Sufficient conditions for super-edge-connected graphs depending on the clique number

Lutz Volkmann

Lehrstuhl II für Mathematik, RWTH Aachen, 52056 Aachen, Germany e-mail: volkm@math2.rwth-aachen.de

Abstract

Let $\delta(G)$ and $\lambda(G)$ be the minimum degree and edge-connectivity of a graph G, respectively. A graph G is maximally edge-connected, if $\lambda(G) = \delta(G)$ and super-edge-connected, if every minimum edge cut consists of edges adjacent to a vertex of minimum degree.

In this paper sufficient conditions for super-edge-connected graphs depending on the clique number and the minimum degree are presented. These results show that some known sufficient conditions for maximally edge-connected graphs even lead to super-edge-connected graphs.

Keywords: super-edge-connectivity, edge-connectivity, clique number, minimum degree

We consider finite, undirected, and simple graphs G with the vertex set V(G) and the edge set E(G). If $v \in V(G)$ is a vertex of a graph G, then let d(v) its degree, and denote by $\delta(G) = \delta$ its minimum degree. For two disjoint sets $X, Y \subset V(G)$ let (X, Y) be the set of edges from X to Y. If $X \subseteq V(G)$, then G[X] is the subgraph induced by X.

An edge-cut of a connected graph G is the set of edges whose removal disconnects the graph G. The edge-connectivity $\lambda(G) = \lambda$ of a graph G is defined as the minimum cardinality of an edge-cut over all edge-cuts of G. The inequality $\lambda(G) \leq \delta(G)$ is immediate. A graph G is maximally

edge-connected, if $\lambda(G) = \delta(G)$. A graph G is called super-edge-connected or super- λ , if every minimum edge cut is trivial, that means, that every minimum edge cut consists of edges adjacent to a vertex of minimum degree. Clearly, if G is super- λ , then G is maximally edge-connected.

The *clique number* of a graph G is the maximum order among the complete subgraphs of G. For other graph theory terminology we follow Chartrand and Lesniak [2].

Sufficient conditions for graphs to be super- λ were given by several authors, for example: Kelmans [8], Lesniak [9], Boesch and Tindell [1], Fàbrega and Fiol [5], [6], Fiol [7], Soneoka [10], and Volkmann [14].

In 1995, Dankelmann and Volkmann [3] gave the following condition for maximally edge-connected graphs with no clique of order p+1, which was first proved by Volkmann [12] for p-partite graphs.

Theorem 1 (Dankelmann, Volkmann [3]). Let G be a graph of order n with minimum degree δ and edge-connectivity λ . If G contains no clique of order p+1 and

$$n\leq 2\left|\frac{p\delta}{p-1}\right|-1,$$

then $\lambda = \delta$.

We will show that graphs which fulfill the conditions of Theorem 1, in the most cases are even super- λ . We start with a more or less known lemma, however, for reason of completeness, we give its short proof.

Lemma 2. Let G be a graph of edge-connectivity λ . If G is not super- λ , then there exist two disjoint sets $X,Y \subset V(G)$ with $X \cup Y = V(G)$ and $|(X,Y)| = \lambda$ such that $|X|, |Y| \ge \max\{2, \delta(G)\}$.

Proof. Since the graph G is not super- λ , there exist two disjoint sets $X,Y\subset V(G)$ with $X\cup Y=V(G)$ and $|(X,Y)|=\lambda$ such that $|X|,|Y|\geq 2$. Consequently, the lemma is proved for $\delta(G)=\delta\leq 2$. Now let $\delta\geq 3$ and suppose, without loss of generality, that $2\leq |X|\leq \delta-1$. Then we obtain the contradiction

$$\begin{aligned} |X|\delta &\leq \sum_{x \in X} d(x) &\leq &|X|(|X|-1) + \lambda \\ &\leq &(\delta-1)(|X|-1) + \delta. \ \ \Box \end{aligned}$$

