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Abstract

We first prove that if G is a connected graph with n vertices and
chromatic number x(G) = k > 2, then its independent domination

number
i(G) < l(i;—l)nJ - (k-2).

This bound is tight and remains so for planar graphs.
We then prove that the independent domination number of a
diameter two planar graph on n vertices is at most [n/3].

1 Introduction

A subset D of the vertices of a graph G is called a dominating set if ev-
‘ery vertex of V(G)\D is adjacent to at least one vertex of D, and the
domination number of G, denoted «(G) is the minimum cardinality of a
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dominating set. Closely related to this is the notion of the independent
‘domination number, denoted i(G), which is the minimum cardinality of a
set of vertices that is both a dominating set and an independent set.

In [4], we addressed the problem of obtaining an upper bound for the
domination number of a graph using its diameter. For arbitrary graphs,
no constant bounds can be given. However, by restricting our attention to
planar graphs, constant bounds can be obtained for small diameters. In
particular, we proved the following.

Theorem 1 (4] If G is a planar graph of diameter two, then v(G) < 3.
Theorem 2 [4] If G is a planar graph of diameter three, then v(G) < 10.

One question that arises naturally is whether or not analogous results
hold for the independent domination number. In what follows, we will show
that although constant bounds do not exist, it is possible to give a tight
bound on the independent domination number of a graph of diameter at
least three in terms of the number of vertices and the chromatic number
(rather than the diameter). Equality is shown to hold, even for planar
graphs, and a bound for the independent domination number due to Gimbel
and Vestergaard [3] is derived as a corollary. In the subsequent section, we
will show that it is possible to give a tight bound on the independent
domination number of a planar graph of diameter two in terms of the
number of vertices alone, and to characterise the graphs for which equality
‘holds.

Any terminology not defined here follows that of [1]. Since the indepen-
dent domination number of a graph is equal to the independent domination
number of its underlying simple graph, we assume throughout this paper
that the graphs under consideration are simple. By a k-path in a graph G
we mean a path of length k, and [or convenience we will use the term short
path to mean a path of length at most two.

Let S C V(G) and let u € S. A private neighbour of u (with respect to
S) is either a vertex in V(G)\S whose only neighbour in S is u, or vertex u
itself if u is not adjacent to any other vertex of S. Let PN (u) C N(u)U {u}
denote the set of private neighbours of u. We say that « has k independent
private neighbours if and only if the independent domination number of the
subgraph of G induced by PN(u) is at least k.

A plane graph is a planar graph together with an embedding of the graph
in the plane. In the proofs involving planar graphs, it is often necessary to
begin by assuming that the graph is ernbedded in the plane. The Jordan
Curve Theorem tells us that a cycle C in a plane graph G separates the
plane into two regions, the interior of C' and the exterior of C. If u € V(G)
lies in the interior of C, and v € V(G) lies in the exterior of C, then any
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path in G joining » and v must contain a vertex of C. Throughout this
paper we often use this fact implicitly.

Note that the only graphs with diameter one are complete graphs, and
¥(Kyn) = i(Ky,) =1 for all n > 1. Henceforth, we consider only graphs with
diameter at least two.

2 Graphs with diameter at least three

Let » > k > 2 be integers, and define the integers g and r by n = gk+r, 0 <
r < k. Construct a graph H, x on n vertices as follows: begin with a
complete graph on k vertices and a set X of n — k isolated vertices. Add
edges joining each of the vertices in X to exactly one vertex of the complete
graph in such a way that r vertices of the complete graph are adjacent to
‘q vertices of X, and the remaining k —r vertices of the complete graph are
adjacent to ¢ — 1 vertices of X. It is easy to verify that Hy, i, has diameter
three and chromatic number k. Since an independent dominating set of
H, i contains at most one vertex of the complete subgraph of size &, it
follows that
k-1

{Hng) =14 (k= 1D(g=1)+(r—1) = l—r J—(k—z).

Theorem 3 If C is a connected graph with n vertices and x(G) =k 2> 2,
then

-1
i(C) < [("_k—)nJ —(k-2).
For all integers n > k > 2, equality is achieved when G = Hp .

Proof. Let G be a graph on n vertices with x(G) =k > 2. If k =2, then
the result is obvious; thus we may assume k > 3.

Choose a k-colouring p : V(G) — {1,2,...,k} such that 3=, v (c)P(u)
is minimum. Note that such a colouring has the property that any vertex
of colour % is adjacent to vertices of colour 1,2,...1-1,2<i<k.

