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Abstract

A grid graph is a finite induced subgraph of the infinite 2-dimensi-
onal grid defined by Z x Z and all edges between pairs of vertices
from Z x Z at Euclidean distance precisely 1. An m X n-rectangular
grid graph is induced by all vertices with coordinates 1 to m and 1 to
n, respectively. A natural drawing of a (rectangular) grid graph G is
obtained by drawing its vertices in 22 according to their coordinates.
We consider a subclass of the rectangular grid graphs obtained by
deleting some vertices fromn the corners. Apart fromn the outer face,
all (inner) facces of these graphs have area one (bounded by a 4-cycle)
in a natural drawing of these graphs. We dectermine which of thesc
graphs contain a Hamilton cycle, i.e. a cycle containing all vertices,
and solve the problem of determining a spanning 2-connected sub-
graph with as few edges as possible for all these graphs.
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1 Introduction

The infinite grid graph G is defined by the set of vertices V = {(z,y) |
z € Z,y € Z } and the set of edges F between all pairs of vertices from
V at Euclidcan distance precisely 1. For any integers m > 1 and n > 1,
the reclangular grid greph R(m,n) is the (finite) subgraph of G* induced
by V(m,n) = {(z,y) | 1<z<m, 1<y<n, z€Z, y€ Z} (and just
containing all edges from G between pairs of vertices from V(m, n)). This
graph R(m, n) is also known as the product graph P,, x P, of two disjoint
paths Py, and P,. A grid graph is a graph that is isomorphic to a subgraph
of R(m,n) induced by a subset of V(m,n) for some integers m > 1 and
n 2 1. It is clear that a grid graph G = (V, E) is a planar graph, i.e. it can
be drawn in the plane R2 in such a way that the edges only interscct at
the vertices of the graph. In such a drawing, the regions of R2\(V U E) arc
called the fuces of G. Exactly one of the faces is unbounded; this is called
the ouler face; the others are its inner faces. The nalural drawing of a
grid graph is just described by drawing its vertices in 2 according to their
coordinates. A solid grid graph is a grid graph all of whosc inner faces have
area one (arc bounded by a cycle on four vertices) in a natural drawing. A
grid graph that is not solid contains inner faces (in a natural drawing) that
have area larger than one; these faces are called holes. A subgraph /7 of a
graph G = (V, E) is called a spanning subgraph if V(I) = V. A connccted
graph is called 2-connected il it remains connected il at most one vertex
is removed. A Hamilton cycle in a graph G = (V, E) is a cycle containing
every vertex of V, i.e. a spanning 2-connected subgraph in which every
vertex has degree 2 (the number of edges is |V]).

Itai, Papadimitriou and Szwarcfiter have proved in (2] that deciding
whether a given grid graph has a Hamilton cycle is an NP-complete prob-
lem. This implics that the problem of finding a spanning 2-connccted
subgraph with as few cdges as possible is also NP-hard for grid graphs. It
has been conjectured that the first problem remains NP-complete when it
is restricted to solid grid graphs. However, Umans and Lenhart [9] recently
proved that this problem is polynomially solvable for solid grid 4graphs, by
presenting a complicated algorithm with time complexity O(|]V[*). In a re-
cent paper of Sheffield [8] the work of [2] has been extended to grid graphs
with a small number of holes. For the sccond problem the complexity is not
known when it is restricted to solid grid graphs. It remains an open prob-
lem —what the complexity of both problems is— when we restrict ourselves
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to grid graphs with a fixed number of holes.

Motivated by the above problems, we study the problem of the existence
of a Hamilton cycle and the problem of determining a spanning 2-connected
subgraph with as few edges as possible for a number of classes of grid
graphs without holes, obtained from rectangular grid graphs by deleting
vertices from the corners in a natural drawing. This is a continuation of
the work started in [3], [4] and [6]. In the other papers, [5] and [7], we
study the same problem for classes of grid graphs with a few holes. For
all graphs of the defined classes we are able to solve the second problem.
All solutions are of the same type: first, we use the well-known Grinberg-
condition and the propertics of bipartite graphs to derive a lower bound
for the number of edges in a spanning 2-connccted subgraph. Secondly, we
show by construction that this lower bound is in fact the optimum value.

2 Truncated rectangular grid graphs

We now introduce the classes of grid graphs which we call truncaled rect-
angular grid graphs.