Our main lemma is based on the following inequality. Its proof is

Proposition 3. If $2a = m + \eta$ such that $m \ge 4$ is an integer and $\frac{1}{m-2} < \eta < 1$, then

$$a + \sqrt{a^2 - 2a} > \lfloor 2a \rfloor - 1.$$

Lemma 4. Let G be a graph with no complete subgraph of order p+1, minimum degree $\delta \geq 3$ and edge-connectivity λ . If G is not super- λ , then there exist two disjoint subsets $X,Y \subset V(G)$ with $X \cup Y = V(G)$ and $|(X,Y)| = \lambda$ such that

$$\begin{split} |X|,|Y| & \geq & \left\lfloor \frac{p\delta}{p-1} \right\rfloor - 1, \text{ if } \delta = p \text{ or } \delta = k(p-1), \\ |X|,|Y| & \geq & \left\lfloor \frac{p\delta}{p-1} \right\rfloor, \text{ otherwise.} \end{split}$$

Proof. In view of Lemma 2, there exist two disjoint sets $X,Y \subset V(G)$ with $X \cup Y = V(G)$ and $|(X,Y)| = \lambda$ such that $|X|, |Y| \ge \delta$. In the case $p \ge \delta + 2$, it is a simple matter to show that $|X|, |Y| \ge \delta \ge \lfloor \delta p/(p-1) \rfloor$, and in the case $\delta \le p \le \delta + 1$, we observe that $|X|, |Y| = \delta \ge \lfloor \delta p/(p-1) \rfloor - 1$. Thus, it remains to prove Lemma 4 for $p \le \delta - 1$.

By reason of symmetry, it is enough to prove the desired bounds for the set X. Since the subgraph G[X] contains no complete subgraph of order p+1, the well-known Theorem of Turán [11] (see also [13], p. 212) yields

$$2|E(G[X])| \le \frac{p-1}{p}|X|^2$$

and hence, with x = |X|, we deduce that

$$\delta \geq \lambda = |(X,Y)| = \sum_{v \in X} d(v) - 2|E(G[X])| \geq \delta x - \frac{p-1}{p} x^2.$$

Consequently, it follows that

$$x^2 - \frac{p\delta}{p-1}x + \frac{p\delta}{p-1} \ge 0.$$

The roots of the corresponding quadratic equation are

$$x_1=rac{p\delta}{2(p-1)}+\sqrt{\left(rac{p\delta}{2(p-1)}
ight)^2-rac{p\delta}{p-1}}$$

and

$$x_2 = \frac{p\delta}{2(p-1)} - \sqrt{\left(\frac{p\delta}{2(p-1)}\right)^2 - \frac{p\delta}{p-1}}.$$

Because of $p \le \delta - 1$, we observe that $x_2 < \delta$, and so, in view of Lemma 2, we conclude that $x \ge x_1$. This implies

$$x \geq \frac{p\delta}{2(p-1)} + \sqrt{\left(\frac{p\delta}{2(p-1)} - 1\right)^2 - 1}$$

$$> \frac{p\delta}{2(p-1)} + \frac{p\delta}{2(p-1)} - 2$$

$$= \frac{p\delta}{p-1} - 2.$$

Hence, $|X| \ge \lfloor p\delta/(p-1) \rfloor - 1$, and the lemma is proved for $\delta = p$ and $\delta = k(p-1)$.

Next we consider the case $\delta = k(p-1) + r$ with $k \in \mathbb{N}$ and $1 \le r \le p-2$. We define

$$2a = \frac{p\delta}{p-1} = pk + \frac{rp}{p-1} = pk + r + \frac{r}{p-1} = m + \eta,$$

with $\eta = r/(p-1)$. Since k = r = 1 is not possible, it is straightforward to verify that $m = pk + r \ge 4$ and

$$1 > \eta \ge \frac{1}{p-1} > \frac{1}{p} \ge \frac{1}{m-2}$$
.

Using Proposition 3 with m = pk + r and $\eta = r/(p-1)$ and the fact that $|X| \ge x_1$, we obtain $|X| \ge \lfloor p\delta/(p-1) \rfloor$. This completes the proof of Lemma 4. \square

Remark 5. For $\delta=1$, the bounds in Lemma 4 are not of interest. The cycle C_4 of length 4 shows that the bound in Lemma 4 is not valid for $\delta=p=2$, and in the case $\delta=2$ and $p\geq 3$, the lower bounds for |X| and |Y| in Lemma 4 would be 2, as in Lemma 2.