Let C; denote the set of vertices of colour 7, 1 < i < k. By our choice
of colouring, C; is a dominating set, and since C) is also independent, if
1Cil £ ik—;—un — (k — 2), then |Cy] £ I_-(-'f-;—llnj — (k — 2) and we are done.
Therefore, we may assume that |Cy| > U‘%”n - {k—2).

Since G is connected, § > 1, so every vertex of C, is adjacent to some
vertex of Uf=2 C;. Thus, for some j, 2 < j < k, C; dominates at least
757|C1| vertices of Cy. Notice that Cj is an independent set and dominates
all vertices of C;, j < 1 < k. Extend C; to a maximal independent subset,
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X, of G; by our previous observation X C C,UCyU-.-U C;. Thus X is
an independent dominating set of G, and |X| = |X N Cy| + |X\C|. But,

XNCi| < |G| =IN(Cj)N G

1

and |X\C,| < n—|C| — (k - 2) (by the definition of the colouring there is
a vertex in each C;,i # j that is adjacent to a vertex in Cj). Therefore,

< |G-

X = |XNC|+|X\C|
1
< ICll—m|C1l+n—|Cl|—(k—2)

1
n- 0l - (k-2)

< n-;c—é—-l-<(k;l)n—(k-2))—(k—2)
(kzl)n+§::?;—(k—2).

However, |X| is an integer, and thus

1X| < l(";l)w E::f;J _(k-2) < [(k;”n] —(k-2).

If k divides n, then
S| - -2 = |5 n] -

k

and the proof is complete.

We now assume that k does not divide n, and write n as kq + r where
q and r are nonnegative integers, ¢ = |n/k], and 1 < 7 < k. In this case,
the difference between

[(k};l)n—l—(k—m and l(kgl)nj—(k’—z)

is exactly one. We will show that the bound [Sk;—”n] — (k — 2) can not
be tight, and can therefore be replaced with lg%zn_’ — (k = 2). Suppose

then, that i(G) = [ k-1 n] — (k —2). This implies that equality must hold
throughout the argument above.
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We focus first on the inequality
| X\C1| £ n—|C1| = (k —2);
if this inequality is strict, then we are done. Thus we assume that
| X\C1| =n = |Ci| - (k- 2),

which implies that there are only k — 2 vertices in C;,UC3U ---UCj_, U
Cj+1U--- U Ck-; that are adjacent to vertices in Cj;. It follows that all
vertices in Cj are adjacent to a unique vertex v; € C;, 2 <:¢<j—1, and
that for j + 1 < i <k, C; = {v;}. Furthermore, if any two vertices of

§ = (Co\Muv2}) U (Cas\{ws}) U --- U (Cj_1\{v;-1})

are adjacent then S € X and equality does not hold. Thus S is an inde-
pendent set.

Recall that the colouring, p : V(G) — {1,2,...,k}, is defined so that
Y uev(c) P(u) is minimum. If j > 3, then it must be the case that |C;| = 1
(the case 7 = 2 will be dealt with at the end of the proof); otherwise, by
recolouring all vertices in C; with colour j — 1 and »;_; with colour j, we
can maintain a proper colouring but reduce the sum of the colours. Thus,
we let Cj = {'Uj}.

We now focus on | X NC}|. For equality to occur in the bound, we must
have | X N Cy| = |C1\N(C;)|; for this to occur, no vertex of C;\N(Cj) can
be adjacent to a vertex of S; i.c., the independent dominating set

X = {v;} U (C1\N(C;) U (Co\{v2}) U (Ca\{v3}) U - - U (C—1\{vj—1})-

~ Consider now the subgraph, G’, induced by {v2,vs,...,v}. If v, and
v, are non-adjacent in G’, then re-colour G as follows.

(i) Assign the vertices in X colour j.
(ii) Assign the vertices in N(v;) N Cy colour 1.

(iii) If s = 7 or ¢t = 7, assign v, and v, colour j; otherwise, assign v, and
vy colour s.

(iv) Assign each of the remaining k—4 of the v;’s its original colour (colour
1).

The result is a (k — 1)-colouring of G, a contradiction, and thus G’ is
complete.

Furthermore, there must be a vertex in N(v;) N C, that is adjacent to
each vertex of G’. If this is not the case, then we re-colour the vertices of
G as follows.
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(i) Assign the vertices in X colour j.
(if) For 2 <1 <k and ¢ # j, assign vertex v; colour 1.

