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Abstract

Let [n, k,d], codes be linear codes of length n, dimension & and
minimum Hamming distance d over CF(g). In this paper, the exis-
tence of the following codes is proven: [42,6, 30]s, [49, 6, 36]s, [78,6,60]s,
(84,6, 65]s, [91,6,71]s, [96,6, 75]s, [102, 6, 80]s, [108, 6, 85]s, [114, 6, 90],
and (48, 6, 35]y, [54,6,40]s, [60, 6, 459, [96,6,75]s, [102,6,81]y, [108, 6, $5]s,
(114,6,90]0, [126,6,100]s, [132,6,105]s. The nonexistence of five
codes over GF'(9) is also proven. All of these results improve the
respective upper and lower bounds in Brouwer’s table [2].

1 Introduction

Let GF(q) denote the Galois field of ¢ elements, and let V (n, q) denote the
vector space of all ordered 7-tuples over CF(q). A linear code ¢ of length
n and dimension k over G17(q) is a k-dimensional subspace of V(n,q). Such
a code is called an [n, k, d),-code if its minimum Hamming distance is d.

A central problem in coding theory is that of optimizing one of the
parameters 7,k and d for given values of the other two and ¢ fixed. Two
versions are:

Problem 1: Find dy(n, k), the largest value of d for which there exists
an [n, k, dJg-code.

Problem 2: Find nq(k, d), the smallest value of n for which there exists
an [n, k, d]g-code.
A code which achieves one of these Lwo values is called optimal.
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For the case of linear codes over GF(8), Problem 2 has been solved for
k < 3 (see [6]). In addition Gulliver and Bhargava [5] constructed many
new codes in dimensions k = 4 and 5. New codes are also given in [4] and
[10]. In this paper we consider k = 6, and present nine new quasi-cyclic
(QC) linear codes.

For the case of linear codes over G F(9), much less is known. Bierbraucr
and Gulliver {1] constructed many new codes in dimensions k = 4 and 5.
In this paper we consider k = 6, and present nine new QC linear codes. In
addition, the nonexistence of five codes is proven.

All of these results improve the respective lower and upper bounds in
Brouwer’s tables [2].

2 Preliminary results

Definition 1 The dual code C+ of C is the sel of words oj' length n that
are orthogonal lo ell codewords in C, with respect to the standard inner
product.

Given an [n, k,d], code C, we denote by A; the number of codewords of
weight 7 in C. The ordered (n + 1)-tuple of integers {A,}2 ) is called the
wetght dislribulion or weight enumerator of C.

Theorem 1 [8] (MucWilliatns’ identilies)
Lel an [n, k, d],-code and ils dual code have weight enumnerators {A;}7
and {B;}.q, respectively. Then

Y KiAi=¢*B, for0O<t<n,
i::0

where ,
0 = Y n—1 7 JUNRTY
Kith = 31 (:2) ()@=,

are the Krawichouk polynomials.

Theorem 2 [7] For an [n, k,d],-code B; = 0 for each value of i (where
1 <4 < k) such that there does nol exist an [n — i,k — i+ 1, d]y-code.

The Linear Programming Bound.
The weight enumerator of an [n, k,d],-code C is a feasible solution of
the following linear program (LP)

n
maximize: L= 1 + E A,
o

96



subject to:

EZ=dKl(i)-Ai = —K,(0) t=1,...,dt -1
Yica Ki(?).A¢ 2 -K,(0) t=d,...,n
i 20 i=d,...,n
A = 0 1 € I (the set of absent weights).

It is clear that if L.z < ¢*, then the code C does not exist.

Quasi-Cyclic Codes.

A code C is said to be quasi-cyclic (QC) if a cyclic shift of any codeword
by p positions is also a codeword in C. A cyclic code is a QC code with
p = 1. The length n of a QC code is a multiple of p, i.e., n = mp. With a
suitable permutation of coordinates, many QC codes can be characterized
in terms of (m x m) circulant matrices. In this case, a QC code can be
transformed into an equivalent code with generator matrix

= (Ro; Ry; Ra; .. Rp 1], (1)

where R;,i = 0,1,...,p — 1 is a circulant matrix of the form

0 ™ T2 ' Tm-]
Tm--1 To ™M - Tm-2
R=| ™-2 Twm-1 T0o - Tm-3 | (2)
T Te T3 -+ TO

The algebra of m x m circulant matrices over G [(g) is isomorphic to the
algebra of polynomials in the ring G F(q)[z]/(z™ — 1) il R is mapped onto
the polynomial, r(z) = 7o+ Mz + 12224+« + Tp_12™"}, formed from
the entries in the first row of R [8]. The r;i(z) associated with a QC code
are called the defining polynomials [3).

