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Abstract
We establish necessary and sufficient conditions on m and = for
Km x Kn, the Cartesian product of two complete graphs, to be
decomposable into cycles of length 8. We also provide a complete
classification of the leaves which are possible with maximum pack-
ings of complete graphs with 8-cycles.

1 Introduction

All graphs considered in this paper are finite and have no loops or multiple
edges. The Cartesian product of two graphs, G; and G, is the graph
G1 x G2 having vertex set V(G1) x V(G2) and in which vertex (u;,us;) is
adjacent to (vy,v2) if and only if either u; = v; and u; is adjacent to v, in
Ga, or uz = v, and u; is adjacent to v; in G;.

A cycle is a 2-regular connected graph (or subgraph of a graph). A t-
cycle is a cycle containing exactly ¢ edges, and is denoted by C;. A t-cycle
decomposition of a graph G consists of a set of ¢-cycles of G which partition
the edge set of G. A pure cycle in K, X K, is a cycle whose edges are all
contained within one copy of K, or one copy of K,,.

In [5], it was shown that the necessary conditions for a decomposition
of Kiy X K, into cycles of length 4 are sufficient. In [3] it was established
that the necessary conditions for a 6-cycle decomposition of K, x K,, are
also sufficient. In this paper we extend the study of cycle decompositions
of graph products by proving that the conditions which are necessary for a
decomposition of K, x K, into cycles of length 8 are sufficient. Noting that
Km x Ky, is isomorphic to the line graph of K, , we also determine the
necessary and sufficient conditions for L(K,, ») to be 8-cycle decomposable.
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In order to consider whether it is possible to decompose Cartesian prod-
ucts of complete graphs into cycles of length 8, we first must have an aware-
ness of which complete graphs are 8-cycle decomposable. In cases where
the complete graph K, does not decompose into 8-cycles, we will need to
know what leaves can be obtained from various packings of K,, where a
packing of K, with 8-cycles consists of a set of edge-disjoint 8-cycles and
the corresponding leave consists of the set of edges not used by the cycles
of the packing. In particular, we establish the complete set of leaves which
are realizable from maximum packings of complete graphs with 8-cycles,
thereby extending earlier findings of Grinstead [4].

In establishing our results, we will make use of the following result of
Sotteau [7]:

Theorem 1 The graph K, n, is t-cycle decomposable if and only if t > 4,
m=n=t=0 (mod2),t<2m,t<2n, andt divides mn.

In particular, the following corollary of this theorem will be frequently
referenced:

Corollary 1 The graph K n is 8-cycle decomposable if and only if m =
n=0 (mod2), m >4, n >4, and 8 divides mn.

2 Leaves for 8-Cycle Packings of K,

It is known that K, is completely decomposable into cycles of length 8 if and
only if n = 1 (mod 16) [1, 6]. Grinstead [4] has provided an outline of how
to establish the size of a minimum leave when 8-cycles are removed from
Ky, for n # 1 (mod 16). Continuing from Grinstead, we now establish the
complete set of possible smallest leaves, a summary of which is presented
in Table 1.

2.1 When n is even

When n is even, the leave which remains after removing a maximum number
of 8-cycles from K, must be a subgraph for which each vertex has odd
degree. Thus there must be at least 5 edges remaining. For n = 0 or 2
(mod 8), with n > 8, Grinstead showed that there are precisely 5 edges in
the leave. Thus, for n = 0 or 2 (mod 8), the leave is a 1-factor when n > 8
(of course, if n < 8, then the leave is K, itself).

For n = 4 or 6 (mod 8), with n > £, the number of edges in the leave
is %9, which is four more than would be in a 1-factor. There are 22 such
potential leaves, which have been illustrated in [2, page 229]. Leaves X,
and X0 (as denoted in [2]) require at least 14 vertices, while each of the
other twenty require twelve or fewer vertices.
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n (mod 16) Leave in K,

0 1-factor

1 )

2 1-factor

3 Cs

4 4 edges more than a 1-factor
5 10 edges

6 4 edges more than a 1-factor
7 Cs

8 1-factor

9 Cy

10 1-factor

11 7 edges

12 4 edges more than a 1-factor
13 6 edges

14 4 edges more than a 1-factor
15 9 edges

Table 1: A summary of the leaves when the maximum number of 8-cycles
are removed from K,, n > 8.

To show that each of these 22 potential leaves is, in fact, attainable, let
n = 8k + ¢, where £ € {4,6} and k¥ > 1. If k > 2, then K,,_;> decomposes
into 8-cycles with a 1-factor leave. So, for k > 2, consider the vertex
set of K, as V = AU B, the disjoint union of a set A having cardinality
n — 12 and a set B having cardinality 12. The subgraph induced by A can
be decomposed into 8-cycles with a 1-factor leave and, from Corollary 1,
the edges in the complete bipartite graph with bipartition (A4, B) can be
completely decomposed into 8-cycles. To finish our decomposition of K,
we now consider just the subgraph induced by B; that is, we consider K.

So, for k > 2 and for leaves other than Xp or Xoo, it suffices to show
that the leave is attainable in K;2. We tested both Kj, and K4 and
determined that each of the twenty leaves on twelve or fewer vertices is
indeed attainable.

For leaves Xy and X0, and for k > 3, choose V = AWUB where A
contains n — 20 vertices and B has cardinality 20. Then, as before, the
subgraph of K,, induced by A will have a 1-factor leave when packed with
a maximum number of 8-cycles. The subgraph induced by B is now Kz,
for which we verified that leaves Xp and X3 are both attainable. We also
verified that they can be obtained in K14 and Kp;.
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2.2 When n =3, 7, 11, or 15 (mod 16)

For the given values of n, the possible configurations of the edges remaining
after taking a maximum 8-cycle packing of K,, are very important when
considering the decompositions of the Cartesian products. Not only is the
leave itself important, but the manner in which the leave is obtained in K,
is also crucial. In many instances we will wish to reclaim 8-cycles that were
previously removed in the maximum packing to carry out the decomposition
of the Cartesian products. We also wish to show that a complete bipartite
graph isomorphic to K44 can also be reclaimed in several cases. To show
that this is possible, we use the map outlined by Grinstead [4] and establish
the leaves in K, in an inductive fashion.

The inductive loop begins with n = 11 (mod 16), where we have an
8-cycle packing with a C7 leave on seven vertices, 23LL disjoint sets of
eight vertices in which the 8-cycles of the packing induce K44, and four
additional vertices. We examine K,; itself to establish the initial leaves
possible, so in essence we begin with n = 16k + 11, where £ = 0. Number
the vertices in K; from 1 to 11 and extract the following 8-cycles:

(3,7,10,6,11,8,5,9) (1,10,4,7,2,5,3,11) (1,8,3,10,2,11,4,9)
(1,6,4,8,2,9,1,7)  (1,4,3,2,6,8,10,5) (1,2,4,5,7,9,6,3).

Note that K; has 55 edges, so after removing these six 8-cycles there are
seven edges remaining. The packing of K;; presented produces the C; leave
(5,6,7,8,9,10,11), which is the leave we use to start the inductive loop.
So we begin with eleven vertices, seven of which take part in a 7-cycle and
the other four have no edges. By taking different packings, we can obtain
alternate 7-edge leaves in K, consisting of combinations of 3- and 4-cycles.
These alternate configurations, which we confirmed were attainable in any
K, with n = 11 (mod 16), are presented in Figure 1.

AN

Figure 1: The non-C7 7-edge leave configurations possible for K,, n = 11
(mod 16).

To proceed to the next step we add four vertices, numbered 12 through
15. This takes us to K,, n = 15 (mod 16), where the four new vertices
have a copy of K, as well as edges to all of the starting vertices. The edges
between the new vertices and vertices 1 through 4 form a complete bipar-
tite graph isomorphic to K44 with bipartition ({1,2, 3,4}, {12,113, 14,15}),
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which is 8-cycle decomposable by Corollary 1. Between the four new ver-
tices and each of the original sets of eight vertices, we obtain the 8-cycles of
a K, g as per Corollary 1. We now establish the leave in n = 15 (mod 16) by
examining the edges contained on vertices 12 through 15, between vertices
{12,13,14,15} and {5,6,7,8,9,10,11}, and the 7-cycle (5,6,7,8,9,10,11).
From these edges we remove the four 8-cycles

(12,8,14,11,5,15,13,10) (12,7,14,6,13,11,15,9)
(12,5,13,9,14,10,15,6) (12,14,5,6,7,13,8,15)

and are then left with the 9-cycle (7,8,9,10,11,12,13,14,15). Figure 2
illustrates the leave construction in this step with a generic starting point
of n =11 (mod 16), with the vertices numbered appropriately. The groups
of eight that are labelled in the diagram represent sets of vertices on which
the 8-cycles of the packing yield copies of K, 4, which there are none of in
this first pass through the inductive loop; these are present in subsequent
passes when 8-cycles are collected. The vertices that hold the 9-cycle leave
are indicated, and vertices which form the bipartition of a K4 4 are shaded
in the diagram. In Table 2 we present a complete list of other 9-edge leave
configurations, each of which we confirmed to be attainable in any K, with
n = 15 (mod 16).

