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Abstract

An extended 7-cycle system of order n is an ordered pair (V, B),
where B is a collection of edge-disjoint 7-cycles, 3-tadpoles and loops
which partition the edges of the graph K;' whose vertex set is n-set
V. In this paper, we show that an extended 7-cycle system of order
n exists for all n except n = 2,3 and 5.

1 Introduction

Let G be a graph and G be a graph which is obtained by attaching a loop
to each vertex of G. For terms and notations not defined here, the reader
is referred to the book by G. Chartrand and L. Lesniak [1]. As usual, K,
and K., , denote the complete graph and the complete bipartite graph,
respectively. Kpm(n) (1] denotes the complete partite graph with m parts
of size n. Let G be the complement of G. If G and H are two graphs
then G U H will be the graph with vertex set V(GU H) = V(G) UV (H)
and edge set E(GU H) = E(G)U E(H). If V(G) N V(H) = 0, then let
G + H be the graph with V(G + H) = V(G)UV(H) and E(G + H) =
E(G)VEH)U{{g,h} | 9 € V(G), h € V(H)}. And the graphs GU H
and G + H will be called the union and join of G and H, respectively. In
the following, we depict the subgraphs of K;} which will be used in the
decomposition.
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For convenience, we will denote the loop as (l), the tadpole of length 3 (or
say 3-tadpole) as {(a,b, c,d) and the 7-cycle as (z,y, z,w,r, 8,1).

A 7-cycle system of a graph G is an ordered pair (V(G),C), where C is a
collection of edge-disjoint 7-cycles which partition the edges of G. A 7-cycle
system of order n is a 7-cycle system of K,,. In 1989, Hoffman, Lindner
and Rodger [2] showed that a 7-cycle system of order n exists precisely
when n = 1, 7(mod 14). Subsequently, 7-cycle systems and their properties
have been examined by Manduchi [4]. In 1997, Lindner and Rodger (3]
generalized the idea of the cycle system by working on decompositions of
the graph K.

An extended 7-cycle system of a graph G is an ordered pair (V(G), B),
where B is a collection of edge-disjoint 7-cycles, 3-tadpoles and loops whose
edges partition the edges of G. An extended 7-cycle system of order n is an
extended 7-cycle system of the graph K;*. We denote by E7CS(n) the class
of all extended 7-cycle systems of order n and if (V, B) is an extended 7-cycle
system of order n, we write B € ETCS(n) or (V,B) € E7CS(n). We say
that E7CS(n) exists if there is a system (V, B) € E7CS(n). Similarly, we
can denote the classes of all 7-cycle systems of G, 7-cycle systems of order
n and extended 7-cycle systems of G by 7CS(G), 7CS(n) and E7CS(G),
respectively.

2 Small Case

In this section, some extended 7-cycle systems for small order are presented.

Example 2.1 B, € E7TCS(4), where By = {(3), (4),(1,2,4,3),(2,3,1,4)}.

Bs € ETCS(6), where Bs = {(6), (1, 2, 4, 6), (2, 3, 5, 1), (3, 4, 5, 6), {4,
1, 3, 6), (5, 2, 6, 1)}.

By = By(1,2,--+,7) € ETCS(7), where By = {(§) | i=1,2,---,7}U{(1, 2,
3) 4: 5: 6) 7)1 (1) 37 5: 7) 21 4, 6)1 (la 4: 7) 37 6’ 2: 5)}

Bs = Bg(1,2,--,8) € ETCS(8), where Bs = {(8), (1, 3, 5, 7), (2, 4, 6, 8),
(3,6,7,1), (4,8,7,1), (528,3), (6,5,4,8), (7,2,6,1), (1,5, 8,4, 7,
3, 2)}.
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B € E1CS(9), where By = {(2), (3), (8), (9), (1, 8, 3, 4), (4, 2, 1, 5), (5,
3,2,6),(6,1,37),(1,4,9586,7),(254,6,9,78), (36,574,
8,9)}.

Bio € ETCS(10), where Bio = {(1), (4), {2, 7, 1, 10), (3, 6, 4, 9), (5, 2, 4
1), (6, 1, 3, 4), (7, 4, 5, 3), (8, 2, 3, 9), (9, 1, 2, 10), (10, 4, 8, 3), (1,5, 6
10, 7, 9, 8), (2, 6, 7, 5, 8, 10, 9), (3, 7, 8, 6, 9, 5, 10)}.

By, € E7CS(11), where By = {(9), (10), (1, 4, 7, 11), (2,
10, 1)) (41 5, 11, 8)1 (51 1,8, 2)7 (61 3, 10, 4)7 (7? 2,9,4), ( )
6, 10, 5), (1, 2, 3, 4,5,6,7), (7,8,9,10,11, 1, 3), (5, 7,9, 1
8,10, 2,5, 9, 1)}.

B1a € ETCS(12), where Byz = {(5), (7), (11), (12), (1, 6, 11, 5), {2, 9, 12,
1), (3,7, 11, 1), (4, 8, 3, 11), (6, 3, 12, 7), (8, 2, 6, 12), (9, 4, 10, 3), (10,
6,9, 3), (1,2 3,4,5,6,7), (7, 89, 10, 11, 12, 2), (2, 4, 6, 8, 10, 12, 5),
@,3,5 79,11, 4), (4,7 10,1, 5, 8, 12), (1, 6, 2, 8, 3, 9, 12)}.

B3 € ETCS(13), where Bz = {(2), (3), (4), (5), (6), (7), (9), (12), {1, 8,
3, 10), (8, 4, 6, 12), (10, 13, 9, 8), (12, 2, 7, 13), (13, 11, 3, 1), (1, 2, 13, 3,
12, 4, 11), (2, 8, 10, 9, 1, 12, 11), (3, 2, 4, 1, 5, 13, 6), (4, 3, 5, 2,6, 1, 7),
(5,7, 3,9, 2, 10, 12), (6, 5, 4, 13, 12, 7, 11), (7, 6, 8, 5, 9, 4, 10), (8, 7, 9,
6, 10, 5), (9, 12, 8, 13, 1, 10, 11)}.

B4 € E7CS(14), where Big = {(8), (9), (10), (11), (12), (13), (14), (1, 14,
4, 13), (2, 8, 5, 14), (3, 11, 2, 10), (4, 9, 3, 12), (5, 10, 1, 9), (6, 7, 1, 11),
(7,13,6,8),(1,3,5,7,2,4,6), (1,4,7,3,6, 2, 5), (8, 9, 10, 11, 12, 13,
14), (8, 10, 12, 14, 9, 11, 13), (8, 11, 14, 10, 13, 9, 12), (1, 8, 3, 10, 7, 12,
2), (2,9, 6, 11, 7, 14, 3), (3, 13, 1, 12, 5, 11, 4), (4, 10, 6, 14, 2, 13, 5), (5,
9,7, 8,4,12,6)}.

Bys € E7CS(15), where Bys = {(¢) | ¢ = 1,2,---,15} UB and B €
7CS(15).

Big € ETCS(16), where Byg = {(6), (9), (12), (13), (1, 16, 15, 9), (2, 16,
3, 15), (3, 9, 16, 6), (4, 15, 11, 12), (5, 15, 10, 11), (7, 16, 12, 13), (8, 6,
13, 16), (10, 5, 8, 16), (11, 2, 10, 16), (14, 5, 16, 11), (15, 14, 4, 16), (16,
14, 13, 15)(1, 3, 5, 7, 2, 4, 6), (1, 4, 7, 3, 6, 2, 5), (8, 9, 10, 11, 12, 13, 14),
(8, 10, 12, 14, 9, 11, 13), (8, 11, 14, 10, 13, 9, 12), (1, 8, 3, 10, 7, 12, 2),
(2,9, 6,11, 7, 14, 3), (3, 13, 1, 12, 5, 11, 4), (4, 10, 6, 14, 2, 13, 5), (5, 9,
7, 8, 4, 12, 6), (6, 15, 1, 9, 4, 13, 7), (7, 15, 2, 8, 9, 10, 1), (8, 15, 12, 3,
11, 1, 14)}.

Bir € ETCS(17), where By = {(3), (5), (6), (7), (11), (12), (13), (14),
(15), (1, 12, 15, 9), (2, 15, 3, 17), (4, 5, 17, 8), (8, 15, 16, 10), (9, 3, 16, 4),
(10, 17, 9, 16), (16, 2, 17, 1), (17, 16, 8, 2), (1, 3,5, 7,2, 4, 6), (1,4, 7, 2,

-

6,9, 3), (37,
3, 11, 4), (11,
1,2 4,8), (6,
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5,3, 6), (8,9, 10, 11, 12, 13, 14), (8, 10, 12, 14, 9, 11, 13), (8, 11, 14, 10,
13, 9, 12), (1, 8, 4, 12, 7, 13, 2), (2, 12, 5, 10, 1, 13, 3), (3, 8, 6, 10, 2, 14,
4), (4,9,7,11,3,14,5), (5,9, 1, 11, 4, 13, 6), (6, 9, 2, 11, 5, 8, 7), (7, 10,
3,12, 6, 14, 1), (4, 10, 15, 5, 16, 11, 17), (5, 13, 15, 6, 16, 12, 17), (6, 11,
15, 7, 16, 14, 17), (7, 14, 15, 1, 16, 13, 17)}.

BIS € E7CS(18); where BlB = {(2)3 (5)a (6)) (7)’ (10): (11)1 (16)’ (17)’
(18), (1, 18, 3, 16), (3, 9, 16, 17), (4, 15, 18, 6), (8, 16, 18, 7), (9, 17, 8, 2),
(12, 13, 18, 11), (13, 14, 18, 5), (14, 8, 9, 10), (15, 17, 10, 18), (1, 3, 5, 7,
2,4,6),(1,4,7,3,6,2,5), (8 10, 12, 14, 9, 11, 13), (8, 11, 14, 10, 13, 9
»12), (1, 8, 4,12, 7, 13, 2), (2, 12, 5, 10, 1, 13, 3), (3, 8, 6, 10, 2, 14, 4),
(4,9,7,11,38,14,5), (5,9, 1, 11, 4, 13, 6), (6, 9, 2, 11, 5, 8, 7), (7, 10, 3,
12, 6, 14, 1), (4, 10, 15, 5, 16, 11, 17), (5, 13, 15, 6, 16, 12, 17), (6, 11, 15,
7,16, 14, 17), (7, 14, 15, 1, 16, 13, 17), (2, 17, 1, 12, 15, 9, 18), (4, 16, 2,
15, 3, 17, 18), (8, 15, 16, 10, 11, 12, 18)}.

Big € ETCS(19), where Byg = {(1), (2), (3), (4), (5), (7), (10), (12), (13),
(16), (17), (6, 19, 18, 15), (8, 14, 9, 11), (9, 16, 17, 19), (11, 19, 10, 9), (14,
12, 13, 18), (15, 4, 19, 14), (18, 1, 19, 8), (19, 3, 18, 6), (1, 3, 5, 7, 2, 4, 6),
(1,4,7,3,6,2,5), 8 11, 14, 10, 13, 9, 12), (1, 8, 4, 12, 7, 13, 2), (2, 12,
5,10, 1, 13, 3), (3, 8, 6, 10, 2, 14, 4), (4, 9, 7, 11, 3, 14, 5), (5, 9, 1, 11,
4,13, 6), (6,9, 2,11, 5, 8, 7), (7, 10, 3, 12, 6, 14, 1), (4, 10, 15, 5, 16, 11,
17), (5, 13, 15, 6, 16, 12, 17), (6, 11, 15, 7, 16, 14, 17), (7, 14, 15, 1, 16,
13, 17), (2, 17, 1, 12, 15, 9, 18), (4, 16, 2, 15, 3, 17, 18), (8, 15, 16, 10, 11,
12, 18), (3, 9, 17, 8, 2, 19, 16), (10, 8, 16, 18, 7, 19, 12), (8, 13, 14, 18, 5,
19, 9), (17, 10, 18, 11, 13, 19, 15)}.

By € E7CS(20), where By = {(10), (12), (13), (15), (16), (17), (19),
(20), (1, 19, 10, 14), (2, 20, 6, 18), (3, 20, 1, 18), (4, 20, 11, 19), (5, 20, 9,
10), (6, 19, 20, 16), (7, 20, 13, 12), (8, 20, 10, 13), (9, 13, 18, 15), (11, 9,
12, 14), (14, 9, 16, 17), (18, 19, 17, 20), (1, 3, 5, 7, 2, 4, 6), (1, 4, 7, 3, 6,
2,5), (1, 8, 4, 12, 7, 13, 2), (2, 12, 5, 10, 1, 13, 3), (3, 8, 6, 10, 2, 14, 4),
(4,9,7,11,8,14,5), (5,9, 1, 11, 4, 13, 6), (6, 9, 2, 11, 5, 8, 7), (7, 10, 3,
12, 6, 14, 1), (4, 10, 15, 5, 16, 11, 17), (5, 13, 15, 6, 16, 12, 17), (6, 11, 15,
7,16, 14, 17), (7, 14, 15, 1, 16, 13, 17), (2, 17, 1, 12, 15, 9, 18), (4, 16, 2,
15, 3, 17, 18), (8, 15, 16, 10, 11, 12, 18), (3, 9, 17, 8, 2, 19, 16), (10, 8, 16,
18, 7, 19, 12), (8, 13, 14, 18, 5, 19, 9), (17, 10, 18, 11, 13, 19, 15), (15, 4,
19, 14, 8, 12, 20), (18, 3, 19, 8, 11, 14, 20)}.
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3 Main Theorem

We know that the spectrum of 7CS(n) is n = 1,7(mod 14). From this
system, we can construct an extended 7-cycle system of order n as follows.

Theorem 3.1 E7CS(n) exists for n = 1,7(mod 14).

Proof: Let B = {(i) | i =1, 2, :-+, n} UC, where C € 7CS(n), then
B e€ E7CS(n). 2

In 1989, Hoffman, Lindner and Rodger (2] showed that there is a group
divisible k-cycle system with m groups of size k, for all odd m and k. Thus
we have the following theorem.

Theorem 3.2 [2] TCS(Km(7)) exists for all non-negative odd integer m.

Let G, = K + K, where the vertex sets of K7 and K; are {1,2---,7}
and {a}, respectively. Let Sy = Bg(1,2,:-+,7,a) \ {(a)}. Then E7CS(G,)
exists by S; € E7CS(G1).

Theorem 3.3 E7CS(n) ezxists for n = 8(mod 14).

Proof: For n = 8(mod 14), we write n = 14k + 8. Let the vertex set
of K¥ be S ={i |i=12--,2c+1; j =1,2,---,7 U {a}. The
graph K} can be regarded as a union of subgraphs Keks1)m » 2k + 1
copies of K7 and the join of Ki and Ky4k+7 and we will denote it by
K} = Kori1yn U (2k + 1)K7F U (K{ + Ky4k47). The complete partite
graph K(oi1)(7) with partition sets {i; | j =1,2,...,7},i=1,2, ...,
2k + 1, can be decomposed into 7-cycles using Theorem 3.2. For ¢ = 1, 2,
-++, 2k + 1, taking the join of the graph K7 on the vertices i, iz, - - -, 47
and K on the vertices a form a graph G; which can be decomposed into
3-tadpoles and 7-cycles as above. Finally, taking a loop at the vertex a, we
obtain a decomposition of K} consisting of loops, 3-tadpoles and 7-cycles.
So, E7CS(n) exists for n = 8(mod 14). §

Now, we take two disjoint 7-cycles¢; = (1,2,---,7)and c; = (8,9, - -+,
14) and a graph K,,, where V(K,) = {z1,%2, - *,%s}. A consideration of
the following three graphs shows that the corresponding extended 7-cycle
gystems exist.

1). Let G2 = (c1Uc2)t + K3 and Sz = {(1, 1, 8, 9), (2, 1, 9, 10), (3, 71,
10, 11), (4, 4, 11, 12), (5, x4, 12, 13), (6, =1, 13, 14), (7, z1, 14, 8), (8, 2,

191



la 2)1 (9’ T2, 2’ 3)’ (101 z2, 31 4)1 (11’ T2, 4: 5)) (12, Z2, 5: 6): (131 z2, 6, 7):
(14, =2, 7, 1)} Then S; € ETCS(G?).

2). Let Gs = (c1 U ea)* + K4 and 4 = {(1), (2), (3), (6), (9), (10), (13),
(4, z4, 1, 7), {5, 6, 2, 4), (7, 6, x4, 5), (8, 14, x4, 12), (11, 12, 3, 14), (12,
13, T4, 8): (14, 131 Z1, 11): (11 T, 81 Z2, 91 3, 2)1 (2a Z1, 10’ 2, 119 3, 3))
(3) I, 12: z2, 131 Z3, 4)) (41 1, 14’ 2, 71 3, 5)! (8’ 3, 6’ 1, 71 T4, 9)1 (9,
z1, 5, T2, 2, Z4, 10), (10, 3, 1, 2, 3, 24, 11)}. Then Sy € ETCS(Gy4).

3). Let G¢ = (c1 U ce) + K¢ and Sg = {(1, =1, 3, 22, 4, 73, 2), (2, 24, 4,
g, 5’ x3, 3)1 (31 T4, 5, T2, 6: T5, 4)2 (41 Ty, 6, 3, 77 s, 5)) (5a 1, 7: Z2, 8a
Zg, 6)’ (6’ T4, 8: T, 97 Zg, 7)7 (7, T4, 9’ z2, 10, zs, 2)’ (8) 3, 10, 71, 12, zs,
9), (9, 3, 11, T2, 12, T4, 10), (10, zs, 3, Ts, 13, z1, 11), (11, 24, 13, 22, 14,
I3, 12)) (12, zg, 14, 24, 1, s, 13)» (131 z3, 1, z2, 29 s, 14): (14, 1, 2) e,
11, z5, 8)}. Then Sg € 7CS(Gs).

Theorem 3.4 E7CS(n) ezists for n = 9,11,13(mod 14).

Proof: For n = 9,11,13(mod 14), we write n = (14k + 7) + r, where r =
2,4, 6, respectively. Let the vertex set of K;F be S ={i; |i =1,2,---,2k+
1, j=1.1,2,---,7%UV, where V = {z; | i = 1,2,---,7}. Then K} =
Keisrym Y 2k + 1)KF U (K} + Kiaxyr). The complete partite graph
K2k +1)(7) With partition sets {i; | j = 1,2,--+,7},i=1,2,-+-,2k + 1, can
be decomposed into 7-cycles by Theorem 3.2. And the graph 2kK; can be
decomposed by By(%1, 42, -, %7), fori = 1,2, .-, 2k, where B(%, %2, - -, 7)
contains three 7-cycles (say ¢;,, ¢ij, ¢i3). For the remaining decompositions,
there are two cases to consider according to .

Case 1. r = 2,4. For each i = 1,2,---,k, we take the 14 loops {(l;) |
l=2-1,2iand j =1,2,---,7} and two 7-cycles ¢(s;_1),,C(2i), from the
decomposition of 2kK;. Then, combining with K, 14 with partition sets
Vand {{; |l =2i{-1,2i and j = 1,2,---,7}, we have G, which can be
decomposed into 3-tadpoles and 7-cycles.

Case 2. r = 6. For each i = 1,2,---,k, we take two 7-cycles c(3;—1), and
¢(2i); from the decomposition of 2kK.',* . Then, combining with Kjg 14 with
partition sets V and {l; | { = 2 — 1,2i and j = 1,2,---,7}, we have Gg
which can be decomposed into 7-cycles.

Finally, by putting B7.. on the vertex set {(2k+1); | j = 1,2,---,7}UV,
we obtain a decomposition of K; consisting of loops, 3-tadpoles and 7-
cycles. So, E7CS(n) exists for n = 9,11,13(mod 14). g

_Now, we take one 7-cycle c; = (1,2, -+, 7) and a graph K, where
V(K,) = {1,%2,°**,Zn}. A consideration of the following three graphs
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shows that the corresponding extended 7-cycle systems exist.

1). Let G3 = (c1)* + K3 and S5 = {(1, 1, 5, z2, 6, 73, 2), (1, 7, 3, 4),
(2a z, 7, 32)1 (3) 2, z2, 1)1 <4) T2, 3, 233), (51 4,3, Il)’ (6) 5, 3, 1)1 (77 6,
z1, 4)}. Then S3 € E7CS(G3).

2). Let G5 = (c1)* + K5 and S5 = {(1, 22, 2, z3), (2, 4, 3, x5), (3, 4, 5,
z1)7 (41 s, 1’ z4)1 (5) 6: 7’ 273), (63 z3, 4; -'Bl)) (7: T2, 69 wl)» (1) I, 3) z3, 5:
s, 2), (1, 2, 4, 74, 6, x5, 7), (2, Ty, 7, T4, 5, T2, 3)} Then S5 € E7CS(G5)

3). Let G7 = (a1)* + K7 and S7 = {(1, 7, 4, z6), (2, 21, 5, Z7), (3, 24, 2,
33): (4: z2, 3, $5), (51 &3, 1, 32)’ (63 7) l) 1:4), (7’ g, 6y ml)a (11 r, 3: z3,
77 5, 2)3 (2’ Z2, 6) x4, 7’ T7, 3)’ (3’ z¢, 1, 5, 9, T4, 4)) (4y z3, 6, z7, 2, z¢,
5), (5, z2, 7, %1, 4, Ts5, 6)}. Then Sy € E7CS(Gr).

Theorem 3.5 E7CS(n) exists for n = 10,12, 14(mod 14).

Proof: Proof: For n = 10,12,14(mod 14), we write n = (14k 4+ 7) +r,
where r = 3,5, 7, respectively. Let the vertex set of K} be § = {i; | i =
1,2,---,2k+1; j=1,2,---,7}UV, where V= {z; | i = 1,2,---,7}. Then
K} = K@rsyn U (2k + 1)K} U (K} + Kiae4r). The complete partite
graph K(sx41)(7) With partition sets {; | j = 1,2,---,7},i=1,2,---,2k +
1, can be decomposed into 7-cycles using Theorem 3.2. And the graph
2kK7 can be decomposed by By(%,42,--+,%7), for i = 1,2,---,2k, where
By(i4,142, -+ ,%7) contains three 7-cycles (say c;,,ci;,¢i;). For each i =
1,2,---,2k, we take the 7 loops {(¢;) |  =1,2,---,7} and one 7-cycle c;,
from the decomposition of 2kK;. Then, combining with K7 with partition
sets V and {i; | j = 1,2,---,7}, we have G, which can be decomposed
into 3-tadpoles and 7-cycles. Finally, by putting B7,, on the vertex set
{2k +1); | § = 1,2,---,7} UV, we have obtained a decomposition of
K} consisting of loops, 3-tadpoles and 7-cycles. So, E7CS(n) exists for
n = 10,12, 14(mod 14). 3

Theorem 3.6 E7CS(n) ezists for n = 2,3,4,5,6(mod 14).

Proof: For n = 2,3,4,5,6(mod 14), we write n = (14k + 7) + r, where
r=09,10,11,12, 13, respectively. Let the vertex set of K;' be $ = {i; | i =
1,2,---,2k+1; j=1,2,---,7}UV, where V = {z; | i = 1,2,---,7r}. Then
K} = Korym U (2k + 1)KF U (K} + K$y.7)- The complete partite
graph K(ok41)(7) With partition sets {4; | j = 1,2,--,7},i=1,2,---,2k +
1, can be decomposed into 7-cycles using Theorem 3.2. And the graph
2kK;} can be decomposed by By(i,42,---,i7), for i = 1,2,---,2k, where
B.(i1,1%2, - -,%7) contains three 7-cycles (say ¢;,,ci,,¢i;). First, for each
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i=1,2,---,k, we take two cycles ¢(2;-1),, ¢(2i), and Kg 14 with partition
sets {z; | i = 1,2,---,6} and {{; | ! = 2 -~ 1,2¢ and j = 1,2,---,7}
combining a graph Gg which can be decomposed into 7-cycles. For the
remaining decompositions, there are three cases to consider according to r.

Case 1. r» = 9,11,13. For each i = 1,2,---,2k, we take the 7 loops
{G;) | = 1,2,.--,7} and 7-cycle ¢;; from the decomposition of 2kK7 .
Then, combining with and K,_g 7 with partition sets {z; | ¢ =7,8,---,7}
and {¢; | j = 1,2,---,7}, we have G,_¢ which can be decomposed into
3-tadpoles and 7-cycles.

Case 2. r = 10. For each i = 1,2,---,k, we take the 14 loops {(l;) |
I=2-1,2iand j = 1,2,---,7} and two cycles ¢(3;—1),, C(2i), from the
decomposition of 2kK7. Then, combining with and K414 with partition
sets {z; |4 =7,8,9,10} and {l; |l =2i—1,2i and j = 1,2,---, 7}, we have
G4 which can be decomposed into loops, 3-tadpoles and 7-cycles.

Case 3. r = 12. For each i = 1,2,.--,k, we take two cycles C(2i-1)3
and c(zi), from the decompesition of 2kK;. Then, combining with and
Kg,14 with partition sets {z; | ¢ = 7,8,---,12} and {l; | | = 2i — 1,2{ and
j=1,2,---,7}, we have Gg which can be decomposed into 7-cycles.

Finally, by putting B7... on the vertex set {(2k+1); | = 1,2,---,7}UV,
we obtain a decomposition of K} consisting of loops, 3-tadpoles and 7-
cycles. So, E7CS(n) exists for n = 2,3,4,5,6(mod 14). g

Using Example 2.1 and Theorem 3.1, 3.3, 3.4 and 3.5, we obtain the
following result:

Main Theorem An extended 7-cycle system of order n exists for all n
except n = 2,3 and 5.
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