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Abstract

The (previously studied) notions of secure domination and of
weak Roman domination involve the construction of protection strate-
gies in a simple graph G = (V, [), by utilising the minimurn number
of guards necded at vertices in V' to protect G in different scenarios
(these minimum numbers are called the sccure [weak Roman) dom-
ination paramecters for the graph). In this paper these notions arc
gencraliscd in the sense that safe configurations in ¢ are not mercly
sought after one move, but rather after cach of k > 1 moves. Some
general propertics of these generalised domination paramcters are
established, after which the paramcter values are found for certain
simple graph structures (such as paths, cycles, multipartite graphs
and products of complete graphs, cycles and paths).

Keywords: Secure & weak Roman Domination, Higher Order
Domination, Graph Protection.
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1 Introduction

A guard function for a graph G = (V, F) is a mapping [ : V — {0,1,2,...}
such that f(v) denotes the number of guards stationed at a vertex v e V. A
guard function partitions the vertex sct of G into subscts V; = {v: f(v) =
i}, 1=0,1,2,... and we (impreciscly) write f = (Vp, Vi, Vo,...). A guard

*Department of Applied Mathematics, Stellenbosch University, Private Bag
X1, Maticland, 7602, Republic of South Africa, fax: <27 21 8083778, email:

vuuren@sun.ac.za
tDepartment of Mathematics and Statistics, University of Victoria, Box 3045, Victo-

ria, BC, Canada, VBW 3P4, ecmail: cockayne@math.uvic.ca

JCMCC 49 (2004), pp. 159-175



function is called safe if each v € V; is adjacent to some u € V\V (i.c. if
V\V is a dominating set of G). The weight of a guard function is denoted

w(f) =Y f(v).

veV

The following four kinds of safe guard functions have been studied in
the literature:

1. A dominating function (DF) is a sale guard function f = (W, V).
Note that f = (Vy, V1) is a DF if and only if V; is a dominating sct of
G. The minimum weight of a DIF is the well known lower domination
number,

7(G) = min V3.

See, for example, [5] [or known results on this parameter.

2. Prompted by a strategy employed by Roman emperor Constantine,
first Stewart [7] and then Cockayne, et al. [1], extended the notion of
a DI to include so—called Roman domination. A Roman dominaling
Junction (RDF) is a safe guard function f = (W4, V4, V2) such that
each v € W is adjacent to some » € V,,. The minimum weight of an
RDF is denoted

vr(G) = min ([Vi| +2|Va]),
which is called the Roman domination number of G.

3. As a result of using possibly too many guards in an RDIF, Henning &
Hedetniemi [6] suggested relaxing the definition somewhat to arrive
at the notion of so-called weak Roman domination. A weak Rornan
dominating funclion (WRDF) is a safc guard lunction [ = (Vy, Vi, Vo)
with the property that each v € W is adjacent to some z € ViU W,

such that
1 ifls=w

g(s)=< f(u)-1, ifs=u
Sf(s), if s € V\{u,v}
is also a safe guard function. In this casc we write g = move(f, u — v)
to mean that g is the safe guard function obtained from the safe guard
function f by moving a guard from vertex u Lo an adjacent vertex v,

and leaving all other guards unchanged. The minimum weight of a
WRDF is denoted

(G) = min (Vi|+2|V2]),

which is called the weak Roman domnination number of G.
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4. Finally, the definition of weak Roman domination was broadencd yet
further by Cockayne, et al. [3] to include the notion of secure domi-
nation. A secure dominating function (SDF) is a safe guard function
f = (Vo, V1) with the property that each v € Vp is adjacent to some
u € V} such that

g(s) = move(f,u — v)
1, ifs=v
= 0 ils=u

f,(-"‘), if s € V\{n,v}

is also a safe guard function. The minimum wecight of an SDF is
denoted
= min |V}
75(G) = min [V},

which is called the secure domination number of G.
In [1, 3, 6] it was shown that, for any connected graph G,

¥(C) <%(C) < {zn((g)) < 24(C) "

A number of intcresting properties of these four parameters have been cs-
tablished in (1, 3, 6], and these parameters have also been determined for
simple graph classcs, such as complete graphs, paths, cycles and complete
multipartitc graphs. In [2, 3] bounds for these parameters are established
for more complex graph structures, such as grid graphs, products of cycles,
products of complete graphs and claw-frce graphs. Finally, the general
lower bound

n(24 — 2t + 5)
%02 Err—a-ne=2

was proved in [2] for any K,—frce graph G of order n and maximum degree
A.