Figure 2: The first step in the inductive loop: obtaining a Cy leave for
n =15 (mod 16).

We proceed now to n = 3 (mod 16) by adding four vertices numbered 16
through 19. Along with the six edges of the K, induced by the new vertices,
we also have the 9-edge leave from the previous step, as well as the edges
between the four new vertices and the first 15 vertices to work with. Note
that within this construction the edges between vertices 16 through 19
and vertices 1 through 6 constitute a complete bipartite graph isomorphic
to K46 with bipartition ({16,17,18,19}, {1,2,3,4,5,6}), which is 8-cycle
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Cycle
Combinations

o |OA[CA[ATR]D
G| Q{:’I ®<>> %

GrarG | AVA | WA | TV

Table 2: All possible non-Cy 9-edge leaves for K,, n = 15 (mod 16).

Possible Leave Configurations

decomposable by Corollary 1. We also use Corollary 1 to decompose the
copies of Ky g induced by vertices 16 through 19 and the original sets of
eight vertices. After removing these edges we are left with the Cj leave,
the newly introduced Kj, and the edges between vertices 16 through 19
and vertices 7 through 15. This totals 51 edges, which we can decompose
into six 8-cycles and one 3-cycle. By removing an appropriate packing of
8-cycles we can obtain the 3-cycle (11,16,17). Note that, with only three
edges, the only possible leave is a 3-cycle. The packing which accomplishes
this consists of the following 8-cycles:

(18,19,15,7,8,9,10,11)  (17,13,18,14,16,19,11,12)
(17,15,18,12,16,13,19,14) (17,18,16,15,14,13,12,19)

along with a complete bipartite graph isomorphic to K4 with bipartition
({16,17,18,19},{7,8,9,10}), to which we apply Corollary 1. This addition
of vertices and generation of the leave is illustrated in Figure 3. The newly
constructed copy of K44 is highlighted by shading of the vertices which
form the bipartition, and the vertices containing leaves from both steps are
also indicated.

The next step involves determining a 5-edge leave in K, where n = 7
(mod 16), for which a 5-cycle is the only possible configuration. We enter
this step by first adding vertices 20 through 23. To establish the leave
we consider the edges of the K4 induced by the four new vertices, the C;
leave from the previous step, and the edges between vertices 20 through
23 and four other vertices, which can be arbitrarily chosen, as long as they
do not include the seven vertices in {11, 16,17, 20, 21, 22, 23} already under
consideration. Without loss of generality, we choose these vertices to be
{1,2,3,4}. From these edges we extract the following four 8-cycles:

(17,11,22,3,20,1,21,23) (17,20,4,21,16,23,1,22)
(11,16,20,22,4,23,2,21) (17,16,22,2,20,23,3,21).
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Figure 3: The second step in the inductive loop: obtaining a Cj leave for
n = 3 (mod 16).

With this packing the leave is the 5-cycle (11,20,21,22,23). The edges
between vertices {20, 21,22,23} and the remaining numbered vertices con-
stitute a complete bipartite graph isomorphic to K432 with bipartition
({20,21,22,23},{5,6,7,8,9,10,12,13, 14,15, 18,19}), which can be decom-
posed into 8-cycles by Corollary 1. To finish this step, the edges between
the four new vertices and each of the original sets of eight vertices form
copies of Ky g, which can be decomposed using Corollary 1. This step of
the inductive cycle is shown in Figure 4, where the vertices for all of the
leaves up to this point are circled, and the vertices of the K, 4 established
in the previous step are shaded.

Figure 5 depicts the final step of the inductive loop. Since, with K,
we started with zero groups of 8-cycles and eleven vertices, seven of which
contained a C7 and the other four had no edges, we wish to show in this
step that a configuration similar to that of the starting point is attainable.
Hence we add four new vertices and assign them numbers from 24 through
27. With this addition we examine K,,, n = 11 (mod 16), and as a result
have edges from these vertices to the first twenty-three vertices, along with
the 5-cycle (11, 20, 21, 22, 23) from the previous step, and the edges between
these new vertices and the original sets of eight vertices. We use the edges
of the K4, the 5-cycle and the edges between the vertices with these edges
to determine the leave. From these edges we remove the 8-cycles

(24,21,25,26,11,27,22,23) (24, 26,27, 20, 11, 23, 25, 22)
(24, 25,27, 23, 26, 22, 21, 20)

for which the leave is the 7-cycle (24,27, 21, 26, 20, 25, 11). The other edges
present are decomposed by applying Corollary 1 to the complete bipartite
graph isomorphic to K4,15 with bipartition ({24, 25, 26, 27}, {1,2,3,4, 5,6,
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Figure 4: The third step in the inductive loop: obtaining a Cjs leave for
n =7 (mod 16).

7,8,9,10,12,13,14,15,16,17, 18, 19}), as well as to the copies of K4 g that
are induced by the four new vertices and the original sets of eight vertices.

We have now obtained a maximum 8-cycle packing of K, with n = 11
(mod 16). In this packing, the original disjoint sets of eight vertices (each
containing a copy of Kj4) are still present, and are now joined by two
additional disjoint sets of eight vertices, having vertex sets {1,2,3,4,12,13,
14,15} and {7,8,9,10,16,17,18,19}. We also have the 7-cycle (24,27,21,
26, 20, 25,11), and a set of four vertices, namely {5,6,22, 23}, which are
disjoint from the 7-cycle as well as each of the sets of eight vertices on which
we have copies of K4,4. Hence the inductive loop is complete.

23 Whenn=1,5,9, or 13 (mod 16)

To establish the smallest possible leaves in K, forn =1, 5, 9, or 13 (mod
16), we use an inductive loop similar to that used in Section 2.2. For any
given step in either loop, the method used to advance to the next step is
the same, and so the diagrams presenting individual steps in the loop for
Kn, n =11, 15, 3, or 7 (mod 16) are illustrative of the steps in this loop.

We begin with n = 1, for which it is apparent that we are able to obtain
an 8-cycle decomposition of K, such that on each of "—;—1 disjoint sets of
eight vertices the decomposition induces a K4 4. The graph also contains a
single vertex, disjoint from each of these sets of eight vertices; we label this
vertex with number 1.
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Figure 5: The fourth and final step in the inductive loop: obtaining a C7
leave for n = 11 (mod 16).

We now add four vertices, numbered 2, 3, 4, and 5 to proceed to the
next step where n = 5 (mod 16). The edges between the four new vertices
and each of the original disjoint sets of eight vertices induce copies of K4 g,
which can be decomposed into 8-cycles using Corollary 1. The six edges
of the K4 induced by the new vertices along with the four edges between
vertex 1 and the four new vertices is actually a complete graph on five
vertices, K5, which is taken as the leave. Note that in subsequent passes
through the inductive loop when n > 5, different 10-edge leaves become
realizable as more vertices become available. Table 3 lists the potential 10-
edge leaves for K,,, n = 5 (mod 16). Most of the leaves lie on more than five
vertices, and so they cannot be realized in K. Therefore K2; was checked
and it was confirmed that the leave configurations were all attainable. To
see that a leave attainable in K, where n > 21 is also attainable for any
n =5 (mod 16), n > 5, consider n = 16k + 5. Note that

n = 16k+5 = 16(k—1)+21.

Create two groups of vertices, one with 20 vertices and the other with
16(k — 1) + 1. So we have divided our complete graph into two complete
graphs, Ko and Kjg(x-1)+1 With edges between each pair of vertices of
these two graphs. The complete graph Kjg(x—1)+1 completely decomposes
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Table 3: All possible 10-edge leaves for K, n = 5 (mod 16).

into 8-cycles. Now choose an arbitrary vertex in the group of 16(k — 1) +1,
and call it v. The edges between the remaining 16(k — 1) vertices and the
other set of 20 form a complete bipartite graph isomorphic to K20,16(k-1)
and can be decomposed into copies of C3 by Corollary 1. We have now
decomposed all of the edges of K, except for the edges in K5y and the
edges between K3p and vertex v, which is just K. Hence if a leave is
realizable in K3, then it is realizable in K, n = 5 (mod 16), for any n
such that n > 5.

