductive step.

Assume now that the above conjecture is true for all tree networks of order n
<=k. We will show that it is also true for an arbitrary T’ of order k+1. A rooted
tree T/ of order k+1, consists of subtrees connected to root r of T/ , as depicted
in Fig.2.

Note that in order to calculate the worst case delay for the root r of T’ , we need
to add to the delay of its “slowest” child, the transmission time from this child to
r, and the penalty for congestion at the root (line 7 of algorithm 1). Each of the
proper subtrees of tree T’ has no more than k nodes. Thus, according to our
inductive assumption the variable DelayToOne for each child of r holds the
worst case delay for its subtree, and the slowestChildDelay can be found
by taking the maximum of DelayToOne over all children of r (line 6 of
algorithm 1).

-

Subtree rooted
at a first child

Subtree
rooted
at the last

child

Subtree rooted
at the next
child

Fig. 2. A rooted tree T’ of order k+1.

61

Since the arrayTree represents the tree T/ in the preorder traversal and the
main loop of the algorithm 1 iterates from the largest to the smallest array index
(from n down to 1), it is guaranteed that the value of DelayToOne for each
node of the tree T’ is calculated in a bottom-up manner, i.e. the calculations for
all children precede the calculation for the parent, validating lines 6 and 7 of the

algorithm 0.

Lemma 1.
For tree network T of order n, the computation complexity of the algorithm 1 is
O(n).

Proof.

It is sufficient to notice that each node of the tree T is visited at most twice; once
due to the main loop in line | and the second time in line 6 while searching for
the slowest child of the current node O.

To illustrate calculations of parameter DelayToOne let’s consider the
following example. Let T be a tree of order 4, let Tinit = |, Tnet =2,

Tcong =1, and Penalty (od(v))= (od(v))2
The value of DelayToOne depends on the topology of the tree network which
is illustrated by an example in table 1.

Topology : star Topology: path
Vi
./I\. \"A Vv, V; V.
\Z ® v ®*—O0 0 O

For V,V;, and V, we have:
DelayToOne = Tipjt =1

For V, we have:

DelayToOne = Tipjt +Tnet+
Teong X (0d(Vy)’=1+2+1x
3 142+1 x 3’=12

For V, we have:
DelayToOne= Tjpjt = 1

For V; we have:
DelayToOne = Tipjt +Tnet*

Tcong X 0(’(\’3))2

62

For V,we have:
DelayToOne= Tipjt +Thett+

Tcong % 0d(V3))** Tnet + Tcong(0d(V2))?

For V,, and therefore for the whole tree T,
we have

DelayToOne= Tipj¢t +Tpet+
Teong(0d(V3))’)* Tnet +
Teong(0d(V2))*+ Tpet+

Teong(od(V D))=

=12+1X P2+ Ix PP+2 + 1x 12=10

Table 1. Values of DelayToOne (worst case many-to-one communication
delay) calculated for two different network topologies.

3.2 Worst Case Many-To-Many Communication Delay

A many-to-one routing problem can be generalized to a many-to-many routing
problem if multiple destinations for packets are allowed [Leighton,1992]. The
worst-case many-to-many communication delay is a parameter that determines
the maximum amount of time necessary for a packet to travel between any two
arbitrary nodes of a tree network.

Again, let’s consider a tree network system shown in Fig.1. The optimization
criterion called DelayToMany for this system is the worst-case communication
delay between any two nodes of T. We are going to assume that the
communication time is symmetrical, i.e. the amount of time needed to send a
packet from node V; to Vj is equal to the amount of time needed to send a packet
from V to Vy. Let Tynie, Tnees Teong the Penalty (od(v)) function, and
arrayTree, be defined as at the beginning of section 3. Let the new
optimization parameter in nodeRecord be denoted by variable
DelayToMany.

Thus, the nodeRecord in this model holds the following data.
nodeRecord = {
int NumberOfChildren; //number of children for this node
int FirstChild:;
int RigthSibling;
int Parent;

63

float DelayToOne; //worst case many-to-one delay for subtree
/frooted at this node
float DelayToMany ;//worst case many-to-many delay for subtree
/frooted at this node
}

Presented below algorithm 2 calculates the worst-case communication delay
between any two nodes in a tree network. The algorithm progresses in the
bottom-up manner, treating each node v as a root of a subtree rooted at v. For
each such node v, the algorithm calculates the value of the slowest path in the
subtree rooted at v and stores its value in variable DelayToMany. The value
of DelayToMany is calculated by finding the maximum among the paths that
go through v, and the paths that do not go through v. The proof of theorem 2
details the most essential steps of this algorithm.

Algorithm 2 -~ Computation of the worst case many-to-many
communication delay.

// Given : arrayTree[l. .n] of nodeRecord structures corresponding to //
tree network T

// Objective: find the worst case many-to-many communication delay in T

// Comment: DelayToOne for each nodeRecord is calculated as in
Algorithm 1.

1 for (v=n; v= 1; v=v-1) //Examine all records of the arrayTree starting from
//the i, ending with 1"
2 currentNode=arrayTree[v]; slowestRPathDelay ToMany=0;

3 if (currentNode.NumberOfChildren==0) //1t’s a leaf node
4 currentNode.DelaytoMany= T,.;
else{ //It's a non-leaf node

5 slowestChildDelay ToOne=findMaxChildDelayToOne(currentNode);
//search all the children of the current node to find the child that
//maximizes DelayToOne.

