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ABSTRACT. The number g:(,‘) (v) represents the minimum cardi-
nality of a pairwise balanced design on v elements in which the
largest block size is four and every pair occurs exactly 3 times.
We give a survey of the results for this quantity.

1 Introduction

Since this survey is designed for a general audience, we present it in a
leisurely form and include preliminary material that will be familiar to many
readers. We start with a v-set (the elements may be numbered 1,2,...,v),
and consider perfect A-coverings (or pairwise balanced designs) in which
the largest block size is 4 and each pair occurs exactly A times. There will
be a large number of such A-coverings. Clearly the )-covering of maximal
cardinality will include one block of size 4 and all other blocks of size 2; so
this maximal cardinality is A(}) — 5. We are interested in determining the

minimal cardinality, denoted by gff)('u), of such a A-covering.
Example. Take A=1,v=7.
The possible A-coverings arc as follows:
1234, 1567, 25, 26, 27, 35, 36, 37, 45, 46, 47;
1234, 156, 257, 367, 17, 26, 35,45, 46, 47;
1234, 156,257, 9 pairs;
1234, 156, 12 pairs;
1234, 15 pairs.

Clearly, the second of these coverings provides the resuit _(;54) (7) = 10.
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2 Historical Remarks

The quantity g§4)(v) was determined by Stanton and Stinson [8], except
for the values v = 17,18, 19. Later papers determined g§4)(17) = 30 or 31;
9$9(18) = 31 or 32 or 33; g\ (19) = 35. See references [2], [4], 5], (6], [7]-
Recently [1} Grannell, Griggs and Stanton settled the case gg’) (v).

In this survey, I want to present the results for A = 3, which are quite
different from those for A\=1 and A = 2.

We start with the reminder that a Balanced Incomplete Block Design
(BIBD) is a system (v,b,r,k, A) in which
v =number of elements
b =number of blocks
T =frequency of any element
k =size of any block
A =frequency of any pair.

By counting elements and by counting pairs, it immediately follows that
bk=rv, A(v—-1)=r(k-1).
Many years ago, Hanani proved that, for k = 4, any set of parameters

that satisfies these 2 conditions corresponds to a BIBD that exists. Consc-
quently, if we set k =4, A = 3, then there is a BIBD with parameters

(v, ”(”4' D y_1,4,3).

So this design exists if v = 4n or v = 4n+1. Consequently, it immediately
follows that

95" (n) =n(dn — 1),
g_.(;’)(lln +1) =n(dn +1).

In both these cases, all blocks have size 4. So we have only to consider
the cases v =4dn+3, v =4dn + 2.

Before tackling these 2 remaining cases, we establish a very useful bound.
Let g = gf\4)(v) and suppose that the minimal pairwise balanced design
contains g; blocks of length i (i = 2, 3,4). Then
9=g2+g3+94.

Suppose further that the g block lengths are k;, where k; = 2 or 3 or 4.
Thus, there are g blocks of length k; = 2, g3 blocks of length k; = 3, g4
blocks of length k; = 4.
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Then Y7_, (ki — 3)(k; — 4) = 2g2 + Og3 + 0g4 = 2g>.
But 37, (ki —3)(ki — 1) = 2ki(ki —1) — 63 ki + 123" 1.
Now Y ki(ki — 1) = (v —1), X 1=
Also 63" k; = 6 r;, where the r; are the frequencies of the v elements
in the PBD. Clearly,
|'z\(v - l)]
N2 |—a|>

3

= [’\("3_1)} + B,

and so we may write

where FE; is an integer > 0.
By substitution, we obtain

292 = Mv(v — 1) - GZ{P(U ]+E’.~}+129.

Solving for 12g, we obtain Formula (1).
Alv -1
l2g=v{6[ ('03 )1 —/\(v—l)}+GZE,-+292. 1)

3 The Case v=4n+3
Apply Formula (1) to the case A =3, v =4n + 3. Then
129 = (4n + 3){3(4n + 2)} + 6 ) _ Ei + 295,
=48n% +60n + 18+ 6 ) _ E; + 2g,.

Then g > 4n? + 57 + 2.
We can readily remove the possibility of equality. If ¢ = 4n2 + 5n + 2,
we have

g+g3+g1=4n+5n+2,
g2 + 393 + 694 = 3(4n + 3)(2n) = 24n? 4 30n + 9.

It follows that 595 + 3g3 = 3, and so g2 = 0, g3 = 1. Thus there is one
block of length 3, 4n% 4+ 5n + 1 blocks of length 4.

Now consider an element occurring once in the triple, v times in the
quadruples. It must occur with 3(4n + 2) other elements and so

24 3y =3(4dn+2).
This is clearly impossible, and so

g> 1% +5n+3.
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4 A Pseudo-Solution for v =4n 4+ 3

First, we introduce a useful piece of notation. We agree that literal symbols
shall be invariant but that numerical symbols shall cycle according to a
specified modules. Thus, for example, [a, 1,2, 3]s will indicate the set of 5
blocks obtained by cycling modulo 5, that is, the blocks

(e,1,2,3),(a,2,3,4),(a,3,4,5),(a,4,5,1),(a,5,1,2).