The next step in the loop, n = 9 (mod 16), is reached by adding vertices
numbered 6, 7, 8, and 9. Corollary 1 is used to decompose the copies of K. 4,8
induced by vertices 6 through 9 and the original sets of eight vertices. Note
that the vertices added induce the complete graph Kj, and along with the
K5 leave from the previous step as well as the edges between the vertices
of these graphs we obtain Kjp, the complete graph on nine vertices. The
graph of Ky has 36 edges, and so a leave with four edges should remain
after removing a maximum 8-cycle packing. From this Ky we remove the
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following four 8-cycles

(1,3,6,4,7,5,2,8) (1,2,9,7,3,8,4,5)
(1,6,5,3,9,4,2,7) (1,4,3,2,6,8,5,9)

and we are left with the 4-cycle leave (6,7,8,9). Note that, since there are
only four edges remaining after a maximum 8-cycle packing, then a 4-cycle
is the only configuration of leave possible for such a packing.

Proceeding to n = 13 (mod 16) we add vertices numbered 10, 11, 12,
and 13. The edges between the four new vertices and vertices 2 through
5 induce a complete bipartite graph isomorphic to Ky 4 with bipartition
({2,3,4,5},{10,11,12,13}) which is 8-cycle decomposable by Corollary 1.
In addition, the edges between the four new vertices and the original disjoint
sets of eight vertices induce copies of K45 can also be decomposed using
Corollary 1. The edges remaining are used to establish the leave, and
include the Cj leave from the previous step, the graph of K4 induced by
the four new vertices, the edges between vertices 6 through 9 and 10 through
13, as well as the four edges from vertex 1 to vertices 10 through 13. This
totals 30 edges, and so by removing the three 8-cycles

(1,11,7,10,6,12,8,13) (1,10,9,11,6,13,7,12) (10,13,11,8,7,6,9,12)

we obtain the 6-cycle leave (10, 11,12, 13,9, 8). Two additional 6-edge leave
configurations are also possible with a maximum 8-cycle packing, one con-
sisting of two disjoint copies of C3 and the other two non-disjoint 3-cycles
that share one vertex (a bowtie). Both were verified as attainable leaves in
K, for all n = 13 (mod 16).

To complete the first cycle of the inductive loop we add four vertices
numbered 14, 15, 16, and 17. In the final step we must completely decom-
pose these edges into 8-cycles, and in doing so obtain two additional disjoint
sets of eight vertices on which we have copies of K44 and one additional
vertex, which were the conditions of the initial step of the loop. The edges
between vertices 14 through 17 and 6 through 9 induce a complete bipartite
graph isomorphic to Ky 4 with bipartition ({6,7,8,9},{14,15,16,17}). In
addition, another copy of K4 4 with bipartition ({2,3, 4,5}, {14, 15,16,17})
can be identified, and both can be decomposed into 8-cycles by Corollary 1.
The edges between the four new vertices and the original disjoint sets of
eight vertices induce copies of K4g which can also be decomposed using
Corollary 1. The edges remaining are those of the new Kj, the Cg leave of
the previous step, the edges between vertices 14 through 17 and 10 through
13, and the four edges from vertex 1 to the four new vertices. This totals
32 edges, which completely decompose into the following four 8-cycles:

(14,10,17,12,16,11,15,1) (14,12,15,13,16,1,17,11)
(14,17,16,15,10,8,9,13)  (14,15,17,13,12,11,10,16).
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Note that with this decomposition, we obtain two disjoint sets of eight
vertices that take part in copies of K, 4 generated in the loop, namely
the sets {2,3,4,5,10,11,12,13} and {6,7,8,9,14,15,16,17}. The original
disjoint sets of eight vertices that.we started with are still present, and we
have one additional vertex which does not take part in any copies of Ky 4,
namely vertex number 1. Since the starting conditions are satisfied (namely
having disjoint sets of eight vertices which induce copies of K} 4, plus one
additional vertex), the induction is complete.

2.4 Obtaining a complete leave in K, n odd

Before addressing the 8-cycle decompositions of the Cartesian product of
two complete graphs, we wish to first establish the ability to obtain a com-
plete graph K,, as the leave when an 8-cycle packing is extracted from
a larger complete graph K,. That is, we claim that by taking an ap-
propriate 8-cycle packing of K, we can obtain a leave that is a complete
graph on m vertices, where m = n (mod 16) and 1 < m < 15. Note that
this is not a maximum packing as was used to establish the leaves of K,
n=1,2,3,---,15 (mod 16) in Sections 2.2 and 2.3.

Lemma 1 For oddn > 9, there ezists an 8-cycle packing of K, with a K,
leave, where m =n (mod 16) and 1 < m < 15. Moreover, 25 copies of
K4 4, vertez-disjoint from each other as well as from the K,, leave, can be

identified in the 8-cycles of the packing.

Proof. Let m =n (mod 16) such that 1 < m < 15.

If m = 1, then partition the vertices of K, into two sets, A and C, with
|Aj=n—-1and |C|=1.

If m = 3, then partition the vertices of K,, into three sets, 4, B, and
C, having cardinality n — 19, 18, and 1, respectively. The bipartite graph
with bipartition (A4, B) can be decomposed into 8-cycles by Corollary 1.
B UC forms a K;9. By numbering the vertices of B U C from 1 to 19,
and then removing the following seventeen 8-cycles, we are left with a
K 4,4 with bipartition ({1, 2,3, 4}, {5,6, 7, 8}), another K, 4 with bipartition
({9,10,11,12}, {13,14,15,16}), and a K3 with vertex set {17,18,19}.

(12,17,15,13,19,14,16,18)  (11,17,14,13,16,19,15,18)
(9,12,10,18,14,15,16,17)  (7,14,8,11,10,17,13,18)

(6,15,7,17,8,18,9,19) (5,16,8,10,9,11,12,19)
(5,14,6,16,7,12,8,15) (4,18,6,13,8,7,11,19)
(3,17,6,12,5,13,7,19) (2,17,5,11,6,9,8,19)
(1,18,5,8,6,7,10,19) (1,16,3,18,2,15,4,17)
(1,14,4,16,2,13,3,15) (1,12,3,14,2,11,4,13)
(1,10,4,12,2,9,3,11) (1,4,3,2,10,5,7,9)

(1,2,4,9,5,6,10,3).
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All remaining edges in K, are now found within AU C.

For m > 3, we also consider three sets, A, B, and C, having cardinality
n —m, m — 1, and 1, respectively. The bipartite graph with bipartition
(A, B) can be decomposed into 8-cycles by Corollary 1 and the subgraph
induced by B U C forms the K,, which we will have as our leave. The
remaining 8-cycles are entirely contained within AU C.

Now, for any value of m, let |A| = 16k. If k¥ > 1, then we can subdivide
A into k sets of 16 vertices each, say A;,..., Ax. Then on A; UC we place
an 8-cycle decomposition of K7, for 1 < i < k. For each pair A; and A;
with 1 < i < j < k, the bipartite graph with bipartition (A4;, A;) can be
decomposed as sixteen edge-disjoint copies of K, 4. It is easily seen that 2k
vertex-disjoint copies of K44 can be identified.

If k=1, then A U C is K;7. Number the vertices from 1 to 17, with
vertex 17 representing the single vertex in C. The removal of the following
thirteen 8-cycles then yields a Ky 4 with bipartition ({1,2, 3,4}, {5,6,7,8}),
and another with bipartition ({9, 10, 11,12},{13, 14, 15,16}), both of which
are 8-cycle decomposable by Corollary 1.

(8,12,9,17,13,16,14,15) (7,12,10,11,8,16,17,15)
(6,14,13,15,16,7,11,17)  (5,14,8,10,9,11,12,17)
(4,15,6,13,8,7,14,17)  (3,16,6,12,5,13,7,17)
(2,15,5,11,6,9,8,17) (1,16,5,8,6,7,10,17)
(1,14,4,16,2,13,3,15)  (1,12,3,14,2,11,4,13)
(1,10,4,12,2,9,3,11) (1,4,3,2,10,5,7,9)
(1,2/4,9,5,6,10,3).

3 Decomposing K,, X K, into 8-cycles

3.1 Necessary Conditions

Since K, x K, is isomorphic to K, x K, we will consider each {m,n} set
only once.

Lemma 2 Given that K, x K, is 8-cycle decomposable, then either

. m=0 (mod4) and n =0 (mod 2),

. m,n =1 (mod 16),

m =3 (mod 16) and n = 15 (mod 16),

m =5 (mod 16) and n = 13 (mod 16),

m =7 (mod 16) and n = 11 (mod 16), or
. m,n=9 (mod 16).