(iif) Assign each vertex in N(v;) N C; one of the colours from the set

{2,3,...,5-1,7+1,...,k} (at least one of these colours is available
for each v;).

Again, the result is a (k — 1)-colouring of G, a contradiction. Thus there
exists a vertex in N(v;) N C; adjacent to each vertex of G’.

We can now conclude that G consists of a k-clique and n—k = (g—1)k+r
vertices each adjacent to at least one vertex in the clique. Thus, some vertex
in the clique is adjacent to at least [23%] = g (since r > 0) vertices not in
the clique, and so

(G)<l4n—k—qg=(q—1)(k—1)+r= l(k;”nJ —(k-2),

a contradiction.

What remains is to prove the result when j = 2. Notice that in this
case C; = {v;}, i > 3, and that if v; dominates at least | 25|Ci]|| vertices
of C), then we can choose 7 = ¢ and proceed as before. Thus each such v;
dominates at most [k—1-1|c, IJ vertices of C;.

Since | X| = [ L= n] — (k — 2), it must be the case that |[X N Cy| =
|C1| - [k—11|cl |], and thus
1
IN(C2)NCy| = ['kTTIC' l] :

Each of the remaining

1
eWEl = - [l
k—2
\.m |Cll’\
'vertices of C; must be dominated by (at least) one of {v3,vs,...,vk}, s0

it follows that each v;, ¢ > 3, dominates cxactly [ﬁlCllj vertices of
CI\N(Cy).

We will now show that v;, ¢ > 3 is adjacent to at least one vertex in
N(C2) N C,, implying that v; dominates at least

1 1
lmWﬂJ +1= [E‘_“l‘lcld
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vertices of Cy, a contradiction.

Claim: There exists a vertex vy € N(C2) N C) that is adjacent to each v;,
> 3.

If this is not the case, then we may re-colour the vertices of G as follows.
(i) Assign the vertices in X colour 1.

(ii) Colour each vertex of N(C2)NC) with a colour from the set {3,4,...,k}
(at least one such colour is always available).

The result is a (k — 1)-colouring of G, a contradiction. Therefore, there is
a v; € N(C2) N Cy adjacent to each v;, 7 > 3, completing the proof of the
claim and the theorem. m

Notice that the argument in the proof of Theorem 3 shows that

1€y
k-1

i{C) < min{|Cy|,n - [ 1 —k+2).

Minimizing this as a function of |C| gives the bound

#(G) + “(f"” <n-k+2

Equality is obtained for the graphs Hy, x when k divides n.

We can use Theorem 3 to derive the following result of Gimbel and
Vestergaard [3].

Corollary 4 For any graph G, i(G) < n - 2y/n+2.

Proof. Theorem 3 asserts i(G) < n— (4n + (k — 2)), and hence it suffices
to show that in 4 (k —2) > 2\/n — 2. We have in+ (k- 2) > 2y/n -2l
and only if %n+ k > 2/n. Since k is positive we can multiply through and
obtain that the above statement is equivalent to n — 2kv/n + k2 > 0. The
latter inequality is the same as (/7 — k)2 > 0, which is true. m

For k = 2,3,4, the graphs H, i are planar, and thus the bound in
Theorem 3 is tight for planar graphs. Combining Theorem 3 with the Four
Colour Theorem also gives us the {ollowing.

Corollary 5 If G is a planar graph on n vertices with diameter at least
three, then i(G) < %n.
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3 Planar diameter two graphs

Theorem 6 If G is a diameler two planar graph on n vertices, then

s [2]

Furthermore, if i(G) = [n/3], then one of the following holds:
(i) n =3 and G is a path of length two.
(ii) n =4 and G is a cycle of length four.

(i) n =5 and G arises (by the addition of extra edges) from one of
the edge-minimal graphs in Figure 1.

(iv) n =6 and G arises from one of the edge-minimal graphs in Figure
2.

(v) n =9, n=0(mod 3), and G is isomorphic to the graph in Figure
3(i), or arises from the edge-minimal graph in Figure 3(ii).

For n < 9 there are 38 non-isomorphic diameter two planar graphs with
independent domination number [n/3]. For each n > 12, n = 0(mod 3),
there are 13 non-isomorphic examples. We derive natural upper and lower
bounds for the degrees of the vertices of such graphs. In Figures 1, 2
and 3, we show only the edge-minimal planar (not plane) graphs. The
remaining graphs can be constructed by adding edges while respecting the

degree, diameter and domination conditions (the embedding may need to
be changed).