If the defining polynomials r;(x) contain a common factor which is also
a factor of z™ — 1, then the QC code is called degenerate [3]. Define the
order of this QC code as [9]

m_ 1
ng{xm -1, T‘()(I),T](IC), T rp~1(:z)} )

The dimension of the QC code, k, is equal to the degree of h(x). If h(x) has
degree m, the dimension of the code is mn, and (1) is a generator matrix.
If deg(h(z)) = k < m, a generator matrix for the code can be constructed
by deleting m — k rows ol (1).

For convenience, the coefficients of the defining polynormials are given
as integers. For GF(8), 2 = o,3 = ?,...,7 = o®, where a is a root of the

h(z) = (3)
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binary primitive polynomial z3 + z + 1. For GF(9), 2= 0,3 =a?,...,8 =
a’, where a is a root of the ternary primitive polynomial z2 + z + 2. The
defining polynomials are listed with the lowest degree coefficient on the left,
i.e., 4321 corresponds to the polynomial z3 + 2z2 + 3z + 4.

3 Bounds on minimum distance

Theorem 3 There ezist quasi-cyclic codes with parameters:
[42, 6, 30]g, [49, 6, 36]s, 78, 6, 60, [84, 6, 65]s,
91,6, 71]s, [96, 6, 753, [102, 6, 80]s, (108, 6, 85]s, [114, 6, 90]s.

Proof: The coefficients of the defining polynomials of these codes are as
follows:

1. A [42,6,30]g-code:
000166, 014246, 014765, 001475, 111616, 111246, 011317;

2. A [49,6,36]g-code:
0114273, 0127353, 0104376, 0126117, 0145662, 0001251, 0001433;

3. A [78,6,60)s-code:
001141, 111246, 011317, 113342, 001077, 116756, 013724, 113255, 015737, 014246, 014765,
001475, 111616;

4. A [84,6,65]g-code:
001247, 111145, 113342, 001077, 116756, 013724, 113255, 015737, 014246, 014765, 001475,
111616, 111246, 011317;

5. A [91,6,71]g-code:
0140453, 0014531, 0166455, 1134632, 0101033, 1232413, 0123157, 0127353, 0104376,
0126117, 0145662, 0001251, 0001433;

6. A [96,6,75]g-code:
001132, 015625, 013373, 111145, 113342, 001077, 116756, 013724, 113253, 015737, 014246,
014765, 001475, 111616, 111246, 011317,

7. A (102, 6,80]s-code:
001217, 113133, 015625, 013373, 111145, 113342, 001077, 116756, 013724, | 13255, 015747,
014246, 014765, 001475, 111616, 111246, 011317;

8. A (108, 6,85]s-code:
001504, 116756, 013724, 001225, 113133, 015625, 013373, 111246, 0] 1317, 111145, 113342,
001077, 113285, 015737, 014246, 014765, 001475, 111616,;

9. A [114, 6, 90]g-code:

001035, 015452, 001225, 113133, 015625, 013373, 111145, 113342, 001077, 116756, 013724,
113255, 015737, 014246, 014765, 001475, 111616, 111246, 011317;
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Table 1: New quasi-cyclic codes over GF(8).

N:| code | d | dp || N: code | d | dpr
1 [[426] {30 29| 6 [966] | 75| 71
2 | [49,6] | 36| 34| 7 | [102,6] | 80 | 76
3 {[786)|60| 58] 8 | [1086] | 85 | 81
4 | [84,6) | 65| 63| 9 | [114,6] | 90| 86
5 | [90,6] | 70 | 67

Theorem 4 There exist quasi-cyclic codes wilth paramelers:
(48,6, 35]9, (54, 6, 40], [60, 6, 45}, [96, 6, 75]0,
(102, 6, 81]9, [108, 6, 85]9, [114, 6,909, {126, 6, 100]g, [132, 6, 105]o.