Form >3,n>3,0< k <min{m-2,n—-2}and 0 <! < min{m—-2,n—
2} we define a 1-corner truncated reclangular grid graph R(m, n)~ k) a5
the subgraph obtained from R(m,n) by dcleting k x ! vertices from one
corner in V(m,n) together with their incident edges in a natural drawing.
For illustration, consider /2(11,13)~%%3) in Figurc 1(a).

Form >6,n>6,1 <k < min{Z5, 21} and 1 <1 < min{Z1, 254}
we define a 2-corner truncaled reclangular grid graph R(m,n)~ 254 as the
subgraph obtained from R(m,n) by deleting k x { vertices from two op-
posite corners in V(m, n) together with their incident edges in a natural
drawing. For illustration, consider R(11,13)~2(23) in Figure 1(b).

Form>6n>61<k<mm{"‘" 24} and 1 <! < min{25t, 254
we define a 3-corner truncated rectangular grid graph R(m,n)~3(%: ') as the
subgraph obtained from R{m,n) by deleting k x I vertices from three cor-
ners in V(m,n) together with their incident edges in a natural drawing.
For illustration, consider R(11,13) 323 in Flgur(' 1{c).

Form > 6,n> 6,1 <k <min{22, 252} and 1 <1 < min{252, 251}
we define a 4-corner (runcaled reclangular grid graph R(m, n)~ Ak, ‘) as the
subgraph obtained from 2(mn, n) by deleting & x I vertices from each corner
in V(m,n) together with their incident edges in a natural drawing. For
illustration, consider 2(11,13)~%23) in Figure 1(d).

Spanning 2-connected subgraphs with a minimum number of edges for
the 1-corner truncated rectangular grid graph R(m, n)~ (%) and for the 4-
corner truncated rectangular grid graph R(m,n)~%*%*%} were studied in [4].
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(a) (b) (c) (d)

Figure 1: Truncated rectangular grid graphs : (a) R(11,13)"123) (b)
R(11,13)7223)  (¢) R(11,13)=323)  (d) R(11,13)4(23)

Subsequently, in [6] thesc results were generalized to the following theorem.

Theorem 1 Let R(m,n) '8 and R(m,n) %Y denote the 1-corner
lruncaled reclangular grid graph and the 4-corner truncated reclangular grid
graph as defined above, respectively. Then:

() R(rn,n)~ %D conlains a spanning 2-connected subgraph with (at most)
[VI+1 edges and is hamillonian if and only if both m -n and k- | are even
or bothm -n and k -1 arc odd;

(i) R(m,n)~ kD contains a spanning 2-connecled subgraph with (ol most )
V| + 3 edges and is hamillonian if and only if m - n is cven. The bound
[V + 3 is best possible for any odd numnbers m,n, k and l.

Our main result in this paper characterizes which of the other truncated
rectangular grid graphs arc hamiltonian and guarantees the existence of a
spanning 2-connecled subgraph with at most two cdges more than their
number of vertices. We postpone the proofs and constructions (figures)
until the next scction.

Theorem 2 Let R(m,n)~%%) and R(m,n)~3*k) denote the 2-corner
lruncaled rectangular grid graph and the 3-corner truncated rectangular grid
graph as defined above, respectively. Then:

(3) R(m,n)~2*Y conlains a spanning 2-connected subgraph wilh

o |V| edges if m -1 is even and at least one of k and | is even if both m
and n are even;

o |V|+2 edges if m and n are even and k and | are odd;

o |V|+ 1 edges in all other cases.

These numbers of edges are all best possible;

(43) R(m,n)~* &Y contains o spanning 2-connecled subgraph with

o |V| edges if both - and k -1 are even;

o |V|+2 edges if all of m, n, k and | are odd;

o |V|+1 edges in all other cases.

These numbers of edges are all best possible.
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3 Proofs and constructions

A usehul necessary condition for hamiltonicity is the following result due to
Grinberg (1].

Lemma 3 Suppose a planar graph G has a Hamilton cycle H. Let G be
drawn in the plane, and let r; denole the number of faces inside H bounded
by i edges in this planar embedding. Let r be the number of Jaces outside

H bounded by i edges. Then the numbers T and r satisfy the following

equation.
Z G -2)(ri—7)=0.

We use this lemma to show that R(m,n) %% contains no Hamilton
cycle if m - n is odd, and that R(m,n) =3 contains no Hamilton cycle if
m -n and k-l have a diflerent parity.

Corollary 4 R(m,n)~ %59 contains no lamillon cycle if m - n is odd.

