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Abstract
In this paper we obtain some necessary existence conditions for bi-
level balanced arrays of strength six by using some classical inequal-
ities and by expressing the moments of the weights of the columns of
such arrays in terms of its parameters. We present some illustrative
examples to compare these results with the earlier known results.

1. Imtroduction and Preliminaries.
For ease of reference we present here the definition of a balanced array
(B-array).

Definition 1.1. A matrix T with m rows, N columns, and with s symbols
(say; 0, 1, 2, .., 5-1) is called a B-array of strength t if in every (¢ x N; t <
m) submatrix T* of T and for every (¢ x 1) vector of T*, we have the
following condition satisfied: A(a;T™) = A(P(a),T*) where P(q) is the
vector obtained by permuting the elements of a, and A(a;T™) represents
the frequency with which o appears in T™.
Remark: In statistical design of experiments the rows (also called ‘con-
straints’) correspond to factors, the columns (called also ‘runs’) correspond
to treatment combinations, and s symbols to the levels at which each factor
appears in the experiment.

In this paper we restrict ourselves to B-arrays with ¢t = 6, and s = 2
(elements 0 and 1). It is quite clear that w(a) = w[P(a)] where w(a),

JCMCC 48 (2004), pp. 89-94



called the weight of o, is the number of 1’s in @ For this special case,
we can say that every (6 x 1) vector o of weight (0 < i < 6) appears
a constant number (say, y;) times. We call p'=(pg p;, .., #g) the index
set of a.n'ay T, and T is denoted by (m,N,s =2, t = 6, &) where clearly

N= 2 (6 )i;. B-arrays with different strengths have been extensively used

in the constructlon of optimal fractional factorial designs, and are related to
numerous areas of combinatorial mathematics. For example, B-arrays with
t = 6 and s = 2 give rise to, under certain conditions, fractional factorial
designs of resolution seven. If u,; = u (for each 1), then B-arrays are reduced
to orthogonal arrays (O-arrays), and the incidence matrix of a balanced
incomplete block design (BCBD) is merely a B-array with ¢ = 2 with the
restriction that each column of T has the same weight. To learn more
about the applications and importance of these configurations in statistics
and combinatorics, the interested reader may consult the references (by
no means an exhaustive list) at the end of this paper, and also further
references given therein.

To construct B-arrays with ¢t = 6, s = 2, y'=(up 1y, .., i), and m > ¢
is a difficult and nontrivial problem. The problem of obtaining an upper
bound on m for a given g’ is very important in combinatorics and statistical
design of experiments. Such problems for O-arrays and B-arrays (with
different values of t) have been investigated, among others, by Bose and/or
Bush (1, 2], Chopra and/or Dios [3, 4, 5], Rafter and Seiden[9}, Rao [10],
Saha, et al. [11], Yamamoto, et al. [14], etc.

2. Main Results with Discussion

The following results can be easily established.
Lemma 2.1. A B-array T(m =6, N, t =6, s = 2; y') always exists.
Lemma 2.2. A B-array T with index set u'=(u 4, .., g) is also of strength
t' where 0 < t' <6.
Remark: It is not difficult to see that, considered as an array of strength ¢/,
the jth element Ajy of the parameter-vector of the array is given by A =

2("‘ )Hisird =0,1,2,..,t' with the convention that (;) =1ifa =b=0.

It is quite clear that A;y elements are merely linear combinations of p;’s
Furthermore, if ¢/ = ¢ = 6, then Ajv coincide with p; (the given set of
parameters). The next result only makes use of the elements A¢¢s where
0<t' <6.

Lemma 2.3. Consider a B-array T with m rows, t = 6, and s = 2. Let
zj(j = 0,1,2,..,m) denote the frequency of the columns of weight j in T
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Then the following results are true:

m
Z j*z;=N if k=0 (2.1)
Za x,—zarmr re forl<k<6

r=1

where m, stands for m(m — 1)(m — 2)...(m — r + 1), and a, are known
positive integers which appear while deriving the above results.

Remark: The results of Lemma 2.3 express the moment about 0 of the
weights of the columns of T" as a polynomial function in m, pg 4, .., pg. For
computational ease, we provide next the values of a, for various values of k:
(k=Ya1=1), (k=2 a1 =0a2=1), (k=3;a1=0a3=1,a3=3), (k=
4a1=a3=1a=70a3=6),(k=5a1=a5=1, ap =15, a3 =
25, a4 =10), and (k=6; a; =ag =1, az = 31, a3 = 90, ay = 65, a5 =
15). Next we quote, without proof, the following result from Chopra and
Dios [5] for later use.