Proof of Theorem 6. Many of the arguments that follow depend on G
being embedded in the plane in a particular way. The embedding used can
always be chosen without loss of generality.

Let G be a diameter two planar graph with n vertices, and suppose that
i(G) > [n/3]. By Theorem 1, ¥(G) < 3, and so we consider three cases.

Case 1. v(G) =1.

In this case i(G) = 1 > [n/3], implying n < 3. However, if n = 1 or
2, then G = K, or G £ K>, and both these graphs have diamecter one, a
contradiction. Thus, n = 3, and it follows that G is a path of length two.

Case 2. v(G) =2.

Let {z,y} be a minimum cardinality dominating set in G. If zy & E(G),
then i(G) = 2 > [n/3], implying that n < 6. Recalling that G has diameter
two and y(G) = (G) = 2, it is not difficult to sce that vertices of G have

40



degree at least two and at most n — 2. Therefore, it follows immediately
that n > 4, and thus i(G) = [n/3].

When n = 4, G is 2-regular and is therefore simply a cycle of length
four. When n = 5, every vertex of G has degree two or three; there are
four such non-isomorphic planar graphs, arising from the graphs shown in
Figure 1.

Figure 1: n =5

Finally, when n = 6, every vertex of G has degree two, three or four. If
there are only vertices of degree two, then G is a cycle of length six, which
has diameter three, a contradiction. Therefore, G has maximum degree
three or four. By examining these two possibilities in detail, we see that
there are 23 such non-isomorphic planar graphs, arising from the graphs
shown in Figure 2.

R AR

Figure 2: n =

We now assume that zy € E(G). If z has only one independent private
neighbour (with respect to {z,y}), say z, then {y,z} is an independent
dominating set, so i{(G) = 2. The previous argument applies, and we con-
clude that n = 4,5 or 6 (and thus ¢(G) = [n/3]), and furthermore, G is
either a 4-cycle or is one of the graphs arising from those in Figures 1 and
2.
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@ (i)
Figure 3: n > 9

Thus, from now on, we may assume that z and y each have at least
two independent private neighbours (with respect to {z,y}). Let A be a
maximal independent set of private neighbours of z, and let a;,a3 € A.
Similarly, let B be a maximal independent set of private neighbours of ,
and let b),by € B. Without loss of generality, we may assume that G is
embedded as a plane graph as shown in Figure 4(i).

Since G has diameter two, there must be a short path from a, to by. If
this short path is an edge, then since a; and a; arc independent, as are b,
and by, it follows from the planarity of G that there is no short path from b,
to az, a contradiction. Therefore, there must be a vertex, p # ay, by, az, by
such that a;pb; is a 2-path. In particular, this implies that n > 7. This
same vertex p must be on a short path from a3 to by, and thus G contains
the subgraph shown in Figure 4(ii). It now follows that vertex p is adjacent
‘to all vertices in AU B.

P
a) 3 o by
: - :
a2 v b2 az Y by
@ (i)

Figure 4: Case 2
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Observe that |A| > |(n — 1)/3]; otherwise, a maximal independent set
containing y has cardinality at most

1+ |(n-1)/3] -1 =|(r-1)/3],

and |(n—1)/3] < [n/3]. This maximal independent set is an independent
dominating set, a contradiction. Similarly, |B| > |(n —1)/3].

Since {z,y} is a dominating set, pz € E(G) or py € E(G); without loss
of generality, assume that pz € E(G). This, along with the planarity of G,
implies that p is adjacent to all private neighbours of z. But then either
{p,y} is an independent dominating set of cardinality two, implying that
i(G) = 2, or py € E(G). In the first case, since i(G) > [n/3], it follows
that n < 6, a contradiction, since n > 7.

In the second case, py € E(G); this, along with the planarity of G,
implies that p is adjacent to all private neighbours of y. Thus, it follows
that the degree of vertex p satisfies

d(p) > 2\(n — 1)/3) +2,

and a maximal independent set in G containing vertex p has cardinality at
most

1+(n-1)—d(p) <n-2l(r-1)/3] -2 < [n/3],

with equality only if n = 0(mod 3) and d(p) = 2|(n—1)/3]+2. This implies
that z and y each have exactly |(n—1)/3] private neighbours. Furthermore,
by our previous remark, the private neighbours of z are independent, and
the private neighbours of y are independent. The remaining vertices of the
graph, |(n—1)/3] in all, must be shared neighbours ol z and y. In addition,
these vertices must form an independent set. Otherwise, there would exist
a maximal independent set, S, consisting of p and shared neighbours of x
and y such that |S| < [n/3].