S o oo
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Proof. The graph K, x K, has mn vertices, each having degree m+n—2.
(mn)(m +n —2) . .
Hence, K, x K, has edges. Given that K,, x K, is 8-

cycle decomposable the number of edges in the graph must be divisible by
8. Also, note that each vertex in the graph must have even degree. Hence,
m = n (mod 2) and 16|(mn)(m + n — 2); these conditions are met in each
of the above six cases and only in these cases. o

3.2 Sufficient Conditions

We now consider each of the stated necessary conditions in turn to establish
sufficiency.

Lemma 3 Ifm =0 (mod 4) and n =0 (mod 2) then K, X K, is 8-cycle
decomposable.

Proof. Let m = 0 (mod 4) and consider two cases for n:

Case 1 (n = 0 (inod 4)). Let m = 4k and n = 4¢, where k > 0and £ > 0.
Then the graph K,,, x K,, has 4¢ columns of 4k vertices each and 4k rows
of 4¢ vertices each. To decompose this graph we first divide the columns
and rows into groups of four creating k€ blocks of size 4 x 4.

Figure 6 illustrates the vertices of K4 x K4 as well as several 8-cycles
which collectively yield an 8-cycle decomposition of K4 x K4. Note that
each 4 x 4 block can be decomposed using this decomposition. Then the
only edges left in K, x K,, are those between the vertices of different blocks.
Now consider any pair of 4 x 4 blocks which share a row (resp. column) of
K x Ky, For each row (resp. column) in the blocks let A be the set of four
vertices on the row (resp. column) in one of the two blocks, and let B be the
set of four vertices on the same row (resp. column) but in the other block.
Then the complete bipartite graph with bipartition (A,B) is isomorphic to
K, 4, and is 8-cycle decomposable by Corollary 1. Therefore by considering
all combinations of A and B we can complete the decomposition of K, x K,
into 8-cycles.

Case 2 (n = 2 (mod 4)). Let m = 4k and n = 4¢ + 2, where k > 0
and £ > 0. In this case the graph of K, x K, is such that we have 4¢ + 2
columns of vertices isomorphic to K,, and 4k rows each containing a graph
isomorphic to K,,.

Consider first the case where £ = 0. Hence we are examining the graph
of K, x Ko. As in Case 1 we divide the rows into groups of four, thereby
creating k blocks of size 4 x 2. In Figure 7 an 8-cycle decomposition of
K4 x K, is presented, which can be used to decompose the edges within
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Figure 6: An 8-Cycle Decomposition of K4 x Kj.

the blocks of size 4 x 2. In addition, using Corollary 1 we know that an 8-
cycle decomposition of the edges between any pair of 4 x 2 blocks is possible,
since the edges between each pair of such blocks form two disjoint copies
of K4’4.

Figure 7: An 8-Cycle Decomposition of K4 x K.

Consider now £ > 0. In this case, divide the rows into k groups of
four and the columns into £ — 1 groups of four and one group of six. This
produces k(£ — 1) blocks of size 4 x 4 and k blocks of size 4 x 6. The edges in
and between the blocks of size 4 x 4 can be decomposed in the same manner
as Case 1. The edges within the 4 x 6 blocks can be decomposed using an
8-cycle decomposition of K4 x Kg, such as is obtained by the unique 8-cycle
decompositions of each of the subgraphs of K; x K¢ presented in Figure 8.

As before, the edges between pairs of 4 x 6 blocks as well as between
pairs of 4 x 4 and 4 x 6 blocks form several complete bipartite graphs, each
of which is 8-cycle decomposable by Corollary 1.

Lemma 4 Ifm,n=1 (mod 16) then K, X K,, is 8-cycle decomposable.

Proof. Since m,n = 1 (mod 16), both K,, and K,, are 8-cycle decom-
posable [1, 6]. Hence, the Cartesian product K,, x K, can be completely
decomposed into pure horizontal and pure vertical 8-cycles. (m|

Lemma 5 If m = 3 (mod 16) and n = 15 (mod 16) then K,, x K, is
8-cycle decomposable.
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Figure 8: An 8-Cycle Decomposition of K4 x Kg.

Proof. Let m = 16k + 3 and n = 16£ + 15. The graph in which m > n is
decomposed in a slightly different manner than the graph in which m < n,
but for both cases we first use the maximum number of pure 8-cycles in each
row and column. We therefore now have a 3-cycle in each column and a 9-
cycle (or some other configuration containing 9 edges from Table 2) in each
row. However, for several of these packings, we will rely on the constructions
presented in Section 2 to allow us to reclaim pure 8-cycles from the packings.
The edges of these reclaimed cycles will then be combined with the edges of
the leaves in each row and column in a manner that will permit an 8-cycle
decomposition of K,, x K,,.

If m < n then & < £. We can then divide the graph of K, x K, into
the following sections: a large square block (with dimensions 16k x 16k), a
block of size 3 x 15, two blocks of size 3 x 16k and 16k x 15 and one further
block of size (16k+3) x 16(£—k). Smaller 8 x 8 blocks are then constructed
along the main diagonal of the larger 16k x 16k block, and 2(£ — k) blocks
of size 3 x 8 are formed within the (16 + 3) x 16(£ — k) block, as illustrated
in Figure 9.

In Section 2.2 it was established that an 8-cycle decomposition of K,
with n = 3 (mod 16) whereby the 3-cycle leave shares its vertices with
one of the 8-cycles is possible. Specifically, these 3- and 8-cycles were
~(11,16,17) and (17,13,18,14,16,19,11,12), respectively. So in each of the
first 16k columns, we now take the 3-cycle leave and reclaim the
corresponding 8-cycle, placing the combined eleven edges on the eight ver-
tices in the column of the corresponding 8 x 8 block. In each of the first
16k rows, we take the graph shown in Figure 10 as the leave, placing its
nine edges on the eight vertices in the row of the corresponding 8 x 8 block.
The ability to obtain this leave for K, where n = 15 (mod 16) was justified
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3 x 16k 3x18

Figure 9: Division of the grid in the case where k < £ for Lemma 5.

earlier in Section 2.2. Now consider one of the 8 x 8 blocks, and number
the vertices 1 to 64, starting with the upper-left vertex and proceeding
down the first column so that consecutive vertices in any given row differ
by eight. An 8-cycle decomposition of the edges in the 8 x 8 blocks ap-
pears in Appendix 5.1.1. Note also that the placement of the eleven edges
within each column of the 8 x 8 block is not the same as for all of the other
columns, nor is the placement of edges within each row the same as within
the other rows, and so the placement of the 160 edges within the block is
also prescribed by the edges listed in Appendix 5.1.1.

AAY

Figure 10: The leave required for the decomposition of the 8 x 8 blocks.

Next we examine the decomposition of the edges remaining in the 3 x 15
block, which has 3-cycle leaves on the columns and 9-cycle (or 9-edge) leaves
on the rows. Note that by Lemma 1, we could have obtained a K5 leave
in each of these rows by employing partial (instead of maximum) packings.
By doing so, we find that we can obtain a complete graph of K3 x K;5 on
the 3 x 15 block, which can then be decomposed into 8-cycles as is done in
Appendix 5.1.2, where we again enumerate the vertices column by column,
beginning with the upper-left vertex.

Now if k < £, then the only edges that remain are the 3-cycles on each
column of the (16k + 3) x 16(¢ — k) block. To finish the decomposition, we
arbitrarily choose the first three rows to contain the 3-cycles for each column
and then group the columns into sets of eight, thereby generating 2(¢ — k)
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blocks of size 3 x 8. On the rows of each such block we reclaim previously
extracted pure 8-cycles, by refering to Section 2.2, and then carry out an
8-cycle decomposition of the edges within the block. This decomposition is
illustrated in Figure 11.

Figure 11: An 8-Cycle Decomposition of the 3 x 8 block.

If m > n divide the graph into sections as illustrated in Figure 12, so
that we obtain one 16£ x 16 block (in which we will form 2¢ blocks of size
8 x 8), one block of size 3 x 15, two auxiliary blocks having sizes 3 x 16¢
and 16¢ x 15, and one other block of size 16(k — £) x (16£+ 15) in which we
will form 2(k — £) blocks of size 8 x 9. As was done before, we pack each
row and column with 8-cycles so that each of the 2¢ blocks of size 8 x 8 has
the decomposition provided in Appendix 5.1.1, and so that the 3 x 15 block
contains a K3 x K5 for which a decomposition appears in Appendix 5.1.2.