6 if (currentNode.NumberOfChildren>1){

7

secondSlowestChildDelay ToOne=findSecondMaxChildDelayToOne(curr
entNode);
//find the second child that maximizes DelayToOne among all other
//children of the current node (excluding the slowest one)and store its
//DelayToOne in SecondSlowestChildDelay

8 slowestRPathDelayToMany =

19

11
ode);

12

14

= slowestChildDelayToOne+tsecondSlowestChildDelayToOne +
2X Tert Teong X Penalty(currentNode. NumberOfChildren);}//end
if
//slowestRPathDelayToMany holds the value of the slowest path
//between any/two nodes of the subtree rooted at v that goes through
/%
else
slowestRPathDelayToMany =currentNode.DelayToOne;
//there is only one child
slowestNRPathDelay ToMany=findMaxChildDelay ToMany(currentN

/lfind the child that maximizes DelayToMany among all children of
// the current node and store
/fits DelayToMany value in variable slowestNRPathDelayToMany;
// this represents the slowest path that does not go through v in the
//subtree rooted at v.
if (slowestRPathDelay ToMany >slowestNRPathDelayToMany)
currentNode.DelayToMany=slowestRPathDelay ToMany;
else
currentNode.DelayToMany=slowestNRPathDelay ToMany;
// the worst case many-to-many delay is a maximum of the slowest of
// all rootpaths and non-rootpaths

To illustrate how this parameter is calculated, let’s consider the following

example. Let T be a tree network of order 4, let Tinj =1, Tnet=2, Tcong=1,

and Penalty (od(v))= (od(v))?2 The values of DelayToMany for star
-and path network topologies of T are calculated in table 2.

o

Vv,

Vs V4‘ Vs

65

Consider a rooted tree T of order 5 depicted above.

Assume that:

Tinit=l; Tnet=2; Tcong'_"l;

Penalty(v)=[od(v)]%;

Then, for the leaf nodes Vs, V,, and V;, we have the following values:
DelayToMany= Tiy;=1;

For the node V, Algorithm 2 computes:
slowestRPathDelayToMany=1+1+2 x 2+1 x 3%=15
slowestNRPathDelayToMany=1
DelayToMany=Maximum(15,1)=15

For the node V, and therefore for the whole tree T, we have:
slowestRPathDelayToMany=1+2+3%+2+1=15
slowestNRPathDelayToMany=15

DelayToMany=15

Table 2. Example for algorithm 2.
Theorem 2.
Algorithm 2 calculates the worst case many-to-many communication delay for a
tree network T, defined above. The value of this worst case delay is stored in the
arrayTree record corresponding to the root of tree T, ie. in
arrayTree[l] .DelayToMany.

Proof.

Similar to theorem 1, the proof proceeds through the strong form of induction,
and the first step of induction is trivially true due to the assignment of T, to
the currentNode.DelayToMany in line 4. Let’s assume that our conjecture
is true for an arbitrary tree T of order k or less. We will show that it is also true
for a tree T/ of order k+1. Again, since the algorithm works in a bottom-up
manner, the value of DelayToMany is calculated for the offspring nodes
before it is calculated for the parent nodes (line 1 of algorithm 2). This is
essential because in order to calculate the worst case many-to-many
communication delay for a tree T’ rooted at root r, we need to examine all
children of r first. Since all subtrees rooted at children of r have an order less or
equal to k, we can apply to them our inductive hypothesis. Note that the longest
communication path between any two nodes in tree T/ can either go through the
root r of this tree, or not. The algorithm calculates the time of the longest path
that goes through the root r by identifying the largest and the second to largest
values of DelayToOne among all children of r
(slowestChildDelayToOne in line 5 and

sacondSlowestChildDelayToOne in line 7). The time needed to
communicate between these two slowest children, which includes the
communication to and from the parent (2XT), and Teong
xPanalty (currentNode.NumberOfChildren), which is the
congestion delay at the root, is then added to their delays (line 8). If r has only
one child then the time of the longest path that goes through r is simply equal to
its DalayToOne. The algorithm calculates the time of the longest path that
does not go through the root r by finding the maximum of DelayToMany
among all children of r (line 10). Thus the value of DelayToMany at root r of
T/ is determined by taking the maximum of the longest paths that go through the
root (slowestRPathDaelayToMany) and the paths that do not go through
the root (slowestNRPathDelayToMany) in lines 11-14 0.

Lemma 2.

For tree network T of order n, the computation complexity of algorithm 2 is
O(n).

Proof.

It is sufficient to note that each node of tree T is visited at most three times:

once as a parent node and twice as a child O.
3.3 The Average Many-To-Many Communication Delay

The average amount of time needed for a packet to travel between any two nodes
of the network is another parameter that determinates this network’s
performance.

Again, let Tinie, Tnots Toongs and arrayTree, be defined as at the beginning
of section 3. Let DelaySumToMany denote the sum of delays for all paths in
the subtree rooted at the currentNode. In addition to DelaySumToMany,
nodeRecord for this model needs to hold the order of the subtree rooted at
the currentNode, the sum of delays for the paths that end at the
currentNode (DelaySumREPaths), and the sum of delays for the paths
that do not end at the current node (DelaySumNREPaths).

