More large sets of KTS(v) Gennian Ge* Department of Mathematics Zhejiang University Hangzhou 310027, Zhejiang P. R. China #### Abstract A large set of KTS(v), denoted by LKTS(v), is a collection of (v-2) pairwise disjoint KTS(v) on the same set. In this paper, it is proved that there exists an LKTS(3^n .91) for any integer $n \ge 1$. Keywords: Steiner triple system, Kirkman triple system, Large set of Kirkman triple system, Transitive Kirkman triple system. # 1 Introduction A Steiner triple system of order v (briefly STS(v)) is a pair $(\mathcal{X}, \mathcal{B})$, where \mathcal{X} is a set containing v-elements and \mathcal{B} is a collection of 3-subsets (called triple) of \mathcal{X} , such that every unordered pair of \mathcal{X} appears in exactly one triple. For $\mathcal{P} \subset \mathcal{B}$ and any $x \in \mathcal{X}$, if x appears in exactly one triple of \mathcal{P} , we call \mathcal{P} a parallel class of the STS(v). If \mathcal{B} can be partitioned into disjoint parallel classes, we call the STS(v) a Kirkman triple systems, which is denoted by KTS(v). A large set of KTS(v), denoted by LKTS(v), is a collection of (v-2) pairwise disjoint KTS(v) on the same set. The necessary condition for the existence of LKTS(v) is $v \equiv 3 \pmod{6}$. So far, knowledge about the existence of LKTS(v) is very limited, see [1], [2], [3], [4], [8], [10], [11]. The known results can be summarized as follows. Theorem 1.1 (1) There exists an LKTS(3^nm) for any positive integer n and $m \in \{1, 5, 11, 17, 25, 35, 43, 67\}$. (2) There exists an LKTS($3^{n}.41$) for any integer $n \geq 2$. ^{*}Researcher supported in part by YNSFC Grant 10001026 In this paper, it is proved that there exists an LKTS($3^n.91$) for any integer $n \ge 1$. ### 2 Constructions A Kirkman triple system $(\mathcal{X}, \mathcal{B})$ of order v is called *transitive*, denoted by TKTS(v), if there exists a transitive automorphism group G of order v of $(\mathcal{X}, \mathcal{B})$. The known results on the existence of TKTS(v) can be summarized as follows. Lemma 2.1 (1) ([5], [6]) There exists a $TKTS(3^k5^l11^m17^nq_1q_2\cdots q_t)$, where $k \geq 1$, l, m, $n \in \{0,1\}$ and q_i is a prime power and $q_i \equiv 1 \pmod{6}$ for $1 \leq i \leq t$. (2) ([11]) There exists a TKTS($3^n.41$) for any integer $n \ge 1$. Denniston [4] gave a recursive construction for LKTS(v) using TKTS(v), which is shown below. **Lemma 2.2** If there exists a TKTS(v) and an LKTS(v), then there exists an LKTS(3v). Let GF(q) be a finite field containing q elements, where q is a prime power and $q \equiv 7 \pmod{24}$. Let g be a primitive element of GF(q) and $-2 = g^{\theta}$. For any $x \in Z_{q-1}$, denote $< x > \equiv x \pmod{\frac{q-1}{2}}$. Let $\{\lambda_i, \mu_i\}$ $(i = 1, 2, \dots, \frac{q-7}{6})$ be a sequence of unordered pairs on $Z_{q-1}^* = Z_{q-1} \setminus \{0\}$ with the following properties: - (1) $\lambda_i \neq \mu_i$. - (2) $g^{\lambda_i} + g^{\mu_i} = -1$. - (3) $\{\lambda_i, \mu_i\} \subset Z_{q-1}^* \setminus \{\theta, q-1-\theta, \frac{q-1}{2}, \frac{q-1}{3}, \frac{2(q-1)}{3}\}.$ - (4) $\left|\bigcup_{i=1}^{\frac{q-7}{6}}(\{\lambda_i,\mu_i\}\bigcup\{-\mu_i,\lambda_i-\mu_i\}\bigcup\{\mu_i-\lambda_i,-\lambda_i\})\right| = \frac{q-7}{2}$. The following lemma is a restatement of Corollary 3.3 of [1], which is The following lemma is a restatement of Corollary 3.3 of [1], which is in fact a modification of the Y-Z partition construction of Wilson [9] and Schreiber [7]. **Lemma 2.3** Let GF(q) be a finite field and $q \equiv 7 \pmod{24}$. If there exist $\frac{q-7}{6}$ elements x_i and an element y in Z_{q-1}^* such that: $$(5) \bigcup_{i=1}^{\frac{q-7}{6}} \{\langle x_i \rangle, \langle x_i + \lambda_i \rangle, \langle x_i + \mu_i \rangle\} = Z_{\frac{q-1}{2}}^* \setminus \{\langle \theta \rangle\}$$ $, < y > \},$ then there exists an LKTS(q+2). #### 3 Main result **Lemma 3.1** There exists an LKTS(q+2) for q=271. **Proof.** Apply Lemma 2.3 with q = 271, g = 6 and $\theta = 19$, we should only find the suitable triples $\{\lambda_i, \mu_i, x_i\}$ and y, which are listed below. **Theorem 3.2** There exists an LKTS($3^n.91$) for any integer $n \ge 1$. **Proof.** Combine Lemmas 2.1 and 3.1, the conclusion then follows. # References - [1] Y. Chang and G. Ge, Some new large sets of KTS(v), Ars Combin. 51 (1999), 306-312. - [2] R. H. F. Denniston, Doubly resolvability of some complete 3-designs, Manuscripta Math. 12 (1974), 105-112. - [3] R. H. F. Denniston, Four doubly resolvable complete 3-designs, Ars Combin. 7 (1979), 265-272. - [4] R. H. F. Denniston, Further case of double resolvability, J. Combin. Theory (A) 26 (1979), 298-303. - [5] J. Lei, Further results on transitive Kirkman triple systems, J. Statist. Plan. Infer. 51 (1996), 189-194. - [6] J. Lei and Y. Chang, Transitive Kirkman triple systems, Journal of Hebei Science Academy, No. 2 (1990), 1-7. - [7] S. Schreiber, Covering all triples on n marks by disjoint Steiner systems, J. Combin. Theory (A) 15 (1973), 347-350. - [8] S. Schreiber, quoted by H. Hanani, Resolvable designs, Colloquio Internazionale Sulle Teorie Combinatorie (Atti dei Convegni Lincei, 17), Rome (1976), Tomo II, 249-252. - [9] R. M. Wilson, Some partitions of all triples into Steiner triple systems, Lecture Notes in Math. 411 (1974), 267-277. - [10] L. Wu, On large set of KTS(v), in: W. D. Wallis et al. eds., Combinatorial Designs and Applications (Marcel Dekker, New York) (1990), 175-178. - [11] L. Wu, Large sets of KTS(3ⁿ.41), J. Suzhou Univ. Vol. 14, N. 4 (1998), 1-2.