In each of the bottom 16(k — £) rows, we use a maximum packing having
a 9-cycle leave, which we place on the first nine vertices of the row. The
task now will be to focus on each of the 8 x 9 blocks. In each column of
each 8 x 9 block, let A be the set of the first four vertices, and let B be
the set containing the last four vertices. Now on each column we reclaim
two 8-cycles which have the configuration of a K 4, with bipartition (4,B).
These disjoint copies of K44 appear on the disjoint sets of eight vertices
that were discussed in Section 2.2 and which were illustrated in Figure 3. A
list of 8-cycles that produces a decomposition of this 8 x9 block is presented
in Appendix 5.1.3, thereby completing the proof. a

Lemma 6 If m = 5 (mod 16) and n = 13 (mod 16) then K, x K, is
8-cycle decomposable.

Proof. Let m =16k + 5 and n = 16¢ + 13.
Consider first K5 x Kjg¢4+13. We divide the graph in 2 manner similar
to the division in the proof of Lemma 5. Hence divide the columns into
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16€ x 15
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8x9
8x9

Figure 12: Division of the grid in the case where k > £ for Lemma 5.

one set of thirteen and 2/ sets of eight, thereby producing 2¢ blocks of size
5 x 8 and one block of size 5 x 13. Using Lemma 1, we can employ a partial
packing on each row so that we have a leave consisting of K13 (placed within
the 5 x 13 block) as well as 2¢ disjoint 8-cycles (each placed within a 5 x 8
block). To decompose the K5 x K13 that is contained within the 5 x 13
block, we use Appendix 5.2.3. To decompose the edges within each 5 x 8
block, we use Appendix 5.2.2.

Now consider m = 16k + 5 and n = 16£ + 13, with m > 5. The graph in
which m < n is decomposed in a slightly different manner than the graph
in which m > n, but in each case we begin by extracting a maximum pure
8-cycle packing of each row and column, except in five rows and thirteen
columns, where we use a partial packing to obtain a complete leave of K3
for each row and Kj for each column. From Section 2.3, we know that we
have 6 edges left in each of the m — 5 rows and 10 edges left in each of the
n — 13 columns in which we extracted a maximum pure 8-cycle packing.

If m < n then k < ¢. Divide the columns into three sets, one of size
thirteen, one of size 16k, and one of size 16(¢ — k) and divide the rows into
one set of size five and one of size 16k. The m xn grid now consists of a large
square 16k x 16k block, a 5 x 13 block, a block of size (16k + 5) x 16(¢£ — k),
and two other auxiliary blocks (having sizes 16k x 13 and 5 x 16k) not
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directly used in the remaining decomposition.

We select the 5 rows having a K3 leave, and the 13 columns having a
K3 leave, to form the 5 x 13 block, so that this block contains a copy of
K5 x K13, which we have previously seen to be decomposable into 8-cycles.

To decompose the edges within the square 16k x 16k block we form
2k blocks of size 8 x 8 oriented along the main diagonal. For each of the
16k columns, it is possible (as indicated in Section 2.3) to have removed
the edges of a maximum 8-cycle packing in a manner such that we now
have the 10-edge leave shown in Figure 13 occurring on the eight vertices
of the corresponding 8 x 8 block. For the rows we let the 6-edge leave be
a 6-cycle. An 8-cycle decomposition of K,,, n = 13 (mod 16) whereby the
6-cycle leave shares six of the eight vertices of one of the 8-cycles appears
in Section 2.3. Hence we are now able to reclaim one such 8-cycle per row,
placing it and the 6-cycle both on the eight vertices of a row of an 8 x 8
block. Thus, for the 8 x 8 blocks we have a copy of the 10-edge leave shown
in Figure 13 on each column, and a combination of a 6-cycle and an 8-cycle
on each row. A list of 8-cycles used in a decomposition of such an 8 x 8
block is presented in Appendix 5.2.4.

Figure 13: The leave used in the decomposition of the 8 x 8 blocks.

To finish the case where m < n requires the decomposition of the 10-
edge leave in each column of the (16k + 5) x 16(¢ — k) block. This can
be done by first using K5 as the 10-edge leave and then taking this leave
to lie on the first five vertices of each column. In a manner similar to the
case when m = 5, we now reclaim 2(¢ - k) disjoint 8-cycles in sets of eight
vertices in each of the first five rows. This effectively forms 2(¢ — k) blocks
of size 5 x 8 within the (16k+5) x 16(£ — k) block, each having a copy of K5
on each column and an 8-cycle on each row, which is 8-cycle decomposable
as indicated in Appendix 5.2.2.

Now suppose m > n, in which case k¥ > ¢. Begin the decomposition by
separating the columns into two sets, having sizes 16£ and 13, and collect
the rows into three sets, having sizes 16¢, 5, and 16(k — £). This divides the
graph into smaller grids of size 16¢ x 16¢, 5 x 13, and 16(k — £) x (16£+ 13),
along with two auxiliary blocks of size 16£x 13 and 5x16¢. The edges within
the 16£ x 16£ and 5 x 13 blocks can be decomposed in the manner described
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in the previous cases, leaving only the edges in the 16(k — £) x (16 + 13)
block to be decomposed. To accomplish this task we form within this block
2(k — £) blocks of size 8 x 6, and take the 6-cycle leave on each row to lie on
the first six vertices of the row. Noting that there are no edges on the six
columns of each block at this stage of the decomposition, we use Lemma 1
to reclaim 2(k — ¢) disjoint previously removed 8-cycles on each column
and then decompose the resulting subgraph using Appendix 5.2.1, thereby
completing the proof. o

Lemma 7 If m = 7 (mod 16) and n = 11 (mod 16) then Kn X Ky, is
8-cycle decomposable.

Proof. Let m = 16k+7 and n = 16{+11. We begin by arbitrarily choosing
seven rows and eleven columns and in these take a partial 8-cycle packing
so that we obtain a copy of K;; as the leave on the rows, and a K7 as
the leave on the columns. By taking a maximum packing of the remaining
rows and columns of K, x K, with pure horizontal and vertical 8-cycles,
we are left with a 7-edge leave on each row and one of two possible leaves
on each column: a copy of K7 on each column if m =7,0ra Cs if m > 7.
The graph of K7 x K, is decomposed in a different manner from Ky, X K,
m>7T.

We examine the case where m = 7 and n = 16£ + 11 first. Divide the
grid into a number of blocks, one of size 7 x 11 and 2¢ blocks of size 7 x 8,
so that we have a K7 x K;; on the 7 x 11 block, a decomposition of which
is provided in Appendix 5.3.1. In each of the 7 x 8 blocks, we have only
the edges of eight vertical copies of K7. Thus we now refer to Lemma 1
to reclaim, in each row, 4£ 8-cycles in pairs such that we have 2£ disjoint
copies of K4 4. On each row of each 7 x 8 block, now place the edges of one
such K4 4 so that it has bipartition (A, B) where A is the set of the first four
vertices of the row and B is the set of the remaining four vertices of the row.
To now decompose the edges of each 7 x 8 block, refer to Appendix 5.3.5.

In the case remaining, m = 16k + 7, m > 7 and n = 16¢ + 11, we first
consider the graph where m < n. Divide the graph into several blocks: one
of size 16k x 16k, one of size 7 x 11, one of size (16k + 7) x 16(£ — k), and
two auxiliary blocks of sizes 16k x 11 and 7 x 16k, so that within the 7 x 11
block there is a copy of K7 x K}, which we can decompose into 8-cycles
using Appendix 5.3.1. Within the 16k x 16k block, form 2k blocks of size
8 x 8 along its main diagonal, with each 8 x 8 block having a 7-cycle in each
row and a 5-cycle in each column. The placement of these 5- and 7-cycles,
and the subsequent 8-cycle decomposition of the 8 x 8 block is provided in
Appendix 5.3.2.

All that remains for this case is to decompose the edges on the columns
in the (16k+7) x 16(¢£ — k) block. For this we arbitrarily choose a set of five
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rows, and divide the columns into groups of eight, thereby forming 2(¢ — k)
5 x 8 blocks. Since no edges remain on the five rows of each of these blocks,
we must reclaim previously extracted Cs’s for these rows, using Lemma 1 to
do so. A decomposition of the 5 x 8 blocks is presented in Appendix 5.3.3.
Note also that the edges listed in Appendix 5.3.3 prescribe the placement
of each 8-cycle and each 5-cycle in its respective row or column.

