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Abstract

We use a dynamic programming algorithm to establish a lower
bound on the domination number of complete grid graphs Gm,n. The
bound is within 5 of a known upper bound that has been conjectured
to be the exact domination number of the complete grid graphs.
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1 Introduction

A dominating set S for a graph G is a subset of the vertices of G that either
contains or is adjacent to every vertex of G. The domination number of
G, v(G), is the minimum size of a dominating set, or equivalently the
minimum, over all dominating sets S, of 3, 1.

Let P, denote the path on n vertices; the complete grid graph Gy, n, is
the product Py, X P,. Fisher [3] has used a dynamic programming algorithm
to compute ¥(Gm,g) for m < 21 and all n. In particular, when 16 < m < 21,
he found that

W(Gm,n) =y = l._(m_-l-2)5_m-| -4,

Chang (1] showed that vy is an upper bound for ¥(Gy,,») when min(m,n) >
8, and conjectured that it gives ¥(Gm ) exactly when m and n are large
enough. Fisher conjectured that in fact yy is the correct value for y(Gpm )
when min(m,n) > 16.
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Cockayne, Hare, Hedetniemi, and Wimer [2] showed that 7(Gnn) 2
(n®?4+n—3)/5 when n > 4. This is substantially smaller than the conjectured
value of « for large n. Other than this result, we know of no other lower
bounds for 7(Gm,n). By using a similar dynamic programming algorithm,
we establish a lower bound v for all m,n > 22 that is within 5 of the
upper bound, that is, vy — v < 5.

2 Getting a lower bound

A vertex in the graph G, , dominates at most five vertices, including itself,
so certainly ¥(Gm,n) 2 nm/5. If we could keep the sets dominated by
individual vertices from overlapping, we could get a dominating set with
approximately nm/5 vertices, and indeed we can arrange this for ‘most’ of
the graph, as shown in Figure 1. At the edges we are forced to overlap some
of the sets dominated by individual vertices, and also to use some vertices
with degree less than four.

Figure 1: The 16 x 18 complete grid graph has domination number 68.

Suppose S is a subset of the vertices of G. Let N([S] be the set of vertices
that are either in S or adjacent to a member of S, that is, the vertices
dominated by S. Define the wasted domination of S as w(S) = 5|S|—|N[S]|,
that is, the number of vertices we could dominate with |S| vertices in the
best case, less the number actually dominated. When S is a dominating
set, [N[S]| = mn, and if w(S) > L then |S| > (L + mn)/5. Our goal now
is to find a good lower bound L for w(S).
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Figure 2: Partitioned complete grid graph.

Suppose a complete grid graph G is partitioned into five subgraphs as
shown in Figure 2 and that S is a dominating set for G. Let S = SNV (Gy).
Then

5 4
w(S) > Y w(Si) > Y w(Se).
k=1 k=1

Note that in computing w(Sj) we consider Sy, to be a subset of V(G), not
of V(Gy) (this affects the computation of N[Si]). Since we expect that
w(Ss) = 0, we aren’t giving up anything in the second inequality, but the
first might well be strict, so it may be too much to hope that this technique
will close the gap between the upper and lower bounds.

Note that G is a complete grid graph and that Sy is a set that domi-
nates all the vertices of G except possibly the vertices in one row and one
column on the boundary. Let us say that a set that dominates a complete
grid graph G, except possibly the vertices in the bottom row and the right-
most column, almost dominates G. Suppose H = G; ;; what we would like
to know is the value of

n}}n w(A),

taking the minimum over sets A that almost dominate H and computing
w(A) as if A were a subset of a larger grid, in which H occupies the north-
west corner. If we can compute this minimum for fixed ¢ and any j, we
can choose G through G4 with width ¢ and get lower bounds on w(S)
for any dominating set S of the original Gy n. It seems possible that the
minimum value of w(A) over almost dominating sets A could be strictly
smaller than the minimum value of w(S), again suggesting that we may
not be able to close the gap between the upper and lower bounds. Ideally,
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we want to choose i so that the resulting lower bound is close to the upper
bound, ¢ is small enough to give us a bound on ¥(Gp, ) for m,n > 22, and
computing the minimum is computationally feasible. Using 7 = 10 satisfies
all of these criteria, giving a small constant difference between the upper
and lower bounds.