Proof: The coefficients of the defining polynomials of these codes are as
follows: '

1. A [48,6,35]9-code:
000013, 001143, 001144, 013517, 112587, 014857, 128745, 001206;

2. A [54,6,40)9-code:
001538, 127135, G01131, 123685, 112233, 000013, 001041, 123185, 015448;

3. A [60,6,45]y-code:
000013, 123238, 010107, 010832, 001267, 016648, 112367, 016165, 128545, VIBTH;

4. A [96,6,75])g-code:
016018, 113838, 000105, 112245, 014056, 013673, 112743, 116254, 018158, 116367, 126463,
117345, 016258, 113828, 112185, 138385,

5. A (102, 6,81]g-code:
012252, 000017, 111657, 121683, 123823, 113636, 125365, 118535, 014113, 010775, 113743,
113445, 015128, 016883, 015756, 015446, 134647,

6. A [108,6,85]g-code:
112757, 112548, 000113, 010612, 124834, 015881, 017234, 015528, 015661, 131747, 016784,
016572, 017187, 001363, 131628, 121345, 018743, 018838;

7. A [114,6,90])9-code:
000118, 000124, 142746, 146717, 011034, 113182, 018872, 014516, 016884, 111143, 013052,
113176, 113152, 010467, 018878, 123128, 001407, 015887, 124683;

8. A [126,6, 100]g-code:
000154, 112434, 113564, 011828, 013252, 012274, 012878, 010311, 0161 14, 018124, 011525,
014668, 127476, 001482, 001681, 113287, 010726, 017521, 018785, 010331, 014661;

9. A [132,6, 105)9-code:

010126, 600011, 001177, 116465, 000001, 117343, 111764, 113643, 111254, 113714, 010247,
001874, 124234, 118638, 011578, 114823, 131464, 113462, 121748, 001351, 117466, 016263;
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Table 2: New quasi-cyclic codes over GF(9).
code | d | dp || N: code d | dpr

N:

1 [48,6] | 35| 34 || 6 | [108,6] | 85| 82
2 (54,6) [ 40 | 39 |[ 7 | [114,6] | 90 | 87
3| [60,6] 45| 44 || 8 [ [126,6] | 100 | 97
4 (99.6] | 75 | 74 || 9 | [132,6] | 105

5

(102,6] | 81 | 79

Theorem 5 There do not exist codes with parameters:
[75, 6,639, [84, 6, 71]o, (93, 6, 79, [101, 6, 86]9, [110, 6, 94]q.
Proof:

code source
[75,6,63]5 | Limaz = 503480.10 < 9% = 531441
[84,6,71]s | Limaz = 448067.56 < 96
[93,6,79]5 | Limaz = 145021.36 < 96
[101,6,86]5 | linaz = 189425.06 < 95
[110,6,94]5 | Lynaz = 472754.51 < 96

I N e -

Remark: It is very difficult to check the results obtained via the LP bound.
However, for every code in Theorem 5 it can be shown explicitly that the
MacWilliams’ identities have no solution in nonnegative integers.

For example: Let C bea [75,6,63]g code. By Theorem 2 and 2] B =
B; = 0. Denote the first five MacWilliams’ identities by eg, e, ez, €3, €4.
Calculating the next linear combination

(—5350.e0 — 5690.¢,/3 — 171.e2 — 13.e5 — 4.¢4/9)/243,
gives

110.Agq + 120.Ags; + 81.Agg + 35. A7 + 96.A7 + 162. A7y + 200. A5,
+165.A74 + 28431.8B3 + 972.B, = —615600,

which is a contradiction. Therefore [75, 6,63y codes do not exist.

References

(1] J. Bierbrauer and T.A. Gulliver, “New linear codes over GF(9),” Aus-
tral. J. Comb., 21 (2000), 131--140.

[2] A.E. BROUWER, Linear code bound [electronic Lable; online],
http://www.win.tue.nl/” aeb/voorlincod.html.

100



3]
[4]
(5]
[6]
7l
(8]

(9]

[10]

P.P. Greenough and R. Hill, “Optimal ternary quasi-cyclic codes,”
Designs, Codes and Cryplography, 2 (1992), 81-91.

T.A. Gulliver, “New linear codes of dimensions 5 and 6 over GIF(8),”
Ars Combinatoria, 46, (2002), 91-96.

T.A. Gulliver and V.K. Bhargava, “New linear codes over GI(8),”
Appl. Math. Lett., 13 (2000), 17-19.

R. Hill, “Optimal linear codes,” Cryptography and Coding /i, C.
Mitchel, Ed. Oxford, UK: Oxford Univ. Press, (1992), 75-104.

R. Hill and D. E. Newton, “Optimal ternary linear codes,” Designs,
Codes & Crypt., 2 (1992), 137-157.

I7.J. MacWilliams and N.J.A. Sloanc, The Theory of lsrror-Correcling
Codes, North-Holland Publishing Co., New York, NY, 1977.

G.E. Séguin and G. Drolet, “The theory of I-generator quasi-cyclic
codes”, Technical Report, Royal Military College of Canada,
Kingston, ON, 1991].

1. Siap, “New linear codes over G I°(8) and improvements on minimum
distance,” (see references in [2]).

101