To complete the proof, we have left to examine the case where m > n.
In this case we begin in the same manner; that is take a partial 8-cycle
packing of seven rows and eleven columns to obtain K;; and K- leaves on
these rows and columns, respectively. On the remaining rows and columns
we take a maximum packing, leaving a C; as the leave on the rows, and a
Cs on the columns. We then divide the graph into regions composed of a
16¢ x 16¢ grid, a 7 x 11 grid, a 16(k — £) x (16£ + 11) grid, as well as two
auxiliary regions of size 16£ x 11 and 7 x 16¢. We have already addressed
the decomposition of the first two, leaving only the third block, in which we
form 2(k — £) blocks of size 8 x 7. We take the 7-edge leave on each of the
rows of these blocks to be a 7-cycle. Since no edges remain on the columns
we reclaim previously removed 8-cycles, again using Lemma 1, reclaiming
one 8-cycle within each column of each 8 x 7 block. We now decompose
each 8 x 7 block using Appendix 5.3.4. a

Lemma 8 Ifm,n=9 (mod 16) then K, x K, is 8-cycle decomposable.

Proof. We assume that m =16k +9 <n =16£+9, and so k < £. Divide
the graph into blocks: one having size 9 x 9, one of size 16k x 16k, two
auxiliary blocks having sizes 16k x 9 and 9 x 16k, and if m # n, also a block
of size (16k + 9) x 16(£ - k).

By using Lemma 1, we can obtain a Ky leave in each of the nine rows
and nine columns in which the 9 x 9 grid appears. The resulting Ky x K
subgraph can be decomposed into 8-cycles by using Appendix 5.4.1.

In each of the rows and columns of the 16k x 16k block, we take a max-
imum 8-cycle packing, producing a 4-cycle leave in each row and column.
Now form 4k blocks of size 4 x 4 along the main diagonal of the 16k x 16k
block. It is within these 4 x 4 blocks that we position each 4-cycle leave, so
that each 4 x 4 block can now be decomposed using Figure 14.

Now, if m # n, in the (16k + 9) x 16(¢ — k) block form 2(¢ — k) blocks
of size 4 x 8 so that each such block is on a common set of four rows, and
these four rows are a subset of the nine rows of the 9 x 9 grid. We may
now use Lemma 1 to reclaim one 8-cycle per row of each 4 x 8 grid. By
also ensuring that the vertical 4-cycles in the (16k + 9) x 16(£ — k) block
are contained within the 4 x 8 blocks, we can now complete the proof by
using Figure 15 to decompose each 4 x 8 block. o
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Figure 14: An 8-Cycle Decomposition of the 4 x 4 block.

]

Figure 15: An 8-Cycle Decomposition of the 4 x 8 block.
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3.3 Conclusion
Combining the results of Lemmata 2 through 8 we conclude:

Theorem 2 The graph K,, x K, is 8-cycle decomposable if and only if
either

(mod 4) and n =0 (mod 2),

1 (mod 16),

-

s

o o o de
3333383

9 (mod 16).

-

0

.‘;(mod 16) and n = 15 (mod 16),

5 (mod 16) and n = 13 (mod 16),

7 (mod 16) and n = 11 (mod 16), or
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5 Appendix

5.1 8-cycle decompositions required for Lemma 5

5.1.1 8-cycle decomposition of the 8 X 8 block

(30, 32, 64, 62, 58, 34, 37, 38)
(22,54,55,51,27,29, 61, 62)
(18,20, 28, 31, 29, 53, 54, 50)
(9,11, 59, 62, 54, 56, 16, 15)
(6,14, 15,12, 52, 49, 41, 46)
(3,19,22, 30, 28, 29, 45, 43)
(1,33,36,20,19, 24,17, 49)

(27, 28, 36,40, 37, 53, 51, 35)
(19,43, 47,41, 44, 60, 64,59)
(9, 16,40, 38, 35, 39, 31, 25)
(8,32,31,55,23,17,41, 48)
(5,7,15,47, 46,14, 13, 21)
(2,10,11,19, 21,24, 48, 42)
(1,2,3,6,5,8,4,7)

5.1.2 8-cycle decomposition of K3z X K5

(35, 38, 44, 45, 39, 36, 42, 41)
(25,40, 31,32, 41, 38, 37, 43)
(21,42, 24, 39, 33, 27, 30, 45)
(20,26, 35,23, 24, 36, 30, 29)
(15,36, 18,27, 24, 33, 30, 39)
(14,41,17, 38,20, 23, 26, 44)
(13,22, 16,28, 19, 34,31, 25)
(8,32, 11, 38, 14, 29, 17, 35)
(5,38, 8,29, 11,26, 17, 44)
(3,42,6,33,9, 30,12, 45)
(3,24,6,15,12,18,9,27)
(2,35, 5,14, 11, 12, 39, 38)
(2,17,5,6.3, 15,21, 20)
(1,28,4,19,13, 10,16, 31)
(1,10,7,4, 16,17, 14, 13)

(28,29, 41, 40, 34, 37, 31, 43)
(25,27, 42, 33, 45, 36, 35, 34)
(21, 36, 34,22, 43, 40, 42, 39)
(19, 37, 28, 25,26, 29, 44, 43)
(15, 30, 24, 21, 27, 26, 32, 33)
(13, 34, 16,25, 19, 40, 22, 37)

wm ,16, 19,22, 24, 45)
(7,40,16,13,15, 18, 45, 43)
(5,26,8,23,11 20,17, 32)
(3.36,6,27,12, 21,18, 39)
(3,18,6,12,10,31,19,21)
(2,29,5,11,8,14, 23,32)
(1,40,4,31,7,28,10,43)
(1,22,4,13,7,19,10,25)
1,4,10,11,2,3,9,7)

(26, 29,37,
(18,21,23,
(9,12, 10,
(8.24,22,

(27, 39, 37, 40, 28, 30, 42, 45)
(23,41, 26, 38,29, 32, 35, 44)
(20, 35, 29, 23, 38, 32, 44, 41)
(16,37,25, 22,31, 28, 34, 43)
(15, 24,18, 30,21, 33, 36, 27)
(13,28, 22, 23,17, 18, 33, 31)
(8,41,11, 35, 14, 32, 20, 44)



5.1.3 8-cycle decomposition of the 8 x 9 block

(65,69, 68,72,67, 71, 66, 70)
(50, 55,52, 60, 64, 72, 66, 58)
(43, 46, 54,52, 44, 47, 55, 51)

(34, 37, 45,41, 47, 43, 48, 42)

(28, 30, 38, 33, 40, 34, 39, 31)

(20, 21,29, 26, 30, 27, 31, 23)

(11,14,22,20, 12, 15,23, 19)
(7,15,9, 16,

8,72,65,71)
(1,9,13,5,69, 61,57, 65)

(58, 62,59, 67,70,68,71, 63)
(49,56, 51,59,61,58,64,57)
(41,48, 44, 45,53, 50, 54, 49)
(33, 39, 35, 43,45, 42, 46, 41)
(26, 32,27, 35,37, 36, 38, 34)
(18, 24,19, 27,29, 25, 31, 26)
(10,16,12,13,21,17,22,18)

i io i

19y BV &

(52,53, 61, 60,63, 59, 64, 56)
(49, 53,51, 54,62, 57, 63, 55)
(36, 39, 47, 42, 50, 56, 48, 40)
(28, 32, 40, 35, 38, 46, 44, 36)
(20, 24, 32, 25, 33, 37, 29, 28)
(17,23,18, 21,19, 22, 30, 25)
(9,14,10,15,11, 16, 24, 17)
(2,10,13,11, 3,67, 69, 66)
(1,5,2,7,3,8,4,6)

5.2 8-cycle decompositions required for Lemma 6

5.2.1 8-cycle decomposition of the 8 x 6 block
(41,42,43,44,45,46,47,48)  (26,27,28,29,37,36,35,34) (17, 18,26, 25,33, 40, 32, 24)

(12,13,14,15,23,22, 21,20)
(6,14,22, 30, 31, 39, 38, 46)
(3,11, 10,18, 19, 27, 35, 43)

(9,16,24,23,31,32,25,17)
(5,13,21, 29, 30, 38, 37, 45)
(1,9,10,2,42,34,33,41)

(7,15,16,8,48, 40, 39, 47)
(4,12, 11,19, 20, 28, 36, 44)
(1,2,3,4,5,6,7,8)

5.2.2 8-cycle decomposition of the 5 x 8 block

(26, 28, 38, 36, 40, 37, 39, 29)
(17,19, 24,22, 23, 28, 29, 27)
(12,14, 13,33, 34, 39, 38, 37)
(6,7,22,21,23,25,10,8)
(1,11,12,7,8,9,6, 36)

