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Abstract

Let 6(G) and A(G) be the minimum degree and edge-connectivity
of a graph G, respectively. A graph G is maximally edge-connected,
if M(G) = §(G) and super-edge-connected, if every minimum edge
cut consists of edges adjacent to a vertex of minimum degree.

In this paper sufficient conditions for super-edge-connected graphs
depending on the clique number and the minimum degree are pre-
sented. These results show that some known sufficient conditions for
maximally edge-connected graphs even lead to super-edge-connected
graphs.
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We consider finite, undirected, and simple graphs GG with the vertex set
V(G) and the edge set E(G). If v € V(G) is a vertex of a graph G, then
let d(v) its degree, and denote by §(G) = § its minimum degree. For two
disjoint sets X,Y C V(G) let (X,Y) be the set of edges from X to Y. If
X C V(G), then G[X] is the subgraph induced by X.

An edge-cut of a connected graph G is the set of edges whose removal
disconnects the graph G. The edge-connectivity A(G) = A of a graph G
is defined as the minimum cardinality of an edge-cut over all edge-cuts of
G. The inequality A\(G) < §(G) is immediate. A graph G is mazimally
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edge-connected, if A(G) = §(G). A graph G is called super-edge-connected
or super-A, if every minimum edge cut is trivial, that means, that every
minimum edge cut consists of edges adjacent to a vertex of minimum degree.
Clearly, if G is super-), then G is maximally edge-connected.

The cliqgue number of a graph G is the maximum order among the
complete subgraphs of G. For other graph theory terminology we follow
Chartrand and Lesniak [2].

Sufficient conditions for graphs to be super-A were given by several
authors, for example: Kelmans [8], Lesniak [9], Boesch and Tindell [1],
Fabrega and Fiol [5], [6], Fiol [7], Soneoka [10], and Volkmann [14].

In 1995, Dankelmann and Volkmann [3] gave the following condition for
maximally edge-connected graphs with no clique of order p + 1, which was
first proved by Volkmann [12] for p-partite graphs.

Theorem 1 (Dankelmann, Volkmann [3]). Let G be a graph of order
n with minimum degree § and edge-connectivity A. If G contains no clique

of order p+ 1 and
n< 2l;p6—J -1,
then A =4.

We will show that graphs which fulfill the conditions of Theorem 1,
in the most cases are even super-A. We start with a more or less known
lemma, however, for reason of completeness, we give its short proof.

Lemma 2. Let G be a graph of edge-connectivity A. If G is not super-\,
then there exist two disjoint sets X,Y C V(G) with X UY = V(G) and
|(X,Y)] = A such that | X|, [Y| > max{2,6(G)}.

Proof. Since the graph G is not super-\, there exist two disjoint sets
X,Y CV(G) with XUY = V(G) and |(X,Y)| = A such that |X|,|Y]| > 2.
Consequently, the lemma is proved for §(G) = 4 < 2. Now let § > 3 and
suppose, without loss of generality, that 2 < |X| < § — 1. Then we obtain
the contradiction

IX16< Y dz) < IX|(X[—1)+A
zeX

IA

(6 -1)(IX]-1)+46. O

Our main lemma is based on the following inequality. Its proof is



Proposition 3. If 2a = m + n such that m > 4 is an integer and

;-1_—2<7)<1, then
a+ vVa?-2a>|2a|-1.

Lemma 4. Let G be a graph with no complete subgraph of order p + 1,
minimum degree § > 3 and edge-connectivity A. If G is not super-A, then
there exist two disjoint subsets X,Y C V(G) with X UY = V(G) and
|(X,Y)| = A such that

XLIYy > L%I-J—l, if §=pord=k(p—1),

lLJ—J , otherwise.
p—1
Proof. In view of Lemma 2, there exist two disjoint sets X,Y C V(G)
with X UY = V(G) and |(X,Y)| = A such that |X|,|Y| > 4. In the case
p > &+2, it is a simple matter to show that |X|,|Y| > é > [dp/(p—1)], and
in the case § < p < § + 1, we observe that |X|,|[Y| =6 > |dp/(p-1)] - L.
Thus, it remains to prove Lemma 4 for p < 4§ — 1.

By reason of symmetry, it is enough to prove the desired bounds for the
set X. Since the subgraph G[X] contains no complete subgraph of order
p+ 1, the well-known Theorem of Turén [11] (see also [13], p. 212) yields

X1, 11

v

2AB(GIXD| < B IxP

and hence, with z = |X|, we deduce that

52 2= |(x,¥)|= Y d(v) - 2EGIX])| 2 6z - £ 12
veX

Consequently, it follows that

z? - ) z+ pé > 0.

p-1 p—1~

The roots of the corresponding quadratic equation are

= 2(130i nt \/(wpf 1))2 B ppfl

== E(Tpi_li - \/(2(139i 1))2 - pp—sl‘

and




Because of p < § — 1, we observe that z; < J, and so, in view of Lemma 2,
we conclude that z > z,. This implies

pé pé
> -1 Tap-1) 2
- »

- B

Hence, |X| > |pd/(p—1)] — 1, and the lemma is proved for § = p and
d=k(p-1).

Next we consider the case § = k(p—1)+rwithk € Nand 1 < r < p—2.
We define

po rp r
2a= 2 gkt P kg
p—-1 P p-—1 P p—-

T =man,

with n = r/(p—1). Since k = r = 1 is not possible, it is straightforward to
verify that m = pk 4+ r > 4 and

1 1 1
1>9> pTl > ; > e
Using Proposition 3 with m = pk + r and n = r/(p — 1) and the fact

that |X| > z;, we obtain |X| > |pé/(p — 1)]. This completes the proof of
Lemma 4. O

Remark 5. For § = 1, the bounds in Lemma 4 are not of interest. The
cycle Cy of length 4 shows that the bound in Lemma 4 is not valid for
6 =p=2, and in the case § = 2 and p > 3, the lower bounds for |X| and
[Y| in Lemma 4 would be 2, as in Lemma 2.

Corollary 6. Let G be a graph of order n with minimum degree § > 3
and edge-connectivity A. If G contains no clique of order p+ 1 and

3
IA

pé o & o
2[?—1J—3’ ifd=pord=k(p-1),

n < 2|‘A1 — 1, otherwise,

then G is super-\.



Corollary 7 (Fiol [7]). Let G be a bipartite graph of order n with
minimum degree § > 3 and edge-connectivity A. If

n+2
52[ 2 J+1,

then G is super-A.

Using Lemma 4, one can prove analogously to Theorem 3 in [4], the
following degree sequence condition for graphs to be super-A.

Corollary 8. Let G be a graph of order n with no complete subgraph
of order p + 1, with degree sequence dy > dz > ... > d, = > 3, and
edge-connectivity A.
1. Case. Let 6 =pord=1t(p—1) witht € N. If n < 2|0p/(p—1)] -3
orn>2|ép/(p—1)] — 2 and
k (2p-1)k
Sodi+ Y dnyr-i 2 k(p—1)n+25+1
i=1 i=1
for k = 1 when 6 = p and for some k with 1 < k < [§/(p— 1)} — 1 when
d =t(p — 1), then G is super-A.
2. Case. Let § # pand § #t(p—1) witht € N. If n < 2|dp/(p-1)| -1
orn > 2|dp/(p—1)] and
k (2p—-1)k
dodi+ D dnyr-i 2 k(p-n+25+1
i=1 i=1

for some k with 1 < k < |§/(p— 1)}, then G is super-A.
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