(2)

2 Foolproof generalisations

There is a fundamental diflerence between dominating [unctions and Ro-
man dominating functions on the onc hand, and weak Roman dominating
functions and secure dominating functions on the other: the first two in-
volve static configurations of guards on the vertices of G, while the second
two involve moving a guard from onc vertex to an adjecent vertex and
are thereforc dynamic. We shall only consider dynamic configurations of
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guards. The definitions of both weak roman domination and secure dom-
ination are “smart” in the lollowing sense: they require that, for any un-
occupied vertex v expericncing a problem, there is a guard at an adjacent
vertex u such that moving the guard from u to v results in a sale guard
function. It is the strategist’s task to determine which move to make in
order to resolve the problem at vertex ». It is thercfore possible to define
foolproof versions of these dynamic configuration cases (where a strategist
is not required): -

(5) A foolproof weak Roman dorninaling funclion (FWRDF) is a sale
guard function f = (W, W), V2) such that, for each v € V; UV, in
the (open) neighbourhood of any v € Vj, the function

g(s) = move(f,u—v)
1, ils=wv
= fuy=1, ifs=u
J(s), if s € V\{u,v}

is also a sale guard function. The minimum weight of an FWRDF is
denoted

1 (G) = min (Vi[+2Va]),

which is called the foolproof weak Rornan domination number of G.
(6) A foolproof secure dominating funclion (FSDF) is a safc guard func-

tion f = (Vb, V1) such that, for each 1 € V) in the (open) ncighbour-
hood of any v € W, the function

g(s) = move(f,u—v)
1, ifs=v
= 0 ifs=u

I(s), il s € V\{u, )

is also a sale guard function. The minimum weight of an FSDF is
denoted
* (w - H
7) = min |V,
’ys( ) I-‘Sl)l-‘sl ||,

which is called the foolproof secure dominalion number of C.

When referring o the previously studicd versions of these definitions
(as opposed to the new definition versions given above), we shall use the
term smari sccure [weak Roman] domination instead of foolproof secure
[weak Roman] domination in order to distinguish between the two kinds of
dynamic configurations. Note that, for any graph G,

1(C) S 7C) and 1(C) < (6, )
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since foolproof sccure {weak Roman] domination requires a more robust
configuration than does its smart counterpart. We also have the following
fless trivial) result.

Proposition 1 For any graph G, v;(G) < vr(G).

Proof: Suppose fp = (W, Vi,V2) is an RDF for the graph G. Then
fr is certainly a safe guard function for G, and any move of the form
gr = move(fr,u — v) clearly results in a safe guard function g, in the casc
where u € V2. Furthermore, if u € V), Lhen g, is also a safe guard function,
since in this case the sole possible reason for including » in V; in the first
place, was that u should dominate itsclf. But after the move u is dominated
by v. ]

The following generalisation of the bounds in (1) is therelore possible,
by utilisation of (3) and Proposition 1.

Corollary 1 For any graph G,

¥G) < %(G) < {z((g,; g 3;"((cc)). < 2O

It is, of course, possible to establish values for the dynamic configuration
parameters in the foolprool casc for simple graph classes, as has been done
for the smart cases in [1, 3, 6]. We demonstrate this for the case of foolproof
secure domination of paths.

Theorem 1 For any path Py, vt (Pn) = [-’21] .

Proof: It is first shown, by contradiction, that v;(P,) > [3]. Suppose
J = (Vp,Vy) is an FSDF for the path P72 vy - v, with |Vj| < [-}] Then
at least one of the following situations occur (without loss of generality, by
choice of the vertex labelling):

where dark vertices denote clements of Vi, Suppose (i) holds. Then g =
move( f,v2 — v3) is not a safe guard function, since »; € V5 is not adjacent
to any u € V;. Now suppose (ii) holds. Then g = move([f,via — viga) is
not a safe guard [unction, since vi.0 € Vy is not adjacent to any z € V.
These contradictions show that

%) 23]
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To see that n
n(P) < [3], (6)

observe that foqq = (%,\7,), with V| = {vi i =1 (mod 2)} and Vo =
V(P)\W is an FSDF for P, il n is odd. Otherwise feven = (Vo, V1) with
Vi={vi:i=2,3 (mod 4)} and Vp = V(P,)\V, is an FSDF for P, il n is
even. The desired result follows by a combination of (5) and (6). |

Similar results to the one above for other graph classes or for the param-
cter ;. are possible at this point, but we refrain from proving such results
until we have established a more general setting for smart and foolproof
domination.