Proof. There is exactly onc face with 2(m + n — 2) edges and there arc
exactly (rn — 1)(n — 1) — 2k - I faces with four edges in the planar (natural)
drawing of the 2-corner truncated rectangular grid graph R(m,n)~ 2kit),
Let this graph be hamiltonian. Then by Lemma 3 we have

@2(m +7n—2) —2)(=1) + (4 = 2)(r4 —74) = 0.

Hence
,
Ta—Ts=m+n—23. 1

It is casy to check that the number of faces with four edgoes is
74 +r;=(m—l)(n—l)—2k-l. (2)
From cquation (1) and (2) we obtain
2rq=m-n—2k.1 -2 3)
So, - nis even. a
Corollary 5 R(m,n)~3% conlains no Hamillon cycle if m -n and k -1
have a different parily.

Proof. There is exactly one face with 2(m + n — 2) cdges and therc are
exactly (m — 1)(n — 1) — 3k - faccs with four edges in the planar (natural)
drawing of the 3-corner truncated rectangular grid graph R(m,n)~3(e0,
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Let this graph be hamiltonian. Then by Lemma 3 and using a similar
method as in the proof of Corollary 4, we obtain

2ry=m-n-3k-1-2. 4)

So, either m -n and k - | are even or m - n and k - | are odd. a

Lemma 6 R(m,n)~%kD contains no spanning 2-connected subgraph with
at most [V|+ 1 edges if both m and n are even and both k and | are odd.

Proof. First, consider a bipartition (S, T) of R(m,n) for some positive
even integers . and n. Assume that one of the corner vertices is in S.
Then one easily shows that the opposite corner vertex is also in S, whereas
the two other corner vertices are in |T| and that |S| = |T|. This can be
proved by induction on 7n and n, and removing the cycle of the outer face
ilm,n>4.

Secondly, consider a bipartition (S, T) of 12(k, 1) for odd k and I. Assumc
that one of the corner vertices is in S (if 7n,n > 3; otherwise consider an
end vertex). Then we can show that all corner vertices (end vertices) are
in S, and that |S| = |T|+ 1. This can be proved by induction on m and =,
and removing the cycle of the outer face if m,n > 3.

So if we remove the two opposite corner R(k,l)’s from R(m,n), we
reduce |S| by two more units than |T|, implying that R(m,n)~ 2! has
a bipartition (S',T") with |T’| = |S’| + 2. In any spanning 2-connected
subgraph G of R(m, n)~%%4 all vertices in 77 have degree at least 2, hence
[E(C)| 2 2|T'| = |T'| + |$'| + 2 = |V(C)| + 2. This completes the proof of
Lemma 6. o

Lemma 7 R(m,n) 35 contains no spanning 2-connected subgraph with
al most |[V|+ 1 edges if all of m, n, k and | are odd.

Proof. Consider a bipartition (S, T) of (mn,n) for odd m and n. As-
sume that one of the corner vertices is in S. By the same arguments as in
the prool of Lemma 6, then all corner vertices are in S, and |S| = |T| + 1.
The same holds for R(k,{) il k and [ are odd. So if we remove the three
corner [2(k, 1)’s from I(rn,n), we reduce | S| by three more units than [T,
implying that R(m,n) 3% has a bipartition (', T') with |T"| = |§’] + 2.

In any spanning 2-connected subgraph G of R2(m, n) =35 4)) vertices in 77
have degree at least. 2, hence [L(G)| > 2|T'f = |T'|+|S'|+2 = |[V(C)| + 2.
This completes the prool of Lemma 7. a

We complete the proof of Theorem 2 by showing, through construction,
the existence of a ITamilton cycle or a spanning 2-connected subgraph with
at most |V| + 2 edges, in all cases wherem =10o0r 11, n =120r 13, k = 2
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or 3 and { = 2 or 3. Meanwhile, lor other values of m,n, k and [, it is not
difficult to see from the patterns in the figures that follow how to ecxtend
the solutions.

(a) (b) (c)

Figure 2: A Hamilton cycle for : (a) R(11,12)~23:2) (b) R(11,12)~%23)
(€) R(11,12)~233)

A Hamilton cycle for R(11,12)"%32) is shown in Figure 2(a). The
pattern in this figure can be used for finding a Hamilton cycle for the 2-
corner truncated rectangular grid graph for cither (any numbers m and
k, and any even numbers n and @) or (any numbers n and [, and any
even numbers m and k). In Figure 2(b) we show a llamilton cycle for
R(11,12)~2®@3), The pattern in Figure 2(b) can be used for finding a
Hamilton cycle for the 2-corner truncated rectangular grid graph for cither
(any even numbers n and k, and any odd numbers m and ) or (any even
numbers m and {, and any odd numbers n and k). In Figure 2(c) we show
a Hamilton cycle for R(11,12)2G:3), The pattern in Figure 2(c) can be
used for finding a [amilton cycle for the 2-corner truncated rectangular
grid graph for cither (any even number n, and any odd numbers m, k and
1) or (any even number m, and any odd numbers n, k and {).