Thus, the nodeRecoxrd for this model holds the following data.
nodeRecord = {
int NumberOfChildren; //mumber of children for this node
int order; //mumber of nodes in the tree rooted at the current node
int FirstChild; ‘
int RightSibling ;
int Parent;

67

float DelaySumREPaths ;//sum of delays for the paths that end at
// the current node

float DelaySumNREPaths;//sum of delays for the paths that do
// NOT end at currentNode

float DelaySumToMany //sum of delays for all paths in the subtree

// rooted at currentNode
}

Algorithm 3 calculates the average many-to-many communication delay between
any two nodes in a tree network. Similarly to algorithms 1. and 2, algorithm 3
progresses in the bottom-up manner, treating each node v as a root of a subtree
rooted at v. For each such node v, the algorithm calculates the values of the sum
of delays for all paths that end at v (DelaySumREPaths), and the sum of delays
for all paths that do not end at v (DelaySumNREPaths). Thus, the sum of values
of these delays, calculated for the root of tree T, and divided by the number of
all possible paths T, results in the average many-to-many communication delay
for the tree stored in AverageDelayToMany. The proof of theorem 3 details the
most essential steps of this algorithm.

Algorithm 3 — Computation of the average of many-to-many
communication delay.

// Given : arrayTree[1l. .n] of nodeRecord structures corresponding
/] tree network T

/1 Objective: find the average many-to-many communication delay in T

1 for (v=n; v I; v=v-1) //Examine all records of the arrayTree starting from
//the n", ending with 1*
2 {currentNode=arrayTree[v];
3 if (currentNode.NumberOfChildren—0) // It's a leaf node
4 {currentNode.DelaySumREPaths= Tinis
5 currentNode.DelaySumNREPaths=0;}
else //It's a non-leaf node
6 {currentNode DelaySumREPaths=
DelaySumREPaths(arrayTree,currentNode)
//call function DelaySumREPaths
7 currentNode.DelaySumNREPaths=
DelaySumNREPaths(arrayTree,currentNode)} // call function
//DelaySumNREPaths

8 currentNode.DelaySumToMany = currentNode.DelaySumREPath
+currentNode.NREPaths;}

68

9 } //end of loop

10if (n>1)

11 averageDelayToMany =
currentNode.DelaySumToMany/choose(n,2);
//The sum of delays for all paths is divided by the number of paths (n
//choose 2)

12 else

13 averageDelayToMany=T ,;;

DelaySumREPaths(array Tree,currentNode)
// Objective:for the subtree rooted at the currentNode, determine the sum of
// communication delays for all the paths that end at the currentNode
1 runningSum=0;
2 tempChild=currentNode. FirstChild;
3 for(i=l;i Scw*rent]\fode.NumberOjChiIdren J) {
4 runningSum=runningSum-+tempChild. DelaySumREPaths
+ tempChild.order x(T+
TeongxPenalty(currentNode.NumberOfChildren));
tempChild=tempChild. RightSibling;}
return runningSum;

A

DelaySumNREPaths(arrayTree,currentNode)

// Objective:for the subtree rooted at the currentNode, determine the sum of
//communication delays for all the paths that do NOT end at the currentNode.
runningSum=0;

tempChild=currentNode. FirstChild;

Jor(i=l i Sa«rremNode.NumlberOjC'hildren sitH) {
runningSum=runningSum+tempChild. DelaySumNREPaths;
nextChild=tempChild;
for (j=i+1; i< currentNode.NumberOfChildren; i++) {

nextChild=nextChild.rightSibling;
runningSum=runningSum
+tempChild.DelaySumREPaths x nextChild.order
+nextChild. DelaySumREPaths.tempChild.order
+tempChild.order x nextChild.order
Xx(2xTnet +Penalty(currentNode.NumberofChildren));
9 tempChild=tempChild.RightSibling;}
10 return runningSum;

SN AW N~

To illustrate how algorithm 3 works, let’s consider the following example
depicted in table 3.

69

Vi

A\

V3 Vi@ Vs

Consider a rooted tree T of order 5 depicted above.
Assume that:
Penalty(v)=[od(v)]*

Then, for the leaf nodes Vs, V,, and V3, we have the following values:
DelaySumRPaths=1;
DelaySumNRPaths=0;

For the node V, Algorithm 3 computes:

DelaySumRPaths = [1+1 X (2+1x3%)] + [1+1 X (2+1x3%)] +[1+1x
(2+1x3%)] =36.

DelaySumNRPaths =0+ [1x 1+ 1x1+1x1+@2x2+39)]+
+[IX1+1X1+1x1+(@2x2+3%)]+
+O+[IX1+1X1+1x1+(2x2+39)]+0=45,

For the node V, we have:
DelaySumRPaths =36 +4x (2 + 1%) =48.
DelaySumNRPaths = 45.
DelaySumToMany = 48 + 45 = 93.

Finally, for the whole tree T, the value of the optimization parameter is:
AverageDelayToMany = 93/(S choose 2) =9.3.

Table 3. Example for Algorithm 3.

Theorem 3.

Algorithm 3 determines the average many-to-many communication delay for a
tree network T, defined above. The value of average many-to-many delay is
stored in variable averageDelayToMany.

70

Proof.

Again, the proof proceeds through the strong form of induction, and our
inductive conjecture is true for n=1 due to the direct assignment in line 13.
Let’s assume that the inductive hypothesis is true for any tree T of order less or
equal to k. Consider now a tree T’ of order k+1, as illustrated in figure 2.

The algorithm first calculates the sum of delays for all paths that end at the
currentNode (which is corresponds to root r) by calling function
DelaySumREPaths. Note that for each of the children of currentNode the
value of this sum had already been calculated. Each path that ends at a child
node of the currentNode needs to be now extended to the new root, i.e.
currentNode.