Result: Consider a B-array T of strength six, with m rows, and index set
#'. Then the following is true:

(2.2)

5B. _ 6B4 3 2 _ 2 3
[BoB: — Bf] [ B3 Bs — 6By Bs By + 155041 — 2053 B3 B ]

+15BoBzB‘1‘ - 53?
> [B3Bs — 4B}B3B, + 6B,B, B} - 3B{]*
+ [BoBz — B?] [BgBa —3ByB2B; + 23?]2

where By stands for E j*z;. Next, we state the well-known Cauchy-

Schwarz’s classical mequahtleﬁ
Result: For sequences of non-negative real numbers (ay, a2, ..., ay),

(b1b2’ n)r (CI)GZ’ ;cn)y and (dlydb ’dn) the followmg mequahtles
bold:

n 2
@ (zakbk) <Y aYE 3)

k=1

) (Seastner)' s Tet 3ot (L t)’
@ (Sovner) s Tt 3
(d) (Z akbkckdk)4 < zaﬁ Z bi Z cz Z dg
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Next, we obtain a set of necessary conditions for the existence of B-arrays
by using (2.1) and (2.3).

Theorem 2.1. Consider a B-array T with p'=(pg p, .., ptg) and with m
rows. Let z; be the number of columns of weight j in T. Then the
following results are true:

(a) B < BB, where By = ) _ j*z; (2.4)
(b) B} < BsBs

(0 Bf;’ < BgBs B,

(d) Bi < BgB5B3B;

(e) B% < ByB;

(f) B3 < min [B5B3, BsB2B, BsBj]

(9) B3 < BoBgBsB,

(h) B < B}Bs

(i) Bf < B2BsB;

Proof outline: All the above results can be easily obtained by using (2.3)
with appropriate values of ax, bk, ck, and dx.. For example, to obtain (2.4a)
we set a; = #/Z;, and b; = 4/Z; in (2.3a) and the result follows. To obtain
(2.4d), we use (2.3d) with the following substitutions: a; = j% Yz, b =
gt T;, Cj =ji YT;, and d; =j3\4/a:—jand the result (2.4d) follows.

Note: Clearly every inequality in (2.4) is a polynomial function of m only
for a given y/. It is thus easy to check every condition in (2.4) by using a
computer program. If one of these conditions is contradicted for m = k+1
(say), then clearly an upper bound on the number of constraints is k. We
must point out, however, that an array T with parameters satisfying all the
conditions in (2.4) may or may not exist. Next we provide some illustrative
examples to compare the results obtained by using (2.4) with those obtained
by using (2.2).

Example 2.1. Consider a B-array T with u'=(2, 3, 3, 3, 3, 3, 2) with
m =10. Clearly N = 190, and we find L.H.S. = 1.059097 x102° while
R.H.S. = 2.094517 x102° which is a contradiction if we use (2.2). If we
use (2.4a), we obtain the contradiction for the same array at m = 19.
Therefore m < 9 from (2.2), and m < 18 using (2.4a). Thus we obtain a
sharper upper bound by using (2.2).

Example 2.2. Take u'=(4, 4, 3, 2, 3, 4, 4). No contradiction was obtained
by using (2.2) and all values of m through 30 (for m = 30, the L.H.S.
= 7.02604E + 24, R.H.S. = 6.206146E + 23). Taking m = 22 and using
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(2.4a), we obtain a contradiction since L.H.S. = 3.386455E + 15 and R.H.S.
= 3.382959E + 15. Thus we can say that m < 21 is a smaller upper bound
as compared to the one obtained from (2.2).

Example 2.3. Consider an array T with p'=(1, 2, 1, 1, 4, 3, 2). For all
m in the range 6 < m < 50 we observed (2.2) to be always satisfied (e.g.,
using m = 50, L.H.S. = 1.988602E + 25 and R.H.S. = 3.370953E + 24).
Thus our upper bound on m, according to (2.2), exceeds 50. If we use
(2.4b) with m = 11, we get a contradiction since L.H.S. = 7.372528E + 10,
and R.H.S. - 7.339436E + 10 implying that L.H.S. £ R.H.S. Thus it gives
m < 10, a smaller upper bound.

From the above it is quite clear that no single condition provides us, so far,
with uniformly better results on the number of constraints for all arrays
(our speculation that (2.2) could perhaps be such a condition is obviously
not true).
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