3 Higher order generalisations

It is natural to generalise the notions of smart. [foolproof] secure and weak
Roman domination so that safe configurations are guaranteed after cach
of k > 1 moves to a sequence of problem vertices (henceforth informally
called a problem sequence) instead of considering only one problem vertex
in the graph at a time. The following four definitions achicve just such a
gencralisation.

(7) A smart k-weak Roman dominaling function (k-SWRDI ) is a salc
guard function f©® = (v v V.z(n) ) with the property that, for
any scquence of vertices wg, vy, ...vk-1, there exists a sequence of
vertices u; € Vl(') U V.z(') in the neighbourhoods of »; such that the
functions f+1(s) = move(f®, u; — v;) are also safe guard functions
for all 2 = 0,...,k — 1. The minimum weight of a k- SWRDF is
denoted

_ : (0) (0)
wa(@ = _amin (VO +2v)),

which is called the smart k-weak Roman domination number of G.

(8) Similarly, a foolproof k-weak Roman dominating function (k-FWRDI)
is a safe guard function f© = (V{? v® v ) with the property
that, for any scquence of vertices wo,vy,...,ve 1, the lunctions
S (“")(s) = move( SO u; — v;) are also sale guard lunctions for any
sequence ol vertices u; € Vl(‘) U V.z(‘) in the neighbourhoods of v; and
all :=0,...,k — 1. The minimum weight ol a & FWRDIE is denoted

*(0) = . vy . V(o))
k(6 k-~|~!{’{"{!l.l)l-‘s<| oLV

which is called the foolproof k-weak Roman domination number of G.

164



(9) A smarl k-secure dorninaling function (k-SSDIY) is a safe guard func-
tion O = (VO(O), V,(O) ) with the property that, for any sequence of
vertices vy, v1, ..., Vk-1, there exists a sequence of vertices u; € V,(i)
such that the functions fE+1D(s) = move(f) u; — v;) arc also safe
guard functions for all ¢ = 0,...,k — 1. The minimum weight of a
k-SSDF is denoted

= : (0)
%x(G) =, min, IV

which is called the smart k-secure domination number of G.

(10) Similarly, a foolproof k-secure dominaling function (k-IFSDF) is a safc
guard function f© = (Vn(o), V,(O)) with the property that, for any
sequence of vertices v; (i = 0,...,k — 1), the functions fG41(s) =
move( ), u; — v;) arc also safe guard functions for any sequence of

verlices u; € V,(i) in the neighbourhoods of w; and alli=0,..., k1.
The minimum weight of a k-SSDIF is denoted

c (Y= mi ©
Ya(G) = min Vi,

which is called the foolproof k--secure domination nurnber of G.

We thercfore have the special cases v = Y1, 77 = Y, ¥s = Vs
and 7} = v;,. The case k = 0 corresponds to the situation where no
moves are allowed. So, for convenience, lel yr0 = Y0 = Y50 = Y40 = 7-
Furthermore, the following relationships between the smart, and foolproof

versions of the newly defined parameters trivially hold, as a generalisation
of (3).

Proposition 2 For any graph G and any k € N, v x(G) £ 77,(G) and
Yo,k(G) < v; £ (G).

The following growth relationships of the paramecters with respect to
increasing valucs of £ hold.

Proposition 3 For any graph C and any k € Ny,
(@) 1rk(G) < Yres1(C),
(b) 7 1(C) £ 77 11 (G),

(¢) 1k(C) £ Vo1 (€,
(d) Y5 6(G) <7} i1 (G).
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Proof: (a) Any (k + 1)-WRDF with minimum weight v, ¢4, (G) for G is
also a k-WRDF for G, and the weight of this last dominating function is
bounded from helow by v, £(G). The proofs of parts (b)—(d) are similar. B

It is easy to see that the lollowing result is truc.

Lemma 1 For any graph G and any edye e € I2(C), vrx(G) < ¥ri(C —€)
and Y5 k(G) < ¥s,k(G — ¢), for all k € Ny.

This lemma may be used repcatedly to prove the following two results.