Thus, for each of these paths the communication delay needs to be increased by
Tpet + ToongXPenalty (currentNode.NumberOfChildren). The
order of the subtree rooted at this child (tempChild.order) determines the
number of such paths, including the path from this child to the currentNode,
which explains line 4 of function DelaySumREPaths. These values are added
for all children of the currentNode producing the total that is returned in
variable runningSum in line 6 of function DelaySumREPaths.

After that the algorithm proceeds to calculating the sum of delays for the paths in
the subtree rooted at currentNode that do not end at the currentNode by
calling function DelaySumNREPaths. For each of the children of the
currentNode this function adds its DelaySumToMany to the
runningSum (line 4 of the function). This accounts for all paths included
completely in the subtree rooted at this child. The paths that go through the
currentNode are accounted for in lines 6, 7 and 8 of the function. Note that
all paths that end at one child of the currentNode can be extended via the
currentNodae to any other child of the currentNode. Thus for each pair of
currentNode children: tempChild and nextChild, line 8 calculates the
sum of delays for all paths that start in a subtree rooted at tempChild going
through the currentNode and ending in the subtree rooted at nextChild.
The loop in line 6 of the function assures that all not previously considered
siblings of the child tempChild are accounted for. Since the main loop iterates
through all the children of the current node, the final result returned in line 10
contains the sum of delays of all paths that do not end at the currentNode.

7

In order to conclude the proof we need to notice that line 11 of the algorithm 3
calculates the average by dividing the DelaySumToMany by the number of
paths in tree T (n choose 2).

Lemma 3.
For tree network T of order n, the computation complexity of algorithm 3 is
om).

Proof.

Note that each node of tree network T is visited once as a parent node.
Additionally, due to the nested loop in function DelaySumNREPath, each child
node is visited at most as many times as many siblings it has 0.

3.4 The Average Size of a Subnetwork

Consider a node or link failure in a tree network. Such a failure leads to a
partition of the network into disconnected subnetworks each of which is a
subtree of the original tree. The parameter that determines the average size of
such a subnetwork allows to estimate the average number of nodes that stay
connected during network partition.

An average order of a subtree for tree T, Ave(T) can be expressed by the
following formula:

D order of T,

Ave(T) = all subtrees T, of T
number of allsubtrees T, of T

To illustrate the above formula let’s consider the following tree T of order 4 and
its subtrees.

72

Type of subtree amount order of the subtree number of
vertices

. 4 1 4

I
A
A

Fig.3. Example of calculations of the average order of subtree for tree T of order

4.
Thus, we get the following result:
ave ()= 364914 23 _, 4
4+3+3+1 11

Let arrayTree of defined below nodeRecords represents tree T in
preorder traversal. Note that for the nodeRecord, in addition to the fields
already defined in the previous sections, we introduce four new fields needed to
calculate the average size of the subtree. For each tree rooted at the
currentNode (see algorithm 4) these fields hold the number of its subtrees
containing the root, the number of subtrees not containing the root, and the
corresponding to the sets of these subtrees, the number of vertices in each of
them.

Thus, the following fields are defined for the nodeRecord.

73

nodeRecord = {

}

int NumberOfChildren; //number of children for this node

int FirstChild;

int RightSibling ;

int Parent;

int NumberOfRSubtrees; //number ofall subtrees containing this
// node (Rs)

int NumberOfRVertices; //total number of vertices in all subtrees
//containing this node (Rv)

int NumberOfNRSubtrees; // number of subtrees not containing this
//node (Ns)

int NumberOfNRVertices ;//total number of vertices in all subtrees

// not containing this node (Nv)

Our goal is to compute the average order of a subtree for a given tree T. We will
concentrate on the calculations of the number of subtrees and vertices defined in
the nodeRecord. We will use the following abbreviated notation. Let Rs
denote the number of subtrees of tree T containing root x, let Rv denote the total
number of vertices in all subtrees counted in Rs. Similarly, let Ns denote the
number of subtrees of T not containing r, and let Nv denote the total number of
vertices in all subtrees counted in Ns. Then, of course the following holds for

tree T:
Rv +Nv
Ave (T)=——
Rs+ Ns
r(Rs,Rv,Ns,Nv,)
@
o ® Vi
Vi pe ® ® (Rs, RV, NS, NVyp)
(RS],RV],NS],NV])
V2
(Rs3,Rv;,Ns;,Nv;)

Fig. 4. Tree T with root r and children v,,v,, ... vg.

74

Let r’s children are denoted by vy,vi,..v, Let’s assume that values
Rs;,Rv;,Ns; Nv, are already calculated for every subtree with the root at v;
1<i<m. This situation is depicted in figure 4.

The correlation between values of Rs;, Rv., Ns., Nv_calculated forrootr,
and values of Rs;, Rvy, Ns;, Nv; , where 1<i<m, calculated for r’s
children, is established in the next lemma.

Lemma 4.
For the notation described above the following equalities hold:

[Ta+rs)

i=1

] 2 Rv
Rs, + » (Rv.J] (1 + Rs,)) = Rs_(1 +) —2—)
g j!‘l ' ,Z,,; (1 + Rs,)

(@) Rrs,_

®) rv,

() Ns, = D (Rs, + Ns,)
i=1

(d) Nv,

m
Z (Rv;, + Nv,)
i=1

Proof:
For tree T with root r , let T; denote the branch with the root at v;. Consider
now a subtree of T containing r. Its intersection with T; is either empty or forms
a subtree containing v;. Thus, to select a subtree of T containing r we have
1+Rs; possibilities for each branch and consequently
m

Rs, = [[1 + Rs)).

i=1
The total number of vertices in all subtrees of T, containing v, is given by Rv;.
Those vertices are repeated as many times as many subtrees of T-T; containing

r we have, and this quantity is given by H (1 + Rs,)- Thus the total
199
number of vertices is all subtrees of containing r , not counting the root itself is

mn
equal to Z (Rvj 1_[(1 + Rs,)). The root has to be present in each one of

j=1 123
Rs; subtrees and therefore this value is added to the previous to obtain Rv..