(22, 25,24, 34,31, 33, 35, 32)
(16,19, 18, 17,20, 30, 26, 21)
(7,9,14,11,13, 12,15, 10)
(4,14,15,11,31, 16, 20, 19)
(1,4,3,2,32,31,35,5)
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(21,24, 23, 33, 32, 34, 35, 25)
(16, 17,37, 36, 39, 40, 38, 18)
(6,10,9,29, 30, 28, 27, 26)
(2,5, 3,13, 15,40, 30, 27)
(1,2,4,5,20,18,8,3)



5.2.3 8-cycle decomposition of K5 X K3

(57, 62,63, 60, 61, 64, 58, 65)
(53, 63,57, 60, 56, 65, 54, 64)
(53, 54, 57, 59, 56, 58, 62, 55)
(43, 52,47, 49, 48, 51, 64, 56)
(41,52, 42, 46,47, 50, 63, 54)
(40, 46, 41,47, 42, 43, 44, 50)
(35,37, 36,49, 40, 52, 39, 38)
(30,37, 32, 36, 33, 34, 35, 39)
(28, 39, 29, 34, 30, 33, 59, 54)
(27,40, 41,28, 32, 31, 57, 53)
(22, 24,23, 25, 64, 38, 29, 35)
(18,22, 20,23, 21, 24, 25, 26)
(16,25,18,20,17,23,19,26)
(12,13, 52, 26, 14, 27, 28, 38)
(10, 12,25, 14, 23, 36, 39, 13)
(8,21,14,22,9, 35,27, 34)
(6,45, 32,19, 15, 20, 59, 58)
(5,44,18,15,17, 19 58,57)

(3,42,16,18,5,11,63,55)
(1,40, 14,16,3,13,65,53)
(1,10,4,6,9,2,12, 11)
(1,4,3,2,6,8,9,5)

(56, 61,63, 59, 64, 60, 65, 62)
(53, 60, 54, 62, 64, 55, 65, 61)

(43,49, 44, 8,46,51)

4
4
5
,40, 44, 46)
4
3
2

(2,41,15,
(1,14,15,
(1,

(55, 58, 61,57, 64, 63, 65, 59)
(53,56, 55, 54, 58, 60, 62, 59)
(45,49, 46, 50,52, 48, 47, 51)
(42,50, 45,47, 43, 48, 44,51)
(40, 51,41, 48, 42, 45, 58, 53)
(35,48, 40, 45,41, 42, 55, 61)
(31,39, 33, 35,36, 34,47, 44)
(29, 36,31, 38, 32, 58, 63, 37)
(28, 33,29, 30, 31, 35, 32, 34)
(24,50, 37, 27, 36, 30, 56, 63)
(19,24, 20, 26, 39, 34, 21, 25)
(17,24,18,21, 20,19, 22, 26)
(12, 51,38,25,15, 26, 65, 64)
(10,49, 23,15, 24, 14, 53, 62)
(8,47, 21, 15,22, 16, 55, 60)
(7, 46,20, 16,19, 21, 60, 59)
(6,11,8,10,9,13,7,12)
(4,30, 17, 14,18, 19, 45, 43)
(2,13,4,12,5,10, 36, 28)
,3,7,9,4,11,13)
(1,6,3,5,2,8,4,7)

5.2.4 8-cycle decomposition of the 8 x 8 block

(35,37, 40, 56, 48, 43, 51, 59)
(23,31,47,43, 35,27, 51, 55)
(16,48, 24,22, 21, 61,57, 64)
(10,14, 22, 46, 38, 37, 34, 42)
(7,31, 25, 33, 36, 44, 47, 55)
(5,37, 33,9, 16, 56, 53, 45)
(3,43 27,28,3 % 40, 64, 59)
(2,7,8,4,28,20,21,18)

(29, 30, 62, 54, 46, 47, 45, 61)
(21,23, 39, 35,51, 50, 42, 45)
(13,53,37,39,47,15,63,61)
(10,12, 52, 54,49, 41, 57,58)
(6,54, 30, 46, 44, 20, 60, 62)
(5,6, 30,26, 25,41, 48, 8)
(3,19, 11, 16, 40, 24, 32, 27)
(1,25,17,9,10,11, 59, 57)
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(26, 28, 44, 60,57, 62, 38, 34)
(17,19,21,29,26, 31, 55,49)
(13, 21,24, 64,56, 49, 53, 29)

(9,41,47,42, 18, 58, 50, 49)
(6,8, 32,26, 10, 15, 14, 38)
(4,36,20,17, 33, 49, 52, 60)
(2,50, 18, 23,7, 39, 63, 58)
(1,3,8,2,10,13,12,4)



5.3 8-cycle decompositions required for Lemma 7

5.3.1 8-cycle decomposition of K7 X Kj;

(61,62, 76,69, 66,73, 77, 63)
(55,56,77,70,65,72, 71, 76)
(51,56, 52, 54, 53, 67, 65, 58)

(46, 47,68, 54, 51, 55, 53, 60)
(42,49, 44,51, 50,43, 57, 63)
(36,43, 44,45, 59, 58,57, 71)
(34, 35,42, 37, 72, 58, 44, 48)
(31,59, 38, 39, 41, 48, 45, 66)
(27,55, 34, 33, 54, 40, 41, 62)
(23,44, 30,51, 37,40, 75, 72)
(20,41, 34, 32, 33,47, 48, 55)
(18, 53,25, 32, 31, 34, 76, 74)
(15, 50, 36, 29, 34, 30, 65, 64)
(13,69,27,22, 25,28, 77, 76)
(10,59,17,52, 24,27, 76,73)

(7,70, 14,49, 28, 21, 35, 77)
(6,69, 20,15, 8, 43, 48, 76)
(5,68, 12, 33,26, 22,71, 75)
(5,7,6,34,13,20,27, 26)
(4,39,11, 32, 18, 20, 48, 46)

(3,66,10,45,17,19, 75, 73)
(3,24, 10,38,17,15,29, 31)
(2,37,23,16,18, 11, 46, 44)
(1,64,8,13,9, 16, 15,71)
(1,22,8, 10,12, 5,33, 29)
(1,4,3,2,6,20,19,5)

(59, 66, 70, 69, 68, 67, 74, 73)
(54, 61,57, 64,69, 65,68, 75)
(50, 57, 60, 58, 63, 70, 64, 71)
(44,65,51,53,46,49, 77, 72)
(41, 69, 48, 62, 59, 61,75, 76)
(35, 56,42, 38, 52, 45, 49, 63)
(33,61,47, 44, 37,65, 66, 68)
(30, 58,37, 38,31, 52,51, 72)

(25, 39, 36, 40, 26, 68, 61, 60)
(22, 43,29, 57, 36, 38, 66, 64)
(19, 54, 26, 28, 70, 42, 40, 68)
(17, 66,24, 25,27, 41,38, 73)
(15, 36,22, 50, 29, 35, 49, 43)
(12,61, 26,23,28, 35,33, 75)

(9,58, 16,51, 23,25, 74, 72)
(7,56, 14, 42, 21, 20, 62, 63)
(6,55, 13,48, 27, 23, 58, 62)
(5,54,12,26, 19, 33, 40, 61)
(4,67,25, 18, 39, 32, 46, 74)
(4,25,11,14,8, 29, 30, 32)
(3,52, 10,31, 24,22, 57, 59)
(2,65,9,44, 16,20, 76, 72)
(2, 23,9,37,16,17, 31, 30)
(1,50, 1,13,62,57)
1,8, 1,4,18,15)
3

9
9,
8,
9,

(1,2,4 ,10,3)

4,1
7,1
12,1
10,1
19,6,1

(56,63, 59, 60, 67, 64, 68, 70)
(53, 56, 54, 55, 69, 62, 60, 74)
(49, 56, 50, 55, 52, 66, 67, 70)
(43, 64,50, 54,47, 75,77,71)
(39, 46, 43, 45,73, 52, 50, 53)
(34, 62, 55,41, 42, 39, 67, 69)
(32, 60, 39, 40, 38, 45, 46, 67)
(29, 64, 36,41,37,39, 74, 71)
(24, 45, 31, 35, 32, 53, 52, 59)
(21,70, 35, 30, 37, 36, 42, 77)
(19, 21,56, 28, 24, 26, 47, 40)
(16, 65,23, 30, 33,31, 73, 72)
(14,63, 28,22,29,32, 74, 77)
(11,60, 18, 46, 25, 26, 75, 74)
(8,57,15,22,23,24,73,71)
mummummm
(6,41,13,14, 35,7, 49, 48)
(5,40, 12, 19, 15, 21, 49, 47)
(4,53,11,67,18, 21, 63, 60)