Proposition 4 If the verter sel of a graph G is partilioned inlo lwo subsels
81 and 83, then, for all k € Ny,

(a) Y k(G) < ¥rk({S1)) + ¥r x((S2)),
(8) ¥5,6(G) < ¥5,6({S1)) + 75,6 ({S2)).

Proposition 5 If I is a spunning subgraph of G, then v, x(G) < vy (1)
and 5 k(G) < Ys k(1) for all k € Ny.

Note that, in gencral, it is not possible to establish results similar o
those of Lemma 1 and Propositions 4 and 5 for the parameters Y (G)
and v, k(G’) For cxample, removing an edge may increase or decrcase the
value of Ys1- This may be scen by observing that 5 l(I } = 2, while
Ys1(Ps —e) Y51 (P1)+7;,1(F3) = 3. On the other hand Ys,2(Pa) = 3, yot
Vo2(Pa —€) = 7, 2(P2) + 7; o(12) = 2.

It is easily scen that the following result, is true.

Proposition 6 If G is an order n graph such thal, for some subsel of
verlices S = {vy,..., v} C V(G), the graph G — S possesses a perfect
malching, then, for all k € Ny,

n—1n m-+n
+m=
2

Finally, we conclude this section with a summary of relationships be-
tween the various parameters considered in this section, as a generalisation

of (4).

7.9,‘:((;) S

Theorem 2 The relalionships

YC) < 1e(C) ¥s,k(G)
IA IA (7)

NG) € wu(G) £ 7 k(B)
hold for all k € N,

IN
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4 Parameters for special graphs

In this section we consider a number of simple graph classes and find val-
ues for the four new finite order domination paramecters considered in this

paper.

4.1 Paths

For paths we cstablish three of the four finite order parameter values pre-
cicely, as summarised in the following theorem.

Theorem 3 For any path Py, n 2 2,

2k +1
(a) 'Yr,k(Pn) = 'Ys,k(,)n) = [mn_l, for all k € No,

() v;k<Pn>={ [en] ir2<k<n-2

n-1 ilk>n-1,

Proof: (a) It is first shown that v x(/%) < [$g4n] for the path Py :
v; - - - vy. Partition the path 72, into Zﬁi] subpaths I’,l(,?_',3 of length 4k 43
(€ =1,..., 585]) and onc (possibly cmpty) subpath I’ : wjug -+ ug of
length ¢ = n (mod 1k+3), and consider the function [ = (Vom), V](o)), where
Vl(o) = {v; : i (mod 1k 4+ 3) = 0 (mod 2), v; € V(Pf )} U {u; € V(I%):
j=1(mod 2)} and Vi = V(P \V?. We shall show that f is a k-SSDIP
for Py, by showing that for any sequence of k problem vertices there exist
m < k moves that renders safe guard functions f& for P, (i=0,...,k).

(1) LT
Piess l‘»lb{:ﬂ 1
(0—e—o—=e ---—0)---t0—e—0—e---9—0}{e—0--0)
v va EXTR Y ") LR .

We only have to consider the ¢ase where the whole sequence of problem ver-

. . ¢ . .
tices occurs in one subpath I’,,(k?m, because if there exists 2 move sequence

that renders safe guard functions f& for I’,fi)1 4 (1 =0,...,k), given any

sequence of k problem vertices within the subpath, then there also exists a
move sequence that renders safe configurations for fewer problemn vertices
within the subpath. Since cither P, or I’, — v possesses a perfect matching,
it follows by Proposition 6 that v, (/) = [¢/2] and hence there exists
a move scquence wholly within 7, that renders sale configurations for /7%,
given any sequence of k > 1 problem vertices in P.. Therefore consider,
without loss of generality, a sequence of k problem vertices v;; € V(I’ﬂ_),.s),
i =1,..., k. We consider two main cascs:
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Case A: v;; € {Vsks1,Vaki2,Vaks3} for all j=1,... k. In this case

2k

M, = U('U'Zi«l,v'Zi)

i=1

is a perfect matching of the subpath (u,...,v4%). Therefore

Yo (PR ) < 2k + 1,

by utilisation of Propositions 6 and 1(b) and Theorem 2.

Case B: v;; € {vaks1,Vak42, vk .3} for some j € {1,...,k}. In this
case we distinguish between two further subcases:

Subcasc B(i): vi; & {vi,v2,v3} for all 5 =1,... k. In this subcasc

2k+1

My = U (v, V2ig1)
i=2

is a perfect matching of the subpath (vy, ..., v4k+3). Tence we have, by a
similar argumnent as in Case A, that k(Pj;iq) <2k+1.

Subcase B(ii): v; € {v,,vz,v;} for some j € {1,...,k}. In this sub-
casc there arc at most, k — 2 problem vertices in the subpal h (vg, ..., v4%).
But then it follows, by the pigeonhole principle, that there are at least 4
consecutively labelled vertices that are not problem vertices: suppose they
are vag, Vae. 1, ¥2e4-2, U243 (Lhe case where the first of these labels is odd, is
similar). Then

¢ 2k 1
Mz =|Jwa_r,vn) and My = | (v, vai1)
=1 1=£42

are perfect matchings of the subpaths I := (uy,...,v9) and /= (v2p.4.4,
.» V1k+3) Tespectively, and we have, again by Theorem 2 and Propostions
6 and 4(b), that v, k(P U P) < 2k. Hence v (P2 ) < 2k + 1, becanse
Y((vaer1, vaer2, v2e13)) = 1.
Conscquently we have, in all cases, that,

(rrk(Pn) <) Yo e(Fn) [M J(2k+l) [2]5[3211‘4 (8)

(The last incquality can be proved by first showing that [§] = [2E+1c] if
¢ <4k +3.) To prove that

% + 1 ] o)

(u(Pa) 2) 1ealP2) 2 [
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suppose, to the contrary, that 4, x(Fn) < [%.21] -1=|75]2k+1)+
[§1—1. Then there will be a subpath 14k+’¥’ i€ {l,...,|725]}, containing
at most 2k vertices from Vl(o) u V(O) or clse I, will contain at most. [£] =1
vertices [rom Vl(o) U \/2(0). We consider the former possibility first. Suppose,
without loss of generality, that P,f,lcl 4 contains at most. 2k vertices from
V(O) UV(O) Consider the sct of problem vertices | = {vge-y : €=1,...,k}.
Because this is an independent set, [ € V(k) V( ). Purthermore, h(‘('emso
S must be a sale guard function, J = {vu-n I =0,...,k} must be
dominated by vertices in V,(k) U V.‘,(k) . But no vertex in J is adjacent to
vertices in J. Therefore |(V,('°) U 1/2(0)) N V(P,,(,lc.)ka)l > 2k+ 1, which is
a contradiction. Finally, if P contains only [£] — 1 vertices from V(O)

V2( ) then we get a similar contradiction by considering the problem vertex
sequence vae—1, £ = 1,..., [$52], ¢ > 3. The desired result for 4« (/%) and

¥s,k(Pr) therefore follows by a combination of (8) and (9).

(b) Consider the case k < n — 2. It is shown first, by contradiction,
that every subpath I’,S?3 Ui (mod n) " Vitk: 2 (mod n) of length k43 within
P, i vgvy - - - Uy contains al least k+ 1 vertices [rom V(O) for any k--FSDI°
S (0) = (V(O) V( )) Suppose, Lo Lthe contrary, that there exists such a
subpath P,E )3 ol P, containing only k vertices from V( ) (and hence 3

vertices from Vo( )). There is exactly one possible case:

Vg I v,
— e --0—0—0--06—0—9--06—0—0--0—
[ —— N N—— N o’
@ b ¢ o

Here dark vertices denote clements of V,(n) and a,b,c,d > 0, with a+ b+
¢+ d = k. The sequences of moves
JOD = m()vc(j(j),vz,,l_.j —v,.5), 1=0,...,c—1
and
D = move (S upipp1 = vnpe), €=0,...,b—1

render unsafe configurations in /2, after b + ¢ moves, because vy, € V(,(b) is
not adjacent to any u € Vl( ),

This contradiction shows that lV(I’,S?:‘) N V,(O) | > &+ 1 for all 4
0,1,...,n — 1. In order to NI} this property, it follows that |V1(0)|

(k+ )| ghz] + 7, where 7 > Fe rendering the lower bound

k41
Yo k() 2 (k+l){k+£J+[k{—3"W’ irk<n-2,  (10)

]

v
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with ¢ = n (mod k + 3). To see that this bound is sharp, partition the

path P, into [k 5] subpaths Ik+3 vJ(,” 3)s Vj(k43)+1r - - - Vj(ka)tkr2 (3 =
les) - 1) and one subpath P @ |5/ (k4 3)j(k43)s - - - » Un—1 Of length

¢ =n (mod k +3). Consider the sale guard function fO = (V{V, v,
where

Pk(:'_,'_)anv(()) {vi:i=1,2,...,k,k+1 (mod k+3)}, j=()....,l ) J_l,

k+3
where
PAVO = {vi:i=0, ,...,(-—l(modk+'$)} ir <c< |52
¢ {vi:i=1,2,...,¢—1 (mod k + 3)} 1f[+]<r<k+2
and where V{® = V(P \V{?. Clearly f© is a k-FSDF for /%, and henee
Vik(Pa) < w(f) (1
n 2c+1
n (c+1)(k+3) 2c+1 k+2
= (k+1 - —
( +)_k+3_+[ k+3 K+3 k43
n k+1 .
= <n-2.
(k+n_k+3_ [k+31 if k<n—2 (12)

It follows by (10) and (12) that

. k41 k+1 .
‘Ys,k(Pn)=(k+|){k J+[k+f] [k+§]' il k<n-—

where the last cquality can be proved by rewriting ¢ in terms of n and k.
Finally note that

[{Ck-:—l;n] =n-1 if k=n-2.
It follows by Proposition 3 that
You(Pr) 2 Vs na(Pn) =n -1 (13)
for any k > n — 2. But certainly
Yo ulPn) Sn—1 (14)

for all k € N. A combination of (13) and (14) yiclds the desired result
You(Pa)=n—1lorall k>n -2 [ ]
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Note that the corresponding case k = 1 in Theorem 3(b) was cstablished
in Theorem 1.

Finally, we have the following conjecture.

Conjecture 1 v; ,(Pn) = v; i (Pn) Jor any n € N.

4.2 Cycles

For cycles it is also possible to establish three of the finite order parameter
values exactly.

Theorem 4 For any cycle Cy,

2k +1
(a) ’Y",k(cn) = 75.k(cn) = [:ik_-{-_I%

n-‘, for all £ € Ny,
kil if0<k<n-3

b : Cn = |'k+3n-l, ! - -

() %lCr) { n-2 ilk>n-3

Proof: (a) The proof of this result is identical Lo that of Theorem 3(a).

(b) It can be shown, by exactly the same contradiction argument as in
Theorem 3(b), that

n k41
* > 4 i <n-—: 5
Y k(Cn) 2 (k+1) h_'_:;J + [k"':;(‘w , il k<n-3, (15)

with ¢ = n (mod k + 3). To sce that this bound is sharp, partition the

cycle C,, into [#J subpaths I’,E'_’l_)3 D V(k43)s Vi (kA-B) 4 1y« - 2 Vilkt-B)4-k+2 (G =
0,..-, &) — 1) and one subpath Pe @ vjn g ayj(kasys- -1 Vn- o of length

c=n (mod k + 3). Consider the safe guard function f(0 = (V(,( v, V](O) ),
where

VC)NVY = {v; 1 i = [k/2]42, k+1 (mod k+3)}, 7=0,..., [%J -1,

and where Vl(o) = V((),,)\VO(O). Clearly /™ is a k FSDI* for C,, and hence

k(Cn) < w(f®) (16)
(k+1) @5 +e  if0<es[§+1]
(k+ 1) || +e-1 ir [§+2] <csh+2
k+ 1
- |55 a7)
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for all k < n — 3, cxactly as in the proofl of Theorem 3(b). The desired

result for k < n — 3 therefore follows by a combination of (15) and (17).
Finally note that

[k+l

mni‘ =n—-2 il k=n-3.

It follows by Proposition 3 that
Vek(Cn) 2V a(Cr) =n -2 (18)

for any k > n — 3. But certainly
Yak(Cn) S -2 (19)

for all k € N. A combination of (18) and (19) yiclds the desired result
Yoi(Ca)=n—2ral k>n-3 -

4.3 Complete bipartite graphs

In this section we consider complete bipartite graphs and find values for
Ys,k and 7 . for this simple graph class.

Theorem 5 For the complele bipartite graph Ko 4,

4, k-landp>4
. _ 2(k+ 1), l<k<[LJ
'Ys,k(Kp,q) = ‘Ys,k(Kp.q) = P, [LJ +1<k<p
q, k>p

where p,q € N, with p < q.

Proof: It was shown in [3] that v} (K,) = 4 il p 2 4. In order o
establish the other three cases, let P and Q denote the partite sets of Kp 4,
with |P| = p and |Q] = q. First, consider the case 1 < k < [’—J Note

that £© = (V) v(")) i a k- lSI)I‘|f|V|(")r1’P| =k+1, VN Q| = k+1
and V( ) = = V(Kp, ,,)\V (as shown in Figure 4.1(a)). Henee

TelKpa) < ToalKpa) 26+ 1) i1 1<k |52 (o)

by Theorem 2. Now assume that v, «(Kj,,) < 2(k + 1), then cither |V|(0) N

0 . . .
Pl <kor |V,( ) Q| < k. Assume, without loss of generality, that |V1(“) N
Q| < k. Then no move sequence of the form [0 = move(f u; — 2,)
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renders a safc guard function [} for any scquence of vertices u; € P if
v, €Q(i=0,...,k—1),since

p—-2 _J p=1ilpiscven
2{ 2 J+1_{7‘—2 if pis odd <p

This contradiction shows that
. . -2
Yokl Kpg) 2 Vs,6(Kpq) 2 2k+1) il 1<k< [pT-J . (21)

The second case of the theorem therelore follows by a combination of (20)
and (21).

Now, consider the case [%2] +1<k<pandlet fO = (Vn(u), Vl(n))
be a k-FSDF with [V{?| = ¢ < p — 1. Suppose QN V| = ¢ and
PN Vl(o)l = ¢ —c¢ for some 0 < ¢ £ ¢ Denote the clements of the non—
empty set PN Vo(o) by {vo, ..., Vp-t4e-1}, and consider the problem vertex
sequence v; (z = 0,...,c — 1). Clearly any move sequence of the form
move(f("),u,- — w;) with u; € @nN V,(i) (i=0,...,c—1) will render an
unsale guard function f¢) in K, ,. This contradiction shows that

. " -2 o
‘Ys,k(Kl'.'l) 2 "I’s,k(Kp.q) 2p il lLTJ +1<k<p (22)

To sce that this bound is sharp, consider the k& FSDF [0 = (V(,(“), VI(O) )
depicted in Figure 4.1(b), where dark vertices denote clements of V,(") , by
which it follows that

o - 2 e
Vel Kna) STaKog) <2 30 |L2 |41 <k <n @)

The third casc of the theorem therclore follows by a combination of (22)
and (23).

Finally, consider the case where k > p and suppose f(®) = (VO(O), V,(O)) is
a p-FSDF with [V{"| = € < q. Supposc [PAV?| = dand [NV = ¢—d
for some 0 < d < ¢. Denote the clements of the non- empty set. @ N V(,(O)
by {wo,...,vq-e+4. 1}, and consider the problem vertex sequence v (2 =
0,...,d—1). Clearly any move sequence of the form move( ), u; — v;)
withu; € @nN V,(o) (t=0,...,d =1) will render an unsale guard function
S@in K. p.q- This contradiction shows that v, (K} ,) 2 q. Hence

Yo, k(Kpa) 29 il k2p. (24)

But certainly
'Y.s,k(Kp.q) <q. (25)
Hence the fourth case of the theorem follows by a combination of (24) and
(25). u
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p \ 9
vertices vertices
veraes § ¢
(@) 1<k< ®) |22 +1<k<n () k2 p

Figure 4.1: Foolprool k-sccure dominating functions f( = ( VO(O), V,(")) for
the complete bipartite graph Kp 4 (p < q). Dark vertices denote clemnents

of V®,

5 Conclusion

In this paper the previously studied notions of sccure domination and of
weak Roman domination were generalised in the sense that safe configura-
tions in a simple graph were not merely sought aller one move, but rather
after £ > 1 moves. Some general propertics of these generalised domina-
tion numbers were established in 83, after which the parameter values were
found for certain simple graph structures in §5. There is ample scope for
the determination of paramcter values for specific graph structures, such
as the values of ;. (Pn) and 7 (Cy), the various parameter values for
complete multipartite graphs, cle.

Further work may involve a number of interesting generalisations: (i)
In our work the problem vertex sequence was always known completely
in advance by the strategist. [Towever, the situation where these problem
vertices are made known (and arc dealt with) one at a time might be a
more realistic scenario in terms of games of strategy, and this generalisa-
tion deserves to be investigated. (ii) It might also be worth while allowing
for a number of consccutive moves before requiring the graph to be pro-
tected, instead ol requiring sale configurations after cach move (similar 1o
the watchman’s walk problern described in [4]).
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