75

A subtree of T not containing r is entirely contained inside T; for some i. Thus,
it is a subtree of T, either containing v; or not. Therefore we have Rs; +Ns; of
those subtrees for 1<i<m and as a result we obtain

Ns_ = i:(Rsi + Ns,).

i=]

m
Similarly, we receive Nv, = Z (Rv; + Nv,) 0

i=l

Lemma 4 leads us to the following algorithm that calculates the average size of a
subnetwork.

Algorithm 4 — Computation of the average size of a subnetwork in a tree
network.

//Given : arrayTree[l..n] of nodeRecord structures corresponding
// to tree network T

// Objective: find the average size of a subnetwork in T

1 for (v=n; v2 1; v=i-1) //Examine all records of the arrayTree starting from
// the " ending with I

2 currentNode=arrayTree[v];

if (currentNode.NumberOfChildren—0){ // It's a leaf node
currentNode. NumberOfRSubtrees=1;
currentNode. NumberOfRVertices=1;
currentNode. NumberOfNRSubtrees=0;
currentNode. NumberofNRVertices=0;}

else{ //It's a non-leaf node
SumNumberOfRSubtrees=1; SumNumberofRVertices=0;
SumNumberofNRSubtrees=0; SumNumberOfNRVertices=0;

/initialize running sums
11 tempChild=currentNode. FirstChild
12 JSor(i=1;iscurrentNode.NumberOfChildren;i++){ //loop through all

NN AW

~ O G0
()

//children
13 SumNumberOfRSubtrees=SumNumberOfRSubtrees
x (1+tempChild. NumberOfRSubtrees);
14 SumNumberOfNRSubtrees=SumNumberOfNRSubtrees

+ temptChild. NumberOfRSubtrees
+ tempChild. NumberOfNRSubtrees;

15 SumNumberOfNRVertices= SumNumberOfNRVertices
+ tempChild. NumberOfRVertices

76

16
17

18

19

21
22

23

24
25
26

+ tempChild. NumberofNRVertices;
tempChild=tempChild.RightSibling;}
tempChild=currentNode. FirstChild;
Jor(i=1;iscurrentNode.NumberOfChildren;i++){ /loop again
// through all children
SumNumberOfRVertices= SumNumberOfRV ertices
+ tempChild. NumberOfRVertices
/(1+tempChild. NumberOfRSubtrees);
temptChild=tempChild.RightSibling;}
} //end else
currentNode. NumberOfRSubtrees=SumNumberOfRSubtrees;
currentNode. NumberOfRVertices=
SumNumberOfRSubtrees * (1 +SumNumberOfRVertices);
currentNode.NumberOfNRSubtrees=SumNumberofNRSubtrees.
currentNode.NumberOfNRVertices=SumNumberOfNRVertices.
averageSizeOfSubtree=(currentNode.NumberOfRVertices+currentNode.
NumberOfNRVertices)/(currentNode.NumberOfRSubtrees+currentNode.
NumberOfNRSubtree)

Table 4 illustrates an application of algorithm 4.

@

V,

Vs V4. Vs

Consider a rooted tree T depicted in the above figure.

For the leaf nodes Vs, V,, and V3, we have the following values:
NumberOfRSubtrees = 1.

NumberOfRVertices = 1.

NumberOfNRSubtrees = 0.

NumberOfNR Vertices = 0.

77

For the node V, Algorithm 4 computes:

SumNumberOfRSubtrees=1 x(1+ 1) x (1+1) X (1 +1)=8.
SumNumberOfNRSubtrees =0+ (1+0)+ (1 +0)+ (1 +0)=3.
SumNumberOfNRVertices=0+ (1 +0)+ (1 +0)+(1+0)=3,
SumNumberOfRVertices =0 + 1/(1 + 1) + 1/(1 + 1) + 1/(1 + 1) = 3/2.
NumberOfRSubtrees = 8.

NumberOfR Vertices =8 x (1 + 3/2) =20.

NumberOfNRSubtrees = 3.

NumberOfNRVertices = 3.

Finally, for the node V, and therefore for the whole tree T, we have:
SumNumberOfRSubtrees =1 x (1 + 8)=9.
SumNumberOfNRSubtrees =0 + (8 +3) =11.

SumNumberOfNR Vertices = 0 + (20 + 3) = 23,

SumNumberOfR Vertices = 0 + 20/(1 + 8) = 20/9.

NumberOfRSubtrees = 9.

NumberOfR Vertices = 9 x (1 +20/9) = 29.
NumberOfNRSubtrees = 11.
NumberOfNR Vertices = 23.

Now, the optimization parameter for the tree T can be computed:
AverageSizeOfSubtree = (29 + 23)/(9 + 11) = 2.6.

Table 4. Example for algorithm 4

Theorem 4.

Algorithm 4 determines the average size of a subnetwork for a tree network T,
defined above. The value of this average is stored in variable
averageSizeOfSubtree.

Proof.