Therefore, G consists of the triangle zypz, and each pair from {z,y, p}
has |(n —1)/3] = (n/3) — 1 shared neighbours. The only such graphs arise
from the edge-minimal graph shown in Figure 3(ii).

Case 3. v(G) =3.
In this case, choose a minimum dominating set D = {z,y, 2} of G such that
G[D] has a minimum number of edges.

Claim. If wv € E(G[D)), then u and v each has al least two independent
private neighbours.

" Since D is a minimal dominating set, the vertices » and v each have a
private neighbour. Further, since uv € E, ncither vertex can be its own
private neighbour. Suppose u has only one private neighbour, a. Then
D’ = (D - {u}) U {a} is a dominating set, and G[D’] has fewer edges than
G|D), a contradiction. This proves the claim.
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. The proof of Case 3 proceeds by considering two cases, depending on
whether |E(G[D])| > 0.

Case 3.1. G[D] has at least one edge.

Without loss of generality, zy € E(G[D]). By the claim, the vertices z and
y each have at least two independent private neighbours. Therefore, we
may assume without loss of generality that G contains the subgraph shown
in Figure 5(i), where a; and a; are independent private neighbours of z,
and b, and b, are independent private neighbours of Y.

Ry
ay by a1 b a b
z Hé z R Re
a2 b2 a2 b2 a2 b2
R2
@ (id) (i)

Figure 5: Casc 3.1

Since G has diameter two, there is a short path from as to by; if this short,
path is the edge a2b,, then because of the planarity of G, the independence
of a; and a3, and the independence of b; and bs, there is no short path
from a; to bz, a contradiction. Therefore, ay and b; have some common
neighbour, ¢. Note that ¢ # ay,b;,7,7, 2 (since a,, ay are independent
private neighbours of z, and by, b, are independent private neighbours of
y). Thus, without loss of generality, C contains the subgraph shown in
Figure 5(ii).

Now, there exists a short path from a; to by; using analogous arguments,
this short path must contain g, and thus G contains the subgraph shown
in Figure 5(iii).

We now claim that q dominates all private neighbours of z. To see this,
let ¢ be a private neighbour of z. If ¢ lies in R, (sec Figure 5(jii)), then a
short path from ¢ to by contains g; if ¢ lies in 12, then a short path from ¢
to b; contains q.

Finally, if ¢ lics in R3, then if ¢ is nol adjacent to q, it must be the
case that a short path from ¢ to b; contains e; and a short path from ¢ to
bz contains ez, implying that G contains the subgraph shown in Figure 6.
Since t, a1, a are private neighbours of z, and b,, b, are private neighbours
of y, the vertex z is not adjacent to ¢, ay, az, by, or by. Thus, in order for z
to be distance at most two from z, it must be that z lies in Rs, Rg, Ry, or
Rg (see Figure 6). But it is now impossible for there to be a short path from
z to g, a contradiction. Therefore, no such ¢ exists, and we conclude that



q dominates all private neighbours of z. An analogous argument implies
that g dominates all private neighbours of 3.

Figure 6: Case 3.1

Recall that G contains the subgraph shown in Figure 6(iii), and that g
dominates all private neighbours of both z and y. Now, vertex z must lie
in Ry, Rz, R3 or R4. Because of the symmetry of this subgraph, we may
assume, without loss of generality, that z lies in Ry or z lies in Rs.

First suppose that 2 lies in R;. Since D is a minimal dominating set,
the vertex z has a private neighbour, possibly itsclf. By the planarity of G,
all private neighbours of z (except possibly ¢) also lie in R;. A short path
from a; to any private neighbour of z in Rz must contain g, and thus ¢
dominates all private neighbours of z. If z and z have a shared neighbour
(also in Ry), then a short path from this vertex to b; must contain ¢, and
therefore ¢ also dominates shared neighbours of z and z. Therefore, {q,y}
is a dominating set, contradicting the fact that v(G) = 3.

Thus, z must lie in R3 and hence all private neighbours of z (except
possibly ¢q) also lie in R3. Further, z can not be adjacent to y, and y and 2
can nor have common neighbours other than (possibly) z. Since a; and a3
are private neighbours of z, a short path from z to a private neighbour of y
contains q. Thus, ¢ dominates z and all private neighbours of y. Similarly,
a short path from y to a private neighbour of z in R3 contains q. Thus, ¢
-dominates y and all private neighbours of 2. But then {z, ¢} is a dominating
set, contradicting the fact that y = 3. It follows that G[D] has no edges.
Case 3.2: G[D] is an independent set.