U mLI’LﬂIL[m MH}_HIL[H
(b) (c)

(a)

Figure 3: A spanning 2-connected subgraph for : (a) R(11,13)7223) with
[VI+1edges  (b) 2(11,13) 222 with |V| 41 edges  (¢) R(10,12)~2C3)
with |V|+ 2 cdges

A spanning 2-connected subgraph for /2(11,13)~ 223 with V|41 edges

is shown in Itigure 3(a). The pattern in this figure can be used for finding
such a spanning subgraph with |V| + 1 edges for the 2-corner truncated
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rectangular grid graph for cither (any number k, and any odd numbers
m,n and l) or (any number [, and any odd numbers m,n and k). In
Figure 3(b) we show a spanning 2-connected subgraph with {V| + 1 edges
for 12(11,13)~2(22), The pattern in Figure 3(b) can be used for finding a
spanning 2-connected subgraph with |V|+1 cdges for the 2-corner truncated
rectangular grid graph for any even numbers k and { and any odd numbers
m and n. In Figure 3(¢) we show a spanning 2-connected subgraph with
|V|+2 edges for R(10,12)~233), The pattern in this figure can be used for
finding a spanning 2-connccted subgraph with |V'|+2 edges for the 2-corner
truncated rectangular grid graph for any even numbers m, n, and any odd
numbers k and I. This is the optimum value for the minimum number of

edges in such a spanning 2-connected subgraph.

(a) (b)

Figure 4: A Hamilton cycle for : (a) R(11,12)7332)  (b) R(11,12)~3(23)

Hamilton cycles for R(11,12)7332) and R(11,12)~3(23) are shown in
Figure 4. The pattern in Figure 4(a) can be used for finding a Hamilton
cycle for the 3-corner truncated rectangular grid graph for cither (any num-
bers 7n and k, and any cven numbers n and 1) or (any numbers n and {, and
any cven numbers m and k). The pattern in Figure 4(b) can be used for
finding a Hamilton cycle for the 3-corner truncated rectangular grid graph
for cither (any even numbers n and k, and any odd numbers m and 1) or
(any cven numbers mn and [, and any odd numbers n and k).

In Figure 5(a), Figure 5(b), Figure 5(c¢) and Figure 5(d) we show span-
ning 2-connected subgraphs with |V| 4+ 1 edges for 3-corner truncated rect-
angular grid graphs R(10,12)73G3) R(11,12)73G3) R(11,13)-3(22) and
R(11,13)3(3), respectively. The pattern in Figure 5(a) can be used for
finding such a spanning 2-connccted subgraph for any even numbers m
and =, and any odd numbers k and {. The pattern in Figure 5(b) can be
uscd for finding such a spanning 2-connected subgraph for either (any cven
number n, and any odd numbers m, k and {) or (any cven number m, and
any odd numbers n, k and I). The pattern in Figure 5(c) can be used
for finding such a spanning 2-connected subgraph for any cven numbers k
and [, and any odd numbers 7n and n. The pattern in Figure 5(d) can be
used for finding such a spanning 2-connected subgraph for cither (any cven
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(@) (b)

© @) ©

Figure 5: A spanning 2-connceted subgraph for : (a) R2(10,12)73G%) with
[V]+ 1 edges (b) R(11,12)~333) with |V|41 edges  (c) 2(11,13)73(22)
with |V| + 1 edges  (d) 72(11,13)73@3 with |V| + 1 cdges  (¢)
R(11,13)~3G) with |V| + 2 edges

number k, and any odd numbers m, n and !) or (any cven number [, and
any odd numbers m, n and k). Finally, in Figure 5(e) we show a spanning
2-connected subgraph with |V| + 2 edges for R(11,13)~3(3:3). The pattern
in this last figure can be used for finding a spanning 2-connected subgraph
with V|42 edges for the 3-corner truncated rectangular grid graph for any
odd numbers m, n, k and l. This is the optimum value for the minimum
number of edges in such a spanning 2-connected subgraph.
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