Again, the proof is by induction by the order of the tree. In order to show that
algorithm 4 calculates the average size of subtree in tree T it is sufficient to
notice that lines 12 through 16 are the algorithmic implementations of equations
(a), (c) and (d) of lemma 4. Lines 17 through 21, and line 23 are the algorithmic
implementation of equation (b). The assignment of variable
averageSizeOfSubtree in line 26 according to the formula for Ave (T)

concludes the proof O.

78

Lemma 5.

For tree T of order n, the computation complexity of algorithm 4 is O(n).

Proof.

It is sufficient to note that each node of tree T is visited at most three times:

once as a parent node and twice as a child 0.

4. SYNTHESIS OF OPTIMAL TREE NETWORKS

4.1 The Network Synthesis Algorithm

The algorithms presented in the previous section determined specific parameters
for a given tree network T of order n. In many situations, however, it is
desirable to identify a network topology that optimizes a desired parameter. For
example, we may want to identify a tree network that minimizes the average
many-to-many communication delay, or maximizes the average size of the
subnetwork, or both.

While devising a low complexity algorithm for any optimization problem is
usually the best approach, in many cases exhaustive search is inevitable. The
algorithm described below was designed to deal with such problems. The
strength of it lies in its flexibility; i.e. the same approach can be used to analyze a
number of various communication models, including all those described in
section 3. The objective of the algorithm is to identify the topology of a tree
network that optimizes a predefined parameter. The algorithm is based on the
methodologies for generating all trees of a given order proposed in [Beyer et al.,
1980] and [Wright et al., 1986], which utilize the concept of canonical level
sequences for representation of trees.

Subsequently, the necessary definitions will be introduced, the data structures
used in the algorithm will be described, and the algorithm principles will be
detailed.

Let T be arooted tree of order n (number of nodes is equal to n) , where the
numbers 1, 2,...,n are assigned to the nodes of T by the preorder traversal.

Definition 1. The level of a vertex i, denoted by 1 (i) is one more than

the distance from the vertex i to the root (e.g. the level of the
root is 1).

79

Definition 2. The level sequence of T, denoted by L(T), is the sequence
of the levels of all its vertices obtained by the preorder traversal
of T.

Note, that a tree can have many different level sequences since interchanging
relative positions of any two sibling rooted subtrees may change its level
sequence.

Definition 3. The canonical level sequence of T is lexicographically the largest
level sequence of T. (The canonical level sequence gives a
unique representation of T.)

The following paragraph defines and exemplifies the successor function that
transforms any canonical level sequence other than [1,2,2,...,2] into the next
canonical level sequence in decreasing lexicographical order [Beyer et al.,
1980].

Definition4. Let L(T) = [1(1),1(2),..,1(q),..,1(p},..,1(n)]
denote the canonical level sequence of tree T with p being the
largest vertex number with level greater than 2, and q being the
vertex number of its parent. The successor S(T) of tree T
with the canonical level sequence L is the tree corresponding to
the canonical level sequence obtained by applying the following

function to L:
succ(L) =[s1,82,...,3pl, where
sj = 1(i) if 1<i<p
and 8 = 1l(i-p+q) ifp<i<n.

For example, the successor S(T) of the tree T with the level sequence
L(T)=[1,2,3,3,3,2,2], has the following level sequence
L(S(T))=[1,2,3,3,2,3,3] (see Fig. 5). For this example the position of p is
equal to 5 and the position q is equal to 2.

80

level 1

. @cq' @ level 2
@ o e level 3

vertex p

L(T) = [1,2,3,3,3,2,2] L(S(M) = [1,2,3,3,2,3,3]

Fig. 5. A sample tree and its successor.

The successor function, denoted by SUCC, changes the levels of the vertices
from p to n, i.e., the first p-1 vertices in a level sequence remain unchanged. It
has been shown in [Beyer et al., 1980] that the average number of vertices
changed by SUCC is not greater than two, regardless of the order n of the trees.
An array called arrayTree of nrecords is used to represent a tree T of order
n. The i-th record corresponds to the i-th vertex in the preorder traversal of the
tree T. Each nodeRecord of arrayTrea has the following structure:

nodeRaecord = {

int NumberOfChildren; //number of children for this node

int FirstChild;

int RigthSibling;

int Parent;

int Level; //level of this node (distance from the root)

type OptimizationParameter //value of the optimization

// parameter for the subtree rooted at this node

}
In this representation, every vertex i of tree T can be viewed as the root of the
tree formed by all the vertices "below" i, or more precisely, T (i) is induced by
all the vertices v of T such that i belongs to the unique path from v to the root of
T. Note that the above data structure contains the value of the optimization
criterion for vertex i, which depends on the topology of T (i). It also contains

81

the level of each vertex i and, therefore, the level sequence of the whole tree can
be identified. The successor function SUCC can be easily modified to produce
not only the level sequence of the current tree successor, but also its whole
structural representation given in arrayTree, namely SUCC(T). Since the
vertices p, p+l,.,n are the only vertices whose levels change, the
nodeRecoxds should be modified only for these vertices and their ancestors.
Therefore, when SUCC is applied to generate a new tree, the only vertices v
whose nodeRecord has to be changed are vertices from p to n, vertex q, and
all the vertices along the new path from vertex n to the root of SUCC (T) . Thus,
these are the only vertices for which the OptimizationParameter field
has to be recalculated.