It follows that i(G) = 3; but, since we have assumed that i(G) > [n/3], we
have 3 = i(G) > [n/3], and therefore n < 9.

Observe that whatever the value of n, the maximum degree in the graph,
A, must satisfy A <n—-4. If A=n-2or A =n -1, then a maximal
independent set in G containing a vertex of degrce A has cardinality less
than three; this maximal independent set is a dominating set, and thus
Y(G) < 3, a contradiction. If A = n — 3, then lct z be a vertex of degree
A, and let a and b be the two vertices of G that are distance two from
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‘z. If ab € E(G), then {z,a} is a dominating set, a contradiction; on the
other hand, if ab € E(G), then a and b must have a common neighbour,
u € N(z), and then {z,u} is a dominating set, again a contradiction.

The minimum degree of the graph, 6, must satisfy § > 3; since the
neighbours of any vertex in a diameter two graph form a dominating set, if
6 =1or 6§ =2 then 4(G) < 3. Therefore, 3 < A <n —4. These conditions
immediately rule out the possibility that n < 6, and thus we are left with
three cases: n=7,8 or 9.

(a) Suppose that n = 7; by our previous observations, A < 3. But, since
6 > 3, this implies that G is a 3-regular graph on seven vertices, which is
impossible.

(b) Suppose that n = 8; by the conditions given on A, we have A = 4 or
A=3.

Suppose that A =4, and let = be a vertex with degree four; let N(z) =
{u,v,w,y}, and let S = {a,b, ¢} be the remaining vertices of G that are
distance two from z. If G[S] has a vertex of degree two, say a, then {z,a}
is a dominating set, a contradiction. However, if G[S] is an independent
set, then, since § > 3, each vertex of S has at least three neighbours in
N(z). It follows from the pigeonhole principle that some vertex u of N(z)
is adjacent to all three vertices of S, and thus {z,«} is a dominating set,
a contradiction. The only remaining possibility for G[S] is that it has
-exactly one edge. Without loss of generality, assume that ab € E(G), and
that ac,bc € E(G). Then, since c is adjacent to at least three vertices of
N(z), G contains the subgraph shown in Figure 7(i), and the edge ab lics
in Rl, R2 or R3.

@ (ii)
Figure 7: Case 3.2(b)

If ab lies in Ry, then a short path from u to a contains v, as does a short
path from u to b, implying that d(v) > 5, a contradiction. If ab lies in R
we arrive at a similar contradiction, and thus the only possibility is that ab
lies in R;. It now follows that a short path from a to w contains v or y,
as does a short path from b to w. Because of the restriction that A = 4,
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we may assume, without loss of generality, that G contains the subgraph
shown in Figure 7(ii). However, because v and y have degree A = 4, and
because ¢ in not adjacent to a or b, there is no possible short path from u
to ¢, a contradiction. Therefore, A # 4.

Next, suppose that A = 3; then G is a 3-regular graph with eight ver-
tices. Let z be a vertex of G, let N(z) = {u,v,w}, and let S = {a,b, c,d}.
Each vertex of N(z) has at most two neighbours in S (contributing at most
six to the degrees of vertices in S), and the sum of the degrees of the ver-
tices of S is twelve, implying that G[S] has at least three edges. However,
no vertex of G[S] has degree three (otherwise, ¥(G) = 2), and it therefore
follows that G[S] is a path on three edges, a cycle on four edges, or consists
of a cycle on three edges and in isolated vertex.

First suppose that G[S] is a path; without loss of generality, G[S] is
the path abed. Since G has diameter two, ¢ and d must have a common
neighbour, and this neighbour must be in N(z). Let this common neighbour
be u; we may assume that G contains the subgraph shown in Figure 8(i).
Now b and ¢ must each be adjacent to a vertex of N(z). If b and c are both
adjacent to v, then w must be adjacent to a and d (in order for G to be
3-regular), but this is impossible because of the planarity of G. Similarly, if
b and c are both adjacent to w, then » must be adjacent to a and d, which
is again impossible because of the planarity of G. Therefore, b and ¢ must
each be adjacent to exactly one of v and w; by planarity, bv € E(G) and
cw € E(G). But now there can be no short path from a to v. Therefore
G|[S] is not a path.

® (id) (iii)
Figure 8: Casc 3.2(b)

Next, suppose G[S] is the cycle abeda. