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Abstract

If z is a vertex of a digraph D, then we denote by d* (z) and d~(z)
the outdegree and the indegree of z, respectively. The global irreg-
ularity of a digraph D is defined by ig(D) = max{d*(z),d™(z)} —
min{d* (y),d~(y)} over all vertices z and y of D (including z = y). If
(D) = 0, then D is regular and if i5(D) < 1, then D is called almost
regular. The local irregularity is defined as i;(D) = max [d*(z) —
d~(z)| over all vertices z of D. The path covering number of D is
the minimum number of directed paths in D that are pairwise ver-
tex disjoint and cover the vertices of D. A semicomplete c-partite
digraph is a digraph obtained from a complete c-partite graph by
replacing each edge with an arc, or a pair of mutually opposite arcs
with the same end vertices. If a semicomplete c-partite digraph D
does not contain an oriented cycle of the length two, then D is called
a c-partite tournament.

In 2000, Gutin and Yeo [7] proved sufficient conditions for the
local irregularity of a semicomplete multipartite digraph to secure a
path covering number of at most k. In this paper, we will give a
useful supplement to this result by using bounds for the global irreg-
ularity that guarantee a path covering number of at most k. As an
application, we will present sufficient conditions for close to regular
multipartite tournaments containing a Hamiltonian path. Especially,
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we will characterize almost regular c-partite tournaments containing
a Hamiltonian path.

Keywords: Multipartite tournaments; Semicomplete multipartite di-
graphs; Hamiltonian path
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1 Terminology and introduction

In this paper all digraphs are finite without loops and multiple arcs. The
vertex set and arc set of a digraph D is denoted by V(D) and E(D),
respectively. If zy is an arc of a digraph D, then we write £ — y and say
z dominates y, and if X and Y are two disjoint vertex sets or subdigraphs
of D such that every vertex of X dominates every vertex of Y, then we say
that X dominates Y, denoted by X — Y. Furthermore, X ~» Y denotes
the fact that there is no arc leading from Y to X. By d(X,Y) we denote
the number of arcs from the set X to the set Y, i.e., d(X,Y) = |{zy €
E(D) : 2 € X,y € Y}|. If D is a digraph, then the out-neighborhood
Nj(z) = N*(z) of a vertex z is the set of vertices dominated by z and
the in-neighborhood Np(z) = N~ (z) is the set of vertices dominating z.
Therefore, if there is the arc zy € E(D), then y is an outer neighbor of =
and z is an inner neighbor of y. The numbers d},(z) = d+(z) = |[N*(z)|
and dp(z) = d=(z) = |N~(z)| are called the outdegree and indegree of z,
respectively. For a vertex set X of D, we define D[X] as the subdigraph
induced by X. If we speak of a cycle or path, then we mean a directed
cycle or directed path, and a cycle of length n is called an n-cycle. A cycle
or path of a digraph D is Hamiltonian, if it includes all the vertices of D.
The path covering number of a digraph D (pc(D)) is the minimum number
of paths in D that are pairwise vertex disjoint and cover the vertices of D.
A factor is a spanning subgraph of a digraph. A factor is a k-path-cycle, if
it consists of a set of vertex disjoint paths and cycles, where k stands for
the number of paths in the set.

There are several measures of how much a digraph differs from being
regular. In [14], Yeo defines the global irregularity of a digraph D by

. —_ + . _ . -
ig(D) = max {d%(2),d"(2)} yg‘}l&){ﬁ(y),d (v)}
and the local irregularity as i;(D) = max|d*(z) — d~(z)| over all vertices

z of D. Clearly, 44(D) < ig(D). If ig(D) = 0, then D is regular and if
ig(D) < 1, then D is called almost regular.
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A c-partite or multipartite tournament is an orientation of a complete
c-partite graph. A tournament is a c-partite tournament with exactly ¢
vertices. A semicomplete multipartite digraph is obtained by replacing each
edge of a complete multipartite graph by an arc or by a pair of two mutually
opposite arcs. If V, Vs, ..., V, are the partite sets of a c-partite tournament
or semicomplete c-partite digraph D and the vertex z of D belongs to the
partite set V;, then we define V(z) = V;. If D is a c-partite tournament
with the partite sets V), Vs,..., V. such that |V;| = n; for i = 1,2,...,¢,
then we speak of the partition-sequence (n;) = ny,na,...,nc.

Hamiltonian cycles in multipartite tournaments are well studied (see e.g.
[2, 3, 4, 8, 13, 14]). For example, Yeo [13] presented a result for regular
semicomplete multipartite digraphs.

Theorem 1.1 (Yeo [13], 1997) Every regular semicomplete multipartite
digraph D is Hamiltonian.

On the other hand, it is not paid much attention on the existence of
Hamiltonian paths in such digraphs. In 1988, Gutin [5] gave a characteri-
zation of semicomplete multipartite digraphs having a Hamiltonian path.

Theorem 1.2 (Gutin [5], 1988) A semicomplete multipartite digraph D
has a Hamiltonian path if and only if it contains a I1-path-cycle factor.

This result was used to prove another result of Gutin and Yeo [7].

Theorem 1.3 (Gutin, Yeo [7], 2000) Let D be a semicomplete multi-
partite digraph with the partite sets V1, Va, ..., V. such that |Vi| < V2| <
... < |Ve|. If there exists a positive integer k such that

. V(D)| = |Vee1| = 2|Ve| + 3k + 2
4(D) < min{|V (D) - 31Vl + 2k 4+ 1, LU= Wem AVl # 35 12

then pe(D) < k.

In this paper, we will give a useful supplement to Theorem 1.3 by pre-
senting bounds for the global irregularity i;(D). As an application of this
result, we will develop sufficient conditions for close to regular multipartite
tournaments containing a Hamiltonian path.

If D is regular, then Theorem 1.1 clearly guarantees the existence of
a Hamiltonian path which is already shown by Zhang [15] in 1989. Using
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a sufficient condition for multipartite tournaments with an arbitrary large
irregularity number containing a Hamiltonian path, we will show that every
almost regular c-partite tournament D contains a Hamiltonian path with
the exception that ¢ = 2 and one partite set consists of two vertices more
than the other partite set. Furthermore, we will precisely examine the case
that ig(D) = 2. If ¢ > 5, then D contains a Hamiltonian path also in
this case. If ¢ = 4, then there is only a finite family of graphs that do
not contain any Hamiltonian path. Finally, we will show that there are
infinitely many 2-partite and 3-partite tournaments with i;(D) = 2 that
have no Hamiltonian path at all.

Further new results about Hamiltonian paths can be found in [11, 12].
For more informations about multipartite tournaments, we recommend to
read [1, 6, 10].

2 Preliminary results
The following results play an important role in our investigations.

Lemma 2.1 (Tewes, Volkmann, Yeo [9], 2002) Let D be a c-partite
tournament with the partite sets V1, V3, ..., V. such that || < |V2| < ... <
IVel. Then |Vi| < [Vi]+ 2i,(D).

Lemma 2.2 (Yeo [14], 1999) Let D be a semicomplete multipartite di-
graph with the partite sets V1,Va,...,V.. Let X C Y C V(D) and let
vi=|YNV| foralli=1,2,...,c. Then

dX,Y = X) +d(Y - X,X) _ d(X,Y = X) +d(Y - X, X)
X1 Y - X|
> Y|-max{y|i=1,2,...,c}.

A slight reformulation of a result of Yeo [14] is presented in the following
lemma.

Lemma 2.3 (Yeo [14], 1999) If D is a semicomplete c-partite digraph,
then the following holds.

. ld(X, V(D) - X) — d(V(D) - X, X
I e
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Theorem 2.4 (Gutin, Yeo [7], 2000) If D is a semicomplete c-partite
digraph, then pc(D) > k (k > 1) if and only if V(D) can be partitioned into
subsets Y, Z, R, Ry such that

Ry ~Y, (RUY)~ Ry, Y is an independent set (1)
and [Y| > |Z| + k.

Theorem 2.5 (Volkmann [11]) If D is an almost regular bipartite tour-
nament with the partite sets X,Y such that 1 < |X| < |Y|, then every arc
of D is contained in a Hamiltonian path if and only if [Y| < |X|+1 and D
is not isomorphic to Ty 3, where Ta 3 is the bipartite tournament presented
in Figure 1.

Figure 1: The almost regular bipartite tournament T3 3

3 Path covering number and irregularity

The following theorem is a useful supplement to Theorem 1.3, which we
will apply in the next section. The proof is similar to the proof of Lemma
4.3 in [14] and Theorem 3.2 in [7].

Theorem 3.1 Let Vy,Va,..., V. be the partite sets of the semicomplete
multipartite digraph D such that [V1] < |V < ... < |Vc|. Assume that
pc(D) > k for an integer k > 1. According to Theorem 2.4, V(D) can be
partitioned into subsets Y, Z, Ry, Ry satisfying (1) such that |Z|+k+1 <
[Y| < |Ve| —t with an integert > 0. Let V; be the partite set with the prop-
erty that Y CVi. fQ=V(D)—Z~-Vi, @ =QNR; and Q2= QN Ry,
then

i(D)
{ig(D)

v

[V(D)| - 3|Ve| + 2t +2k+2 and
V(D) = [Ve—r| — 2|Ve| + 3k + 3
2 H

v
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ifQ1=00orQa=0, and

[V(D)] = [Veer| — 2|V | + 3k + 3 +

ig(D) > i(D) > 2

ifQ1#0 and Q2 # 0.

Proof. Let V(D) be partitioned into the subsets Y, Z, R;, R, satisfying
(1) such that |Z|+ k +1 < |Y| < |V.| —t for integers k > 1 and t > 0.
Define Yy = RyNV; and Yo = RoNV;. If Q; and Q; are defined as above,
then we observe that |Z| < |[Y|-1—-k < |V |-1-k—-t,Q; ~» Y ~
Q2, (Q1UY1) ~ (Q2VUY3) and YIUY,UY C V. f i = ¢, thenlet j=c—1
and if ¢ < ¢, then let j = c. We now consider the following three cases.

Case 1. Let Q; = 0. Then Q2 = Q and we obtain

d(Y,V(D)-Y) —d(V(D) - Y,Y)

Y1121 - IYliZ] 2 1Y |(IV(D)| - [Vi| - 2|2])
[YI(IV(D) = Vel = 2(|Vel = 1 = k — 1))
[Y[(IV(D)| - 3|V.| + 2 + 2k + 2¢).

According to Lemma 2.3, this implies that (D) > |V(D)| — 3|Ve| + 2 +
2k + 2t, and hence, we have one part of the desired result. We will now
show the second part.

Let 6* = min{d~ (w)|w € V;}. Since Y C V; and thus d~(y) < |Z| for
all y €Y we observe that §* < |Z| < |Y|—k—~1< |V;| = |Y2| =1 — k. Let
A* = max{d*(w),d™ (w)|lw € V(D) — V;} and note that d*(w) + d—(w) >
|V(D)|-|Vj| for all w € V(D) —V;. The fact that 2 e, (d7 (2)—d*(z)) >
[Q2[(IY|—1Z]—|Y2]) > |Q2|(1+k—|Y2|) implies that there is a vertex ¢ € Q5
such that d=(g) > d*(g)+k—|Y2|. This leads to 2d~ (¢) —k+|Y2| > d*(¢) +
d=(g) > |[V(D)| - |V;|, and thus we conclude that A* > 'V(D)I-l‘;"“k'ly’l.
This implies

v Iiv

ig(D) > A% - - Vil +Y2| + k+1

2
[V(D)| - Vil - 2|Vi| + 3k + 2 + [Y2|
2
s V(D) = |Ve1]| = 2|Ve| +3k +2

2 )
and the second part is proved.

Case 2. Let Q3 = #. This is analogously to Case 1 (change the orien-
tation of all the arcs in D).
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Case 3. Let @, # 0 and Q; # #. Since |V;| + |V}| < [Vea| + |Ve|, we
deduce that |Q|~|V;| > [V(D)|=1Vi| = 2| - |V;| > [V(D)| — [Ve-1| = |Ve| -
(IVe]-1-k—1t). By Lemma 22 with X =@, and Y = Q: UQ2 =@ and
because of @ NV; = @, it follows that

d(Q1,Q2) + d(Q2, Q1) d(Ql,Qz) +d(Q2,@Q1)

1@l Q2
_ d(Ql:Q2) d(Q1,Q2) — IV
= 5 03] > el -1Vl
> V(D) = [Ve—rl = 2|Vel + 1+ K+t
Thus,
(l) d(QIéille) Z lV(D)l—IVC"ll_22IV°I+1+k+t—IY2I+|Y1|OI
i) d(clzé;clez) > IV(D)I—I%_1I—22I%I+1+’°+‘+|y2|_|y1|.

Assume that (i) holds as the case when (ii) holds can be treated similarly.
Because of B; = Q; UY; and R; = @2 UY,, Lemma 2.3 yields

19(D) 2 2[(D) Z d(Qll V(D) - Ql)iQ_l‘Ii(V(D) - Ql:Ql)
d(Ql)Q2) + d(Qlly U YZ) - d(Y UY22 Ql)

|@1] Q11
d(Ql,ZUY;l) - d(ZUYth) _ d(Q2:Q1)

[} Q|

(IV(D)I = Vel -22IVcI Flakat IY1I)
(IY1+ [Y2]) = (1Z] + 12])
V(D) = [Ve—a| = 2|Ve|+ 1+ E+1

= - +1v] - 12|

[V(D)| = [Ve-1| = 2|Ve| + 3+ 3k +¢
2 ) .
This completes the proof of the theorem. o

v

+

Theorem 3.1 with t = 0 leads immediately to the following result on the
path covering number.

Corollary 3.2 Let V;,Vs,..., V. be the partite sets of a semicomplete mul-
tipartite digraph D such that |V1| L |Ve| < ... <L |V|. If there exists a pos-
itive integer k such that iz(D) < V(D)= |V°"| 2Ve|+3k+2 , then pc(D) < k.
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4 Hamiltonian paths
Another consequence of Theorem 3.1 is presented in the following result.

Theorem 4.1 Let Vi, Va,..., V., be the partite sets of the semicomplete c-
partite digraph D such that 1 < r = |[V}| < |Vo| < ... < V| < r+p

for an integer p > 0. If ¢ > max{2,3 + MB%_—S“Z}, then D contains a
Hamiltonian path.

Proof. Clearly, D contains a Hamiltonian path if and only if pc(D) = 1.
Hence, according to Corollary 3.2 with k¥ = 1, it is sufficient to show that
ig(D) < 'V(D”—IV‘;"_zW‘Hs. Because of ¢ > 3 + M}ﬂ, we conclude
that ig(D) < {=238-P and together with |Vi, [Val,..., [Vema| > 1, V| <
r+ p and ¢ > 2 this implies

[V(D)] = |Ve1l - 2|Vc| +5 _ l+Val+... 4 [Veoo| = [Ve| 45
2 2
> (_CM > ig(D),
the desired result. 0

If D is a multipartite tournament, then, according to Theorem 2.1, we can
choose p = 2i4(D) in the previous theorem.

Corollary 4.2 Let V1,V;,..., V. be the partite sets of a c-partite tourna-
ment D such that 1 <r = |Vi| < |V < ... < |Vi|. Ife > max(2, ¥a(D2)=5 4
3}, then D contains a Hamiltonian path.

Theorem 4.3 Let D be an almost regular c-partite tournament with the
partite sets V1, Va,..., V. such that |\i| < |Vo| < ... < |V|. Then D
contains a Hamiltonian path if and only ifc > 3 orc = 2 and |V2| < [V} |+1.

Proof. Firstly, let ¢ = 2. Suppose that |V;| = |V}|+2. Then it is obvious
that D does not contain any Hamiltonian path, because the vertices of
this path would alternately be part of the partite sets V; and V,. Hence
let |V2] < |Vi| + 1. In this case Theorem 2.5 shows that D contains a
Hamiltonian path, since T3 3 is Hamiltonian.

Secondly, let ¢ > 3 > max{2,3— %} for all » € N. In this case, Corollary
4.2 yields the desired result. 0o
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The case that ig(D) = 2 is more complicated as the following considerations
demonstrate.

Theorem 4.4 Let V,Vs,...,V, be the partite sets of a c-partite tourna-
ment D such that 1 < r=|W| < |Vo| < ... < |Ve|. Ifig(D)=2,¢> 4 and
D doesn’t have one of the partition-sequences 1,1,2,4;1,2,3,5; 1,1, 3,4 and
2,2,4,6, then D contains a Hamiltonian path.

Proof. Since max{2=5 + 3|r € N} = 6 > 3, Corollary 4.2 yields the
desired result, if ¢ > 6.

Hence, let ¢ = 4 or ¢ = 5 and assume that D does not contain any
Hamiltonian path. Let the sets Y, Z, R;, R, Q,Q1,@2,Y1,Y> be defined as
in the proof of Theorem 3.1. Since the case that Q, = @ follows analogously
as the case that Q; = 0, in the following we will always distinguish the two

cases that @; =@ or Q1,Q2 # 0.

Case 1. Let ¢ = 5. If » > 2, then because of ¢ > max{2=2 +3|r > 2} =
> 3 and Corollary 4.2 D contains a Hamiltonian path and the proof is

ﬁmshed If V5| < 4, then M&M’M > 2 = iy(D), a contradiction
to Corollary 3.2. If |Vs| =5 and |V1| + |Va|+ [Vs| > 4, then we analogously
arrive at a contradiction. Altogether, we see that there remain to consider
the following five partition-sequences.

Subcase 1.1. Let (n;) = 1,1,1,1,5. In this case, we see that d*(z) =
d-(z) =4,ifz € V1UV2UV3UV§1 and d+ﬁ:c) =d (z) = 2, if z € V5,
that means #(D) = 0. Since V(D) IV;' AVel+8 = 9 > 4;(D), it remains
to consider the case that @, = @ in Theorem 3.1. If Y = V4, then it
follows that |Z] < 3 and thus |@2] > 1. This yields d~(z) > 5 for all
T € @, a contradiction to d=(z) < 4 for all z € V(D). If |Y'| = 4, then
it follows that |Z| < 2 and thus |@2| > 2. This implies that there is an
arc pg € E(D[Q,]). Since d~(g) > 5, we arrive at a contradiction. If
[Y] < |Vs] = 2, then |V(D)| — 3|Vs| + 8 = 2 > i;(D) contradicts Theorem
3.1 witht =2.

Subcase 1.2. Let (n;) =1,1,1,2,5. Since iy(D) = 2, this is impossible.

Subcase 1.8. Let (n;) = 1,1,1,3,5. This yields d*(z) = d~(z) = 5, if
T €V UV,UV,, dt(z) =d~(z) =4 or {dt(z),d"(z)} = {3,5},ifz €V}
and d*(z) =d~(z) =3, if z € V;.

Firstly, we assume that Q; = 0. If Y = V5, then we conclude that
|Z] < 3 and thus |Q2| > 3. Since d*(z) = d~(z) = 3 for all z € V5,
it follows that |Z| = |Q2| = 3 and Z — Y. It is obvious that there are
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either in @), or in Z two vertices of different partite sets. Hence, there is
an arc p — ¢ that is either in E(D[Q2]) or in E(D[Z]). If pg € E(D[Q-]),
then d~(g) > 6, and if pg € E(D[Z]), then d*(p) > 6, in both cases a
contradiction. If |Y| = 4, then we see that |Z| < 2 and thus |Q2| > 4, a
contradiction to d*(z) = 3 for all z € Vs5. Hence, let Y| < |V5| — 2. But
now, |V (D)| - 3|Vs| + 8 = 4 > #(D) contradicts Theorem 3.1.

Consequently, it remains to consider the case that @, # @ and Q, # 0.
Note that (2= 'VQI =2\Vel+6 _ 9, According to the proof of Theorem 3.1
the inequalities in the last inequality-chain of Case 3 have to be equalities,
that means especially ¢ = 0 and |Y| = |Z| + 2. This implies Y = V5 and
|Z] = |Y| — 2 = 3. Hence, we conclude that |Q| = 3 and, without loss of
generality, let |@;| = 1 and |Q2| = 2. If there is an arc leading from @; to
Q2 and ¢; € Q4, then it follows that d*(q1) > [Y|+1 = 6, a contradiction.
Since @; ~» @2, we obtain @ = V4 and thus Z = V; U Vo U V3. Let

= D[V} UV, U V3). Because of @2 — Z — @1, we have on the one hand
that

15= Y d*() dV(D),@)+ Y. dh(z)+d(V(D),Y)
zeV(D') z€V (DY)

3+3+d(V(D'),Y),

that means d(V(D'),Y) = 9. Since Q; = Y — Q2, we observe on the

other hand that

15= ) d () =d(Q,Y)+d(V(D),Y) =5+d(V(D'),Y),
yeY

that means d(V(D’),Y) = 10, a contradiction.
Subcase 1.4. Let (n;) = 1,1,1,4,5. Since iy(D) = 2, this is impossible.

Subcase 1.5. Let (n;) = 1,1,1,5,5. This yields that d*(z) = d~(z) = 6, if
z € ViUVUV; and dt(z) = d™(z) = 4, if z € V4UV5, that means i;(D) = 0.
Since |V(D)| - 3|V5| + 3 =1 > i(D) and lV(D)|-|V5|-2|V5|+5 =3 > i(D),
this contradicts Theorem 1.3.

Case 2. Let ¢ =4. If » > 3, then 4 > max{2, % + 3} and Corollary 4.2
yields that D contains a Hamiltonian path, a contradiction. If » = 2 and
[Val <5 0orr =2, |Va| = 6 and [Vi| + V| > 5, then [LRU=IVsl=2IVal45
2= 1g(D) leads to a contradiction to Corollary 3.2. If r = 1 and [Va| < 3
orr=1,|Vay=4and |Vj|+|V2] >30orr=1,|V4=5and |Vl|+|V2|>4
then l&lilﬁl:.lﬁl"'_ > 2 =14(D), a contradiction to Corollary 3.2.

Summarizing our results, we see that, according to the assertion of this
theorem, there remain to treat 14 partition-sequences.
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Subcase 2.1. Since ig(D) = 2, the partition-sequences 1,1,1,5; 1,1,3,5;
1,1,5,5; 1,2,2,5; 1,2,4,5; 2,2,3,6 and 2,2,5, 6 are impossible.

Subcase 2.2. Let (n;) = 1,1,2,5. In this case, we obtain that d*(z) =
d=(z) =4, if z € VUV, {d*(z),d"(z)} = {3,4}, if z € V5, and d*(z) =
d=(z) = 2, if z € Vs, that means #(D) = 1. Since IX'-H—'M'%:M =32>
i)(D), it remains to consider the case that Q; = @ in Theorem 3.1. If
Y = V,, then we conclude that |Z| < 3 and thus |Q2| > 1, a contradiction
to d=(z) < 4 for all z € V(D). If [Y| = 4, then it follows that |Z| < 2 and
|Q2| > 2. This implies that there is an arc p — g that is either in E(D[Q2])
or in E(D[Z)). Since d~(z) = 2 for all z € Y, we conclude that |Z| = 2
and Z = Y. If pg € E(D[Q:]), then d~(q) > 5 and if pg € E(D[Z]), then
d*(p) > 5, in both cases a contradiction. Hence, let [Y| < 3 = |Vy| — 2.
Then because of |V (D)|—3|V4|+8 = 2 > 4;(D) we arrive at a contradiction
to Theorem 3.1.

Subcase 2.3. Let (n;) = 1,1,4,5. This yields that d*(z) = d~(z) = 5, if
z € ViUV, {dt(z),d"(z)} = {3,4}, if z € V3, and d¥(z) = d7(z) = 3,
if z € Vs, that means (D) = 1. Since MalHlVal=lVal¥6 — 3 5 (D), it
remains to consider the case that Q; = @ in Theorem 3.1. If Y = Vj,
then it follows that |[Z| < 3 and thus |Qz| > 3. This implies that there
is a vertex g2 € Q2 N V3, since Y — @, a contradiction to d(z) < 4
for all z € Va. Consequently, let |Y| < 4. In this case, the fact that
|V(D)| - 3|V4| + 6 = 2 > i;(D) contradicts Theorem 3.1.

Subcase 2.4. Let (n;) = 1,2,5,5. This yields that d*(z) = d~(z) = 6,
if z € Wy, {d*(z),d"(z)} = {5,6}, if z € V5, and d¥(z) = d~(z) =4, if
z € V3 U V4, that means #(D) = 1. Since L‘fﬂﬂﬁ.‘lﬂm = % > (D) and
|V (D)| - 8|Va| + 3 = 1 = 4;(D), we have a contradiction to Theorem 1.3.

Subcase 2.5. Let (n;) = 1,1,1,4. In this case, we observe that d*(z) =
d-(z) = 3, if z € VUV, UV3, and {d*(z),d (z)} = {1,2}, if z € V4,
that means #;(D) = 1. Because of IZ;IiIZ%I:LV;IiE = 2 > §;(D), it remains
to consider the case that Q; = 0 in Theorem 3.1. If Y = Vj,, then we
conclude that |Z| < 2 and thus |Q2| > 1, a contradiction to d~(z) < 3 for
all z € V(D). If |[Y| = 3, then |Z]| < 1 and |Q2| > 2. Hence, there exists
an arc p — ¢ with p, ¢ € Q. Since d~(g) > 4, we arrive at a contradiction.
Consequently, let |[Y| < 2. In this case, |V(D)| — 3|Va| + 8 = 3 > #(D)
contradicts Theorem 3.1.

Subcase 2.6. Let (n;) = 1,1,4,4. This yields {d*(z),d™(z)} = {4,5}, if
z € VUV, and dt(z) = d~(z) = 3, if € V3 U V4, that means 4;(D) = 1.
Since [YaltlVal=IVal+5 — 3 5 4/(D) and |V(D)| - 3|Va| + 3 = 1 = (D), we
arrive at a contradiction to Theorem 1.3.

205



Subcase 2.7. Let (n;) = 2,2,2,6. In this case, we observe that dt(z) =
d~(z) =5,ifz € VUV, U V3, and d*(z) = d~(z) = 3, if z € V4, that
means #(D) = 0. Because of Kdilﬁ;:lﬁﬁ = 2 > 4(D), it remains to
consider the case that @; = @ in Theorem 3.1. If Y = V4, then we conclude
that |Z]| < 4 and thus |@Q2]| > 2. Since Y — @2, we have a contradiction
to d~(z) < 5 for all z € V(D). If |Y| = 5, then it follows |Z] < 3 and
|@Q2] > 3. This yields the existence of an arc p — ¢ with p,q € Qs.
Hence, d=(¢) > 6, a contradiction. Consequently, let |[Y| < 4. But now
|V(D)| — 3|Va| + 8 = 2 > i;(D) contradicts Theorem 3.1.

Subcase 2.8. Let (n;) = 2,2,6,6. This implies that d*(z) =d~(z) = 7 for
all z € VU V; and d*(z) = d~(z) = 5 for all z € V3 UV, that means
i1(D) = 0. Since [AlHYVal=IVal#8 _ 8 5 (D) and |V(D)| - 3|Va|+3=1 >
i(D), this is a contradiction to Theorem 1.3.

For the partition-sequences 1,1,2,4; 2,2,4,6; 1,2,3,5 and 1,1,3,4 there
are multipartite tournaments that do not have any Hamiltonian path as
the following four examples demonstrate.

Example 4.5 Let D be a 4-partite tournament with the partite sets V; =
{u}, Va = {v}, Va = {z1, 22} and Vs = {11, ¥2, Y3, ya} such that (VLUV2) —
sy Vaozao> ViUV andu—sv oy du—=y =v 3y = u—
Y2 = v (see Figure 2). Then iy(D) = 2 and D has the partition-sequence
1,1,2,4 but no Hamiltonian path.

Vi Y2 Y3 Ya
T2
) é/ &
u v

Figure 2: A 4-partite tournament D with i;(D) = 2 and the partition-
sequence 1,1,2,4 that does not contain a Hamiltonian path

Example 4.6 Let D be a 4-partite tournament with the partite sets V; =
{w1,u2}, Vo = {v1,v2}, V3 = {21, 22,23,24) and V4 = {y1, 92, ¥3, ¥4, ¥5, ¥s }
such that V4 — {z3,z4} =& (Vi1 UW) = {z1,22} = Vg, u;y = v; =
uz = v2 = uy and {y1,y2,y3} = {u2,v2} = {y4,95,%6} = {w,v1} =
{v1,92,y3} (see Figure 3). Then D is a 4-partite tournament with iy(D) =
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2 and the partition-sequence 2,2, 4,6 that does not contain any Hamiltonian
path.
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L2 led 1T 00 [ |— %4

2 Wl v )

Figure 3: A 4-partite tournament D with i;(D) = 2 and the partition-
sequence 2,2,4,6 that does not contain a Hamiltonian path

Example 4.7 Let D be a 4-partite tournament with the partite sets V) =
{u}, Va = {v1,v2}, Va = {z1, 22,23} and V4 = {y1,%2,¥3,Y4,¥s} such that
‘/4 — {271,32} d (‘/1 U Vé) - z3 — ‘/4; ‘/2 - ‘/ly {‘02)'“} - {yl)yZ} -
vy, {v1,4} = {y3, 94} = vz and Vo = ys = Vi (see Figure 4). Then D is
a 4-partite tournament with ig(D) = 2 and the partition-sequence 1,2,3,5
that does not contain a Hamiltonian path.

CRTTTRRTY BT U
@ e, , © L
....... .{ --./; ceme
VAVS / !
Y
®
3 ¢ ®
U1 /] Ty

Figure 4: A 4-partite tournament D with iz(D) = 2 and the
partition-sequence 1,2, 3,5 that does not contain a
Hamiltonian path

207



Example 4.8 Let D be a 4-partite tournament with the partite sets V; =
{ﬂ}, V2 = {v}l ‘/3 = {31,32,33} and V4 = {y11y21y3)y4} such that ‘/4 —
{z1,22} = (ViUV2) = 23 = V4, u = v = {y3,14} = u, v = {y1,52)
and y, = v — Yy (see Figure 5). Then D is a 4-partite tournament with
ig(D) = 2 and the partition-sequence 1,1,3,4 that does not contain any
Hamiltonian path.

......................

Figure 5: A 4-partite tournament D with ig(D) = 2 and the
partition-sequence 1,1, 3,4 that does not contain a
Hamiltonian path

In the case that ¢ = 2 or ¢ = 3 and iy(D) > 2, there are infinitely many
digraphs D that do not contain any Hamiltonian path as we can see in the
following example.

Example 4.9 Let D be a bipartite tournament with ig(D) > 2. If V},V,
are the partite sets of D such that |[Vi| + 2 < |Va| < |Vi| + 2iy(D), then
clearly, D does not contain a Hamiltonian path.

Now, let D be a 3-partite tournament with the partite sets Vy, Vs, Va. If
Vil = [V2| = r and |V3| = r + ig(D) with ig(D) > 2 such that V; = V3 —
Va = W1, then D does not contain a Hamiltonian path.

All the presented examples show that Theorem 4.4 is best possible.
Combining Corollary 4.2 with Example 4.9, we observe the following.

Corollary 4.10 Let i > 2 be an arbitrary integer. Then all, except a finite
number, of c-partite tournaments with iy < i and ¢ > 4 have a Hamiltonian
path. Furthermore the bound ¢ > 4 is best possible.
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Proof. If r > 4i — 5, then Corollary 4.2 yields that a c-partite tour-
nament D with ¢ > 4 and at least r vertices in each partite set contains
a Hamiltonian path. Because of Lemma 2.1 there are only finitely many
c-partite tournaments with i, < i and at most 4i — 6 vertices in one partite
set. Thus, the first part of this corollary is proved.

Example 4.9 demonstrates that there are infinitely many 3-partite tour-
naments with i; > 2 that do not contain any Hamiltonian path and the
proof of this corollary is complete. (m]

An interesting extension to our results would be the solution of the
following open problem.

Problem 4.11 For alli find the smallest value, g(i), with the property that
all c-partite tournaments with i; < i and ¢ > g(i) have a Hamiltonian path.

According to the Theorems 1.1, 4.3 and 4.4, it is already shown that
g(0) =1, g(1) = 3 and ¢(2) = 5.
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