More large sets of KTS(v)

Gennian Ge*
Department of Mathematics
Zhejiang University
Hangzhou 310027, Zhejiang
P. R. China

Abstract

A large set of KTS(v), denoted by LKTS(v), is a collection of (v-2) pairwise disjoint KTS(v) on the same set. In this paper, it is proved that there exists an LKTS(3^n .91) for any integer $n \ge 1$.

Keywords: Steiner triple system, Kirkman triple system, Large set of Kirkman triple system, Transitive Kirkman triple system.

1 Introduction

A Steiner triple system of order v (briefly STS(v)) is a pair $(\mathcal{X}, \mathcal{B})$, where \mathcal{X} is a set containing v-elements and \mathcal{B} is a collection of 3-subsets (called triple) of \mathcal{X} , such that every unordered pair of \mathcal{X} appears in exactly one triple. For $\mathcal{P} \subset \mathcal{B}$ and any $x \in \mathcal{X}$, if x appears in exactly one triple of \mathcal{P} , we call \mathcal{P} a parallel class of the STS(v). If \mathcal{B} can be partitioned into disjoint parallel classes, we call the STS(v) a Kirkman triple systems, which is denoted by KTS(v).

A large set of KTS(v), denoted by LKTS(v), is a collection of (v-2) pairwise disjoint KTS(v) on the same set. The necessary condition for the existence of LKTS(v) is $v \equiv 3 \pmod{6}$. So far, knowledge about the existence of LKTS(v) is very limited, see [1], [2], [3], [4], [8], [10], [11]. The known results can be summarized as follows.

Theorem 1.1 (1) There exists an LKTS(3^nm) for any positive integer n and $m \in \{1, 5, 11, 17, 25, 35, 43, 67\}$.

(2) There exists an LKTS($3^{n}.41$) for any integer $n \geq 2$.

^{*}Researcher supported in part by YNSFC Grant 10001026

In this paper, it is proved that there exists an LKTS($3^n.91$) for any integer $n \ge 1$.

2 Constructions

A Kirkman triple system $(\mathcal{X}, \mathcal{B})$ of order v is called *transitive*, denoted by TKTS(v), if there exists a transitive automorphism group G of order v of $(\mathcal{X}, \mathcal{B})$.

The known results on the existence of TKTS(v) can be summarized as follows.

Lemma 2.1 (1) ([5], [6]) There exists a $TKTS(3^k5^l11^m17^nq_1q_2\cdots q_t)$, where $k \geq 1$, l, m, $n \in \{0,1\}$ and q_i is a prime power and $q_i \equiv 1 \pmod{6}$ for $1 \leq i \leq t$.

(2) ([11]) There exists a TKTS($3^n.41$) for any integer $n \ge 1$.

Denniston [4] gave a recursive construction for LKTS(v) using TKTS(v), which is shown below.

Lemma 2.2 If there exists a TKTS(v) and an LKTS(v), then there exists an LKTS(3v).

Let GF(q) be a finite field containing q elements, where q is a prime power and $q \equiv 7 \pmod{24}$. Let g be a primitive element of GF(q) and $-2 = g^{\theta}$. For any $x \in Z_{q-1}$, denote $< x > \equiv x \pmod{\frac{q-1}{2}}$.

Let $\{\lambda_i, \mu_i\}$ $(i = 1, 2, \dots, \frac{q-7}{6})$ be a sequence of unordered pairs on $Z_{q-1}^* = Z_{q-1} \setminus \{0\}$ with the following properties:

- (1) $\lambda_i \neq \mu_i$.
- (2) $g^{\lambda_i} + g^{\mu_i} = -1$.
- (3) $\{\lambda_i, \mu_i\} \subset Z_{q-1}^* \setminus \{\theta, q-1-\theta, \frac{q-1}{2}, \frac{q-1}{3}, \frac{2(q-1)}{3}\}.$
- (4) $\left|\bigcup_{i=1}^{\frac{q-7}{6}}(\{\lambda_i,\mu_i\}\bigcup\{-\mu_i,\lambda_i-\mu_i\}\bigcup\{\mu_i-\lambda_i,-\lambda_i\})\right| = \frac{q-7}{2}$. The following lemma is a restatement of Corollary 3.3 of [1], which is

The following lemma is a restatement of Corollary 3.3 of [1], which is in fact a modification of the Y-Z partition construction of Wilson [9] and Schreiber [7].

Lemma 2.3 Let GF(q) be a finite field and $q \equiv 7 \pmod{24}$. If there exist $\frac{q-7}{6}$ elements x_i and an element y in Z_{q-1}^* such that:

$$(5) \bigcup_{i=1}^{\frac{q-7}{6}} \{\langle x_i \rangle, \langle x_i + \lambda_i \rangle, \langle x_i + \mu_i \rangle\} = Z_{\frac{q-1}{2}}^* \setminus \{\langle \theta \rangle\}$$

 $, < y > \},$

then there exists an LKTS(q+2).

3 Main result

Lemma 3.1 There exists an LKTS(q+2) for q=271.

Proof. Apply Lemma 2.3 with q = 271, g = 6 and $\theta = 19$, we should only find the suitable triples $\{\lambda_i, \mu_i, x_i\}$ and y, which are listed below.

Theorem 3.2 There exists an LKTS($3^n.91$) for any integer $n \ge 1$.

Proof. Combine Lemmas 2.1 and 3.1, the conclusion then follows.

References

- [1] Y. Chang and G. Ge, Some new large sets of KTS(v), Ars Combin. 51 (1999), 306-312.
- [2] R. H. F. Denniston, Doubly resolvability of some complete 3-designs, Manuscripta Math. 12 (1974), 105-112.
- [3] R. H. F. Denniston, Four doubly resolvable complete 3-designs, Ars Combin. 7 (1979), 265-272.
- [4] R. H. F. Denniston, Further case of double resolvability, J. Combin. Theory (A) 26 (1979), 298-303.
- [5] J. Lei, Further results on transitive Kirkman triple systems, J. Statist. Plan. Infer. 51 (1996), 189-194.
- [6] J. Lei and Y. Chang, Transitive Kirkman triple systems, Journal of Hebei Science Academy, No. 2 (1990), 1-7.
- [7] S. Schreiber, Covering all triples on n marks by disjoint Steiner systems,
 J. Combin. Theory (A) 15 (1973), 347-350.

- [8] S. Schreiber, quoted by H. Hanani, Resolvable designs, Colloquio Internazionale Sulle Teorie Combinatorie (Atti dei Convegni Lincei, 17), Rome (1976), Tomo II, 249-252.
- [9] R. M. Wilson, Some partitions of all triples into Steiner triple systems, Lecture Notes in Math. 411 (1974), 267-277.
- [10] L. Wu, On large set of KTS(v), in: W. D. Wallis et al. eds., Combinatorial Designs and Applications (Marcel Dekker, New York) (1990), 175-178.
- [11] L. Wu, Large sets of KTS(3ⁿ.41), J. Suzhou Univ. Vol. 14, N. 4 (1998), 1-2.