3 The algorithm

We now describe an algorithm based closely on one in Hare, Hedetniemi,
and Hare [5] and Fisher [3]. Imagine a complete grid graph Gy, n, with a
designated subset S of the vertices, as in Figure 1. Number the vertices
in G, in the obvious way: v;;, 1 <4 <m, 1 < j < n. We describe a
column, say column number %, in such a diagram by a state vector s, in
which s; is 0 if vertex v; ; on the path is in S, 1 if vertex v;; is adjacent
to a member of S in column ¢ or column 7 — 1, and 2 otherwise. For
example, the second column from the right in Figure 1 has state vector
(2,1,2,1,2,1,0,1,1,2,1,0,1,1,1,0); note that no state vector can ever have
a 0 adjacent to a 2. Let |s| denote the number of zeros in s.

An s-almost-domination of G, ,, is a subset S of the vertices that dom-
inates the first n — 1 columns, except possibly vertices in the first (i.e.,
bottom) row, and for which the state vector of the final column is s. Sup-
pose S is a subset of the vertices of G; ; and denote by w; ;(S) the value of

w(S) computed in Gi41,41, in which G;; occupies the northwest corner.
Let

w; j(8) = msin w; ;(S),

taking the minimum over all s-almost-dominations of G; ;. If there is no
s-almost-domination of G j, let w; j(s) = oo.

Let P(s) be the set of state vectors t such that t is the state vector
of the next to last column in an s-almost-domination of a complete grid
graph. Then

Wmn(s) = min (5ls| - nd(t,s) +wm,n-1(t)),

where nd(t, 8), the number of newly dominated vertices, may be computed
as follows. '

1.nd=0

2. If n> 1, for each j = 1,...,m for which s; =0 and t; =2, add 1 to
nd. This counts the newly dominated vertices v;—1, ;.
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3. For each j = 1,...,m for which s; < 1 and either n =1 or t; > 1,

add 1 to nd. This counts the newly dominated vertices v; ;.

4. For each j = 1,...,m for which s; = 0, add 1 to nd. This counts the
newly dominated vertices v; j+1.

Now the algorithm to compute ming w; ;(S), j =1,...,N, is:

1. Initialization. Set wn o(s) = 0if s =1, and oo otherwise.

2. Iteration. Suppose that n < N and that wp, n—1(s) has been com-
puted for all s. Then set

W, n(8) = tg}’}g) (5]s| — nd(t,s) + wm,n-1(t)) -

3. The final values of interest are mingw; ;(S) = mingw;j(s), j =
1,...,N.

Of course, this does not quite solve our problem: knowing minw;,;(S)
only for j < N is not enough to give us a lower bound on Gp,s for all
m and n. Livingston and Stout [6] and Fisher [4] independently thought
of looking for periodicity in the values of 7(Gm,s) for fixed m. Since they
succeeded, we might hope that for fixed i, there are N, p, and g so that for
j>Nandalls

wi,j(8) = wi,j—p(8) + .
In this case, after a finite amount of computation, we could determine
ming w;,j(s) for all j.

It is easy to modify the program so to check for this periodicity. When
we do this, we find that for j > 22, mingwy;(S) = j — 1, taking the
minimum over all S that almost dominate Gyo,j. Thus, for m,n > 32, if
S is a dominating set in G, w(S) > 2(m — 10 - 1) +2(n — 10— 1) and
|S] > vr = [(mn + 2m + 2n — 44)/5]. The difference vy —~L depends only
on the values of m and n modulo 5; computing all possible differences, we
find that all the differences are 4 or 5. Thus, when m and n are at least
32, the lower bound is within 5 of the upper bound. It remains to check
the difference when at least one of m and n is between 22 and 31, for this,
it suffices to check all m between 22 and 31, and for each such m, all n
between 22 and 36. When we do this, we find that all differences are 3, 4,
or 5.
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