5.3.2 8-cycle decomposition of the 8 x 8 block

(39, 40, 48, 56, 64, 63, 55, 47)
(19,21,29,25, 33,41, 49, 51)
(6,14,12,20,23,7, 63, 62)
(2,3,59,51,53, 45,42, 58)

5.3.3

(13,18, 20, 25, 24, 29, 34, 33)

(5,10,15,12,17, 19, 39, 40)
(1,2,3,8,10,9,4,5)

(34, 38, 62, 58, 60, 44, 41, 42)
(14, 16,24, 32, 40, 36, 44, 46)
(4,12, 11,15, 16, 64, 60, 52)
(1,5,13,61,53, 54, 50, 49)

9,38, 30, 54, 46, 45)
(11,19, 20, 36, 34, 26, 27, 35)
(3,7,5,21,24,23,31,27)

(1,2,10, 18,26, 25,17, 9)

(29,31,39,3
3

8-cycle decomposition of the 5 x 8 block
(31, 33, 38, 39, 34, 35, 40, 36)

(23, 28, 30,29, 26, 27,37,38) (21, 23, 25, 30, 35, 32, 31, 26)

(7,8,28,27,17,16,11,12)
(3,4,14,24,22,21,16,18)

(6,9,19,20,15,14,13,11)
(1,6,7,2,22,32,37,36)

5.3.4 8-cycle decomposition of the 8 x 7 block

(35, 37,45,41,42,50,51,43) (33, 36, 44, 46, 48, 56, 49, 41)
(22,23,24,32,40,37,29,30) (18,19, 51,52, 53, 54, 30, 26

(38, 39, 40, 48, 47, 55, 54, 46)
(25, 28, 52,44, 43, 42, 34, 33)
(17,20, 28,27, 35, 34, 26, 25)

(7,15, 14,13, 21, 53,45, 47)
(1,9,17,18,2,10, 50, 49)

(9,10,12,16,24,21,19, 11)
(4,12, 20,22, 14, 6, 38, 36)
(1,2,3,4,5,6,7,8)

155

(8,16,15,23, 31, 39, 55, 56)
(3,11,13,5,29, 32, 31,27)



5.3.5 8-cycle decomposition of the 7 x 8 block

(2,44, 16, 15,29, 30, 23, 51)
(54,53, 52, 24, 22, 36, 8, 50)
(19,16,51,9, 10,52, 50, 15)
(55, 52, 54, 26, 25, 53, 51, 50)
(20,17, 31,10, 11,46, 43, 15)
(56,53,55,13,12, 54, 51,52)
(42,37,40,19, 18,17, 15, 36)
(35,32, 34,33, 5,2, 30, 31)
(28,27, 41, 40, 39, 25, 24, 26)
(14,9,13, 48,27, 34,29, 8)
(7,2,6,48,49,47,5,1)
(7,49, 28,35,21, 42, 14, 56)

(11,53,18, 16,17, 45, 44,9)
(47,45, 46, 25,22, 23, 44, 43)
(12,9, 37, 36,39, 38, 10, 8)
(48, 44,46, 18,39, 11,8, 43)
(13,10,12, 11, 32, 30,9, 8)
(49, 44,47, 46, 4, 3,45, 43)
(42,39,41,37,2,1,36,38)
(28, 23,27, 26,33, 31, 29, 22)
(21,16, 20,19, 33,32, 18,15)
(14,11,13, 41, 20, 48, 45, 10)
(7,4, 6,41, 42, 40, 38, 3)
(7,35, 14,49, 21, 56, 28, 42)

(4,53,50,22,43,1,3,2)
(33, 30, 16, 37,23, 25, 32, 29)
(5,4, 39,37, 38,17, 52, 3)
(27, 24, 38,41, 36, 40, 26, 22)
(56, 51,55,54,5,6, 1,50)
(49, 46, 48, 47,26, 23, 24, 45)
(35, 30, 34,31, 32,4, 1,29)
(28,25,27,55,6,3,31, 24)
(21,18, 20, 55,56, 54, 19, 17)
(14,13, 34,20, 21,19, 47,12)
(7,6,34, 35,33, 12, 40, 5)

5.4 8-cycle decompositions required for Lemma 8

5.4.1 8-cycle decomposition of Ky X Ky

(74,79,77,75,76,81, 78, 80)
(64, 65,71,69, 70,79, 80, 73)
(57, 66, 68,64, 70,65, 74, 75)
(54,63, 55,58, 57,59, 68, 72)
(48,54, 50,52, 51,60, 78, 75)
(45, 54, 46, 53, 48, 52, 70, 72)
(39,57, 48, 51,42, 69, 66, 75)
(36, 63,45, 39, 48,49, 54, 81)
(32,59, 41,42, 43,45, 81, 77)
(29, 56,47, 38, 43, 40, 67, 65)
(28, 37, 39, 42, 40, 38, 56, 55)
(24,25,26,71, 44, 35,33, 51)
(21,48, 30,31, 34,35, 71, 66)
(17,62,26,22,27,72, 71, 80)
(14,68, 32,28, 30,33, 78, 77)
(12,57,30,21,27,26, 80, 75)
(9,72,18,54,27,25,79,81)
(8,53, 35,26, 19,27, 63, 62)
(7,52, 16,70, 25,21, 57, 61)
(6,51,15,17, 16,18, 63, 60)
(5,50, 14,41, 23,22, 58, 59)
(4,49,13,17, 14,32, 31, 58)
(3,66,12,17,10,18, 81, 75)
(2,65,11,17, 8, 26, 20, 74)
(2,9,3,21,12, 14, 23, 20)
(1,28,10,12,13, 4, 40, 37)
(17 ’ 15»21814’7)

w
o = -5

(67, 69,78,79,73, 81, 80, 76)
(61,63,81,72,67,64,71,70)
(56,61, 58,63, 72, 64, 66, 65)
(51,54,53, 71,62, 56, 60, 69)
(47, 52,49, 51,53, 50, 77, 74)
(43, 61,52, 46, 51, 50, 68, 70)

(38, 65,47, 48,50, 49, 76, 74)
(35, 36,45, 37, 46, 47, 53, 80)
(31,67, 49, 40,44, 43,79, 76)
(29, 36, 30, 66, 48, 46, 49, 47)
(25,43, 34, 32, 33, 36, 54, 52)
(23,50, 32, 30, 34, 33, 60, 59)
(20, 38, 29, 35, 28, 36, 72, 65)
(16,61, 25,23,27, 36, 34, 79)
(13,58, 40, 22, 24, 42, 78, 76)
(11,56,20, 21, 24,27, 81, 74)
(9,36, 18,45, 27, 20, 47, 54)
(8,35,17,53,26,21, 39, 44)
(7,34, 16,25, 20,19, 37,43)
(6,33,24,20,11, 38,37, 42)
(5,32,23,21,19, 10,37, 41)
(4,22,13,14,16,15,33,31)
(3,48, 12,16, 13, 15, 60, 57)
(2,47,11,16,7,9, 63, 56)
(1,64,10,14

,5,23,19,73)
(1,10,11,12,3,7,25,19)
(1,4,3,2,6,8,9,5)
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(65, 68, 71, 67,70, 66, 72, 69)
(58, 62,60, 61,59, 77, 68, 67)
(55, 62,57, 63,59, 56, 74, 73)
(49, 53,52, 79,61, 55, 60, 58)
(46, 64,55, 57, 56, 58, 76, 73)
(41, 45, 42, 44, 80, 62, 59, 50)
(37, 55,46, 50,47, 51, 78, 73)
(34,52,43,41,44, 53,62, 61)
(31, 36,32, 35,62, 44, 45, 40)
(28, 64,37, 44,38, 41,77, 73)
(24, 60,42, 38,39, 41, 68, 69)
(22, 49, 31, 35, 30, 39, 66, 67)
(19, 46,28, 34,29, 33, 69, 64)
(15, 42, 33,28, 31, 29, 74, 78)
(13,31,22, 20,29, 32, 41, 40)
(10,55, 19, 28,29, 30, 75, 73)
(8,71,17,44,26, 23, 77, 80)
(7,70,34,25,22,21,75,79)
(6,69, 15,18,17, 26,24, 78)
(5,68,23,24,19, 22,76, 77)
(4,67,13,18,12, 39, 40, 76)

(4,6,24,15,14,18,27,9) "
(3,30, 12,15, 10, 16, 43, 39)

(2,29,11,15,6,9, 45, 38)
(1,46,10,13,11, 14, 59, 55)

(1,8,5,7,2,11,18,9)
(1,2,4,5,6,7,8,3)
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