It is easy to obtain solutions in 4n2 4+ 5n+4 blocks, and we illustrate the
procedure.

For v = 7, take blocks ab, ab, ab, [a,1,2,3]s, [b,1,2,4]s. Since the nu-
merical differences in these 2 cycles are (1,2,1) and (1,2,2), we see that
every pair occurs exactly 3 times.

Similarly, for » = 11, take blocks ab, ab, ab, [a,1,4, 5, [b,1,3, 6]g, and
(1,2,3,5]9. Here the numerical differences are (3,4,1), (2,4, 3), and (1, 2,4,
1,3,2). So again every pair occurs 3 times.

The case v = 15 is particularly interesting. We get blocks ab, ab, ab,
[@,1,4,5]13, [b,1,3,8}13, and [1,2,4,10]13, [1,2,4,10};3. The 2 sets of nu-
merical triples have differences (3,4,1) and (2,6,5), and so generate the
families Steiner Triple System on 13 points. The 26 quadruples provide 2
copies of PG(2,3) and thus form the BIBD (13,26, 8,4, 2).

This type of pattern continues. For v = 19, we have 3 pairs ab, 17 quadru-
ples [a, 1,5,6]19, 17 quadruples [b, 1,4, 8];7, 51 quadruples [1,2,8,9],7, (1,3,
7,917, and [1,4,6,9]17. The differences from the numerical triples are
(4,5,1) and (3,7,4). The differences from [1,2,8,9] can be represented
by a quadrilateral with sides 1,6, 1,8, and diagonals of 7 and 7; those from
1,3,7,9 by a quadrilateral with sides 2,4, 2, 8, and diagonals of 6 and 6; and
those from 1,4,6,9 by a quadrilateral with sides 3, 5, 3,8, and diagonals 5
and 5.

These PBDs on 4n2 + 5n + 4 points are intimately connected with the
BIBDs having a triplicated block studied by D.A. Precce [3].

5 The Solution is 4n? + 5 + 3 Blocks

As indicated in the last section, a solution in 4n2 + 5n + 4 blocks is rcadily
obtained. We first show that, for v = 7, this is the correct valuec.

Supposc if possible that y:(,'!) (7) = 12. then

g2+ g3+ g4 =12,
g2 + 393 + 694 = 63.

Then 5g2 + 3g3 = 6(12) — 63 = 9, where g3 = 3, g4 = 9. Let an element
occur # times in the triples, 4 times in the quadruples. Then 28+ 3y = 18
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and so (B, v) is either (0, 6) or (3,4). It follows that there are 3 elements of
type (3,4) and thus we have 3 triples abc, abc, abc. But then a, b, c, need

12 quadruples and there are only 9. So g:(f) (7 > 12.

We have seen that 13 blocks suffice and, indeed, the solution is unique.
If we proceed as above, we at once have 5g; + 3g3 = 6(13) — 63 = 15. The
possibilities are go =3, g3 =0, g4 =10, 0r g2 =0, g3 = 5, g4 = 8.

If g3 =5, g4 = 8, and we proceed as before, then (8,v) = (0, 6) or (3,4).
It follows that there are 5 elements of type (3,4), 2 elements of type (0, 6).
These last 2 elements occur only in quadruples, and so produce a pair that
occurs 4 times. Hence the only possibility is go = 3, g4 = 10.

In the last section we gave a solution in 13 blocks, and it turns out that
this is the only exception to the result that

g:(,4)(4n +3) = 4n® 4+ 5n + 3.

We illustrate the construction for n > 1. For n = 2, v = 11, take blocks
as follows.

abe, abe, abc,
2 blocks [1,3,5,7)s
24 blocks [a, 1,4, 5]g, [b,1,2,4]g, [c, 1,2, 4]s.

The 2 blocks produce the 2-difference and the 4-difference. The other
blocks produce the differences 3,4,4,1; 1,3,2; 1, 3,2. Since each difference
occurs 3 times, all pairs occur 3 times, as required.

Similarly, for » = 15, n = 3, we take blocks

abe, abe, abe,

(1,4,7,10];2 (3 blocks)

[a, 1, 3, 5]12, [b, 1,3, 6];2, [C, 1,4, 5]12
(1,2,6,7):2

There are other solutions.

As a final illustration, we take n = 4, v = 19. One solution, of many
available, is

abce, abe, abe,

(1,5,9,13]16 (4 blocks)

(e, 1,3, 716, [b, 1,4, 516, [c, 1,3,6)16
[1,3,6,12]16,[1,2,8,916.