The analysis begins with tree network T having lexicographically the largest
canonical level sequence of all trees of order n. This tree, represented by the
level sequence L (T)=[1,2,3,...,n], consists of a single path from the root to the
leaf. For each node of the initial tree, the value of the
OptmizationParameter is calculated using the "bottom-up" approach.
The value of OpmizationParameter for the root of T constitutes the value
of the optimization criterion for the whole tree. Subsequently, the successor
function SUCC is applied to the current tree, the successor tree SUCC(T) is
generated, and the values of OptimizationParameter is recalculated for
the required nodes. The procedure for applying function SUCC and recalculating
the values of OptmizationParameter is repeated until the tree
corresponding to lexicographically the smallest level sequence is reached, i.e.,
sequence [1,2,2,...,2] representing the star topology.

Subsequently the steps of the algorithm are described. Without loss of
generality, it is assumed that function Optm.zatlonparameter is to be
minimized for all trees of order n.

Algorithm 5 — Synthesis of a tree network that optimizes the value of
optimization criterion OptmizationParameters among all trees of
order n.

//Given: the order of the tree network n

//Objective: synthesize (construct) a tree network T that optimizes parameter
/lOptmizationParameter among all tree networks of order n. Use
/laxrrayTree[l..n] of nodeRecords to represent T.

1 LevelSequence(arrayTree)=[1,2,...,n];
/finitialize arrayTree to respresnt a path topology of a tree network, i.e L
// is initialized to the lexicographically largest level sequence of order n,
/Nie (/L=[1,2,...,n])

82

2 CalculateOptimizationParameter(arrayTree,n,1);
/fusing a bottom-up method, calculate value of OptimizationParameter for
each //nodeRecord of //arrayTree (from n downto).
3 Minimium=arrayTree[l].OptimizationParameter; minTree=arrayTree;
// initialize the current minimum to the value of the OptimizationParameter
at the // root of T initialize minTree
do
arrayTree = SUCC(arrayTree);// (L=SUCC(L)) apply the successor
// function to arrayTree;
6 RecalculateOptimizationParameters(arrayTree,p,q) /Using a bottom
// up method, modify and recalculate the value of
// OptimizationParameter ONLY //for those elements of arrayTree
// which were affected by applying SUCC //function(p and q are as in
// definition 4 of SUCC)
7 if arrayTree.OptimizationParameter<Minimum {
Minimum= arrayTree.OptimizationParameter; //update the
//minimum.

LN

minTree=arrayTree; }

8 while(LevelSequence(arrayTree) # [1,2,2,...,2]); //end the loop when the
// level sequence of the tree /represents a star topology, or
/L=[12,2]

Upon completion of the algorithm, the variable Minimum holds the optimal
value of the optimization criterion for all rooted trees of order n, and an optimal
tree can be reconstructed by tracing array minTree.

Since algorithm 5 examines all rooted trees of a given order, its running time is
proportional to the number of those trees. Let T,, denote the number of rooted
trees of order n. The following formula, taken from [Harary at el, 1973],
describes T, and thus complexity of algorithm 5.

O T, = 0.4399237x32.9557649 N 0(2.955'1649)

n? n?

The following theorem shows effectiveness of Algorithm 5.

Theorem 5 [Kubicka , 1996]:

Algorithm 5 computes the minimum (maximum) value of optimization criterion
over all rooted trees of a given order n. The average number of steps per tree the
algorithm performs is bounded by a constant which does not depend upon n.

83

The complete and elaborate proof of theorem 5 can be found in [Kubicka,1996).

4.2 Examples of Optimal Tree Structured Networks

We have applied the synthesis algorithm to design of optimal networks for
parameters described in section 3. Results of these experiments for network sizes
of 5 and 20 nodes are shown in the table below.

The optimization parameters were calculated by algorithms described in section
three. For DelayToOne, DelayToMany and averageDelayToMany we
have used the following constant values: Tjnjt=1, Thet=2, Teong=1, and a

non-linear penalty function for the node congestion: Penalty (od(v))=
(od(v))2 '

The synthesis algorithm was applied to generate the optimal networks for each of
the discussed parameters. Sample results are shown in table 5. There are
12,826,228 different tree network topologies with 20 nodes. The minimal value
of the worst case many-to-one communication delay (DelayToOne) is equal to
22, and this value is achieved for 34 network topologies. Table 5 depicts one of
these optimal topologies. The minimal value the worst case many-to-many
communication delay (DelayToMany) is equal to 33, and there are seven
networks that achieve this value. One of these networks is shown in table 5.
Contrary to the above two parameters, the average many-to-many
communication delay (averageDelayToMany) is minimized by only one tree
network. The minimal value of averageDelayToMany parameter is equal
to 18.47 and the optimal network topology is shown in table 4. There are six
topologies that maximize the average size of a subnetwork for tree networks with
20 nodes. The optimal average size is equal to 12.72 and one of the optimal
topologies is depicted in table 5.

Optimal Topology for Network with n Nodes

Optimization and the value of the Optimization Parameter
Parameter
n=5 n=20
(Total number of tree | (Total number of tree networks with
networks with 5 20 nodes = 12,826,228)
nodes =9)
The Worst
Case Many-to-
One
Communicatio
n Delay

DelayToOne DelayToOne =10 | DelayToOne=22

The Worst
Case Many-to- -
Many
Communicatio
n Delay

DelayToMan

v DelayToMany=13 | DelayTcoMany=33

The Average
Many-to-Many
Communicatio
n Delay

averageDel

ayToMany averageDelayTo | averageDelayTo

Many=6.5 Many=18.47

85

The Average
sizz of a
Subnetwork

averageSiz
eOfSubtree

averageSizeOf averageSizeOf
Subtree=2.6 Subtree=12.72

Table 5. Optimal topologies for tree structured networks of size 5 and 20.