Corollary 6. Let G be a graph of order n with minimum degree $\delta \geq 3$ and edge-connectivity λ . If G contains no clique of order p+1 and

$$n \le 2\left\lfloor \frac{p\delta}{p-1} \right\rfloor - 3$$
, if $\delta = p$ or $\delta = k(p-1)$, $n \le 2\left\lfloor \frac{p\delta}{p-1} \right\rfloor - 1$, otherwise,

then G is super- λ .

Corollary 7 (Fiol [7]). Let G be a bipartite graph of order n with minimum degree $\delta > 3$ and edge-connectivity λ . If

$$\delta \geq \left\lfloor \frac{n+2}{4} \right\rfloor + 1,$$

then G is super- λ .

Using Lemma 4, one can prove analogously to Theorem 3 in [4], the following degree sequence condition for graphs to be super- λ .

Corollary 8. Let G be a graph of order n with no complete subgraph of order p+1, with degree sequence $d_1 \geq d_2 \geq \ldots \geq d_n = \delta \geq 3$, and edge-connectivity λ .

1. Case. Let $\delta = p$ or $\delta = t(p-1)$ with $t \in \mathbb{N}$. If $n \le 2\lfloor \delta p/(p-1) \rfloor - 3$ or $n \ge 2\lfloor \delta p/(p-1) \rfloor - 2$ and

$$\sum_{i=1}^{k} d_i + \sum_{i=1}^{(2p-1)k} d_{n+1-i} \ge k(p-1)n + 2\delta + 1$$

for k=1 when $\delta=p$ and for some k with $1 \le k \le \lfloor \delta/(p-1) \rfloor - 1$ when $\delta=t(p-1)$, then G is super- λ .

2. Case. Let $\delta \neq p$ and $\delta \neq t(p-1)$ with $t \in \mathbb{N}$. If $n \leq 2\lfloor \delta p/(p-1) \rfloor - 1$ or $n > 2\lfloor \delta p/(p-1) \rfloor$ and

$$\sum_{i=1}^{k} d_i + \sum_{i=1}^{(2p-1)k} d_{n+1-i} \ge k(p-1)n + 2\delta + 1$$

for some k with $1 \le k \le \lfloor \delta/(p-1) \rfloor$, then G is super- λ .

References

- [1] F. Boesch and R. Tindell, Circulants and their connectivities, J. Graph Theory 8 (1984), 487-499.
- [2] G. Chartrand and L. Lesniak, Graphs and Digraphs, 3rd Edition, Wadsworth, Belmont, CA, 1996.
- [3] P. Dankelmann and L. Volkmann, New sufficient conditions for equality of minimum degree and edge-connectivity, Ars Combin. 40 (1995), 270-278.
- [4] P. Dankelmann and L. Volkmann, Degree sequence conditions for maximally edge-connected graphs depending on the clique number, Discrete Math. 211 (2000), 217-223.

- [5] J. Fàbrega and M.A. Fiol, Maximally connected digraphs, J. Graph Theory. 13 (1989), 657-668.
- [6] J. Fàbrega and M.A. Fiol, Bipartite graphs and digraphs with maximum connectivity. Discrete Appl. Math. 69 (1996), 271-279.
- [7] M.A. Fiol, On super-edge-connected digraphs and bipartite digraphs,J. Graph Theory. 16 (1992), 545-555.
- [8] A.K. Kelmans, Asymptotic formulas for the probability of k-connectedness of random graphs, Theor. Probability Appl. 17 (1972), 243-254.
- [9] L. Lesniak, Results on the edge-connectivity of graphs, Discrete Math. 8 (1974), 351-354.
- [10] T. Soneoka, Super edge-connectivity of dense digraphs and graphs, Discrete Appl. Math. 37/38 (1992), 511-523.
- [11] P. Turán, An extremal problem in graph theory, Mat.-Fiz. Lapok 48 (1941), 436-452 (in Hungarian).
- [12] L. Volkmann, Edge-connectivity in p-partite graphs, J. Graph Theory 13 (1989), 1-6.
- [13] L. Volkmann, Foundations of Graph Theory, Springer-Verlag, Wien New York (1996) (in German).
- [14] L. Volkmann, Degree sequence conditions for super-edge-connected graphs and digraphs, Ars Combin., to appear.