The general pattern for v = 4n + 3 is to have 3 blocks abe, n blocks of 4
numbers, 4n quads with cach of a and b and ¢, 4n(n — 2) numerical quads,
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thus producing the total
3+ n+3(4n) + (n — 2)4n = 4n? 4 5n + 3 blocks

As n increases, the numbecr of solutions goes up very rapidly. Here is one
solution for n =5, v = 23.

abe, abe, abc

[1,6,11,16]20 5 blocks

[a, 1, 2, 4]20, [b, 1, 3, 7]20, [C, 1, 7, 14]20,
(1,2,10,11]50, [1, 4, 8, 16]20, [1, 3,6, 17]20

6 The Case v=4n+2
We apply the bound from Section 2 and find

129 = (4n +2) {6(4n + 1) = 3(dn+ 1)} + 6 > _ E; + 2g,.

Thence, g > 4n2 + 3n + 1.

Suppose, if possible, that go+g3+g4 = 4n%+3n+1. Since go+3g3+6g4 =
4n? + 18n + 3, we deduce that 5go + 393 = 3.

Hence g3 = 1, g4 = 4n? + 3n. But, if an element appears in the single
triple, it must appear with 2 + 3« clements (it appears in v quads). Then
2+ 3y = 3(4n + 1). This is impossible; hence

g> M +3n+2.

Now let g2 + g3 + g4 = 4n%2 + 3n + 2. Then 5g2 + 3g3 = 9. Hence g2 = 0,
g3 = 3, g2 = 4n? 4+ 3n — 1. In general, this will occur but, as might be
expected, the case v = 6 (n = 1) is an exception. If gg')(ﬁ) =9, then we
let 8 and v be the frequencies of an element in triples and quads. Since
26 + 3y = 15, we see that (8,v) = (0,5) or (3,3) or (6,1). But g3 = 3 and
so there are 3 blocks abc; this requires 9 quads to contain the elements a,
b, c.

If g:(,4)(6) = 10, then 592 +3g3 = 15 and go = 3, g4 = 8, or g3 = 5,
ga = 5. The first case requires blocks ab, ab, ab, and this would neccesitate
10 quads. In the second case, 26 + 3y = 15 and (B8,4) = (0, 3) or (3, 3); so
there are 5 elements of type (3, 3), onc clement of type (0, 5). This structure
is easily achieved by using blocks [1,2, 3]s, [1, 2,4, bls. So g§4)(6) = 10. Note
that this is just the solution for v = 7 with clement a deleted.

Now we illustrate the behaviour of blocks for n > 1. In this case g3 = 3,
94 =4n? +3n—1.
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For n = 2 (v = 10), we have 3 triples, 21 quads. The bound is easily met
by taking 3 triples abc along with quads aF, bF, cF, where F is the Fano
geometry.

For n = 3 (v = 14), there must be 44 quads. In this case, we easily con-
struct the covering by taking 3 triples abc, along with 44 quads [a, 1,4, 5]11,
[b,1,5,6]11, [, 1, 3,51, [1,2,4,7)11. There are, of course, other solutions.
Another is [a, 1, 2,4]11, [b, 1,3, 7]11, [C, 1,3,6]11, [1, 2,5, 6]11.

For n = 4 (v = 18), we require 5 sets of quads taken modulo 15. So the
solution has the form

abc (thrice)

15 quads a,z,z,x

15 quads b, z,z,z

15 quads ¢, z,z,z

2 quad systems z,z,z,x

where all elements z cycle mod 15.
The case v = 22 is particularly intercsting. We can use a BIBD to replace
three of the needed quad systems. Thus we may take

abe (thrice)

19 quads [a, 1,4, 5]19

19 quads [b, 1, 3, 1019

19 quads [c, 1,6,12]19

57 quads forming a BIBD (19,57,12,4, 2).

The first 57 quads have dillerences 3,4,1; 2,9,7; 5,8, 6; and so form a
cyclic STS(19).

In general, for v = 4n + 2, we have 3 triples abe, a with a triple cycled
mod 4n — 1, b with a triple cycled mod 4n — 1, ¢ with a triple cycled mod
4n—1, n—2 quads systems cycled mod 4n — 1. This gives the total number
of blocks

3+ (Un-1)B+n—-2)=4n% +3n+2.

7 Remarks and Summary

Of course one can often make usc ol the simplification illustrated in the
last section. For example, if v = 34, we requirc 3 triples abc and 9 quad
systems, as indicated at Lthe end of the last scetion. But there is a BIBD
(31,155, 20,4, 2), and this is equivalent Lo 5 of the required quad systems.
So we can take this BIBD along with 3 triples abe, quads [e,1,9,10]3;,
[6,1,5,11)a1, [¢,1,6,13]a1, [1,3, 14, 17)3.
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It is useful to sum up the results mod 12, as in [8].

v g:(,d)(v) Exceptions
12¢ 36t° — 3t

126 4+1  36t2+ 3t

126 +2 3662 4+9t+2

12t +3  36t2+15t+3

12t +4  36t2+21t4+3

12t +5 36t2+27t+3

120+6  3612+33t+9 g¥(6)=10
126+7 362 +39%t+12 g{(7) =13
12t +8  36t2+45¢t+ 14

1204+9  36t2+51t+ 18

12t +10 362+ 57t + 24

12t +11 36t +63t+ 29
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