5. CONCLUSION

We have proposed a novel, comprehensive approach to the analysis and
synthesis of tree structured communication networks. Unlike the existing work,
the class of tree network models described in this paper is universal and can be
used in a variety of applications. We have substantiated our model by describing
efficient, dynamic programming algorithms for calculating performance
parameters such as communication delays and the average size of a subnetwork.
Building on our previous work, we have illustrated a powerful application of an
algoritbhm for generating and examining all trees of a given order to the network
synthesis problem. The synthesis algorithm outlined in section four uses our
proposed tree structured communication network model. The optimization
parameters in this algorithm are calculated using the dynamic programming
algorithms described in section three. Unlike most of the existing work, our
network synthesis algorithm always produces an optimal solution. Sample
optimal networks shown in section four, exhibit complex properties with non-
trivial topologies, validating both the difficulty of the network synthesis problem
and the power of the synthesis algorithm.

An obvious limitation of this algorithm is its inability to analyze networks with
large number of nodes, since the number of trees grows prohibitively fast with
order size. Therefore, the algorithm can be used to design optimal hierarchies
for small order networks or as a preliminary analysis of large systems. We
believe that in a many cases the above method can be applied to smaller
networks and the obtained tree structures can be extrapolated to approximate
optimal solutions for large networks, or for developing low complexity
heuristics.

86

Our current research is evolving in two directions. One is further study of
network models, performance parameters and cost functions, such as measures
of reliability and fault tolerance. The second direction is an attempt to increase
the domain size of the network synthesis algorithm by applying pruning
techniques and parallelism to it.

REFERENCES

[Ahuja et al., 1993] Ahuja, R., Magnati, T., and Orlin J. Network Flows: Theory,
Algorithms and Applications, Prentice Hall, 1993.

[Balakrishnan et al, 1991] Balakrishnan, A., Magnati, T., Shulman, A. and
Wong, R. Models for Planning Capacity Expansion in Local Access
Telecommunication Networks”, Annals of Operation Research, vol 33, pp.
239-289.

[Banerjee, et al., 1992] Banerjee, S., Mukherjee, B., Sarkar, D., Heuristic
algorithms for constructing near-optimal multihop lightwave networks,
IEEE INFOCOM, 1992,

[Berry et al, 1997] Berry, L., McMahon, G., Murtagh, B., Sugden, S., and
Welling, L., An Integrated LP-Genetic Algorithms Approach to
Communication Network Design, Proc. IFIP Workshop on Traffic
Management and Synthesis of ATM Networks, Canada, September, 1997.

[Berry et al., 1995] Berry, L., Murtagh, B., Sugden, S. and McMahon, G.
Application of a Genetic-based Algorithm for Optimal Design of Tree
Structured Networks” Proc. Regional Teletraffic Engineering Conference of
the International Teletraffic Congress, South Afvica, 1995, pp.361-370.

[Berry et al., 1994] Berry, L., Murtagh, B., and Sugden, S., A Genetic-based
Approach to Tree Network Synthesis with Cost Constraints”, Proc. of
EUFIT 94, Germany, September 1994, pp. 626-629.

[Beyer et al., 1980] Beyer, T., and Hedetniemi, S.M., Constant time generation
of rooted trees, SIAM J. Comput., 9 (1980) 706-712.

[Dandamudi et al., 1990] Dandamudi, S.P., and Eager, D.L., Hierarchical
Interconnection Networks for Multicomputer Systems, IEEE Trans.
Computers, 39 (1990), 786-797.

87

[Harary, F. etal., 1973] Harary, F., Palmer E., Graphical Enumeration,
Academic Press, New York and London 1973.

[Huizinga et al., 1997] Huizinga D.M., and Kubicka, E.., A Tree Generating
Algorithm for Designing Optimal Hierarchical Distributed Systems, Proc. of
ACM Symposium on Applied Computing, San Jose, CA, Feb. 28- March 2,
1997, pp. 345-353.

[Kubicka, 1996] Kubicka, E., An efficient method of examining all trees,
Combinatorics, Probability, and Computing, Vol 5, 1996, pp-403-413.

[Leighton, 1992] Leighton, F.T, Introduction to Parallel Algorithms and
Architectures: Arrays, Trees, Hypercubes. Morgan Kaufmann Pub., 1992,

[Minoux, 1989] Minoux, M. Network Synthesis and Optimum Network Design:
Models, solution methods and applications, Networks, vol. 19 (1989) pp.
313-360.

[Polya, 1937] Polya, G., Kombinatorische Anzahlbestimmungen fur Gruppen,
Graphen und Chemische Verbindungen. Acta Math. Vol 68 (1937) 145-
154

[Ramanathan at el, 1992] Ramanathan, S., Rangan, P.V., Vin, HM.,, and
Kaeppner, T., Optimal Communication Architectures for Multimedia
Conferencing in Distributed Systems, Proc. of 12-th International
Conference on Distributed Computing Systems, 1992, 46-53.

[Stallings, 1999] Stallings, W. Data and Computer Communications, 6 Edition,
Prentice Hall PTR, 1999.

[Sharma, 1991] Sharma, U., Misra, K.B., Bhattacharji, A.K., Applications of
an Efficient Search Technique for Optimal Design of Computer
Communication Networks. Micro Electronics and Reliability, vol 31, pp.
337-341.

[Wright et al., 1986] Wright, R.A., Richmond, B., Odlyzko A.,and McKay,
B.D., Constant time generation of free trees, SIAM J. Comput., 15 (1986)
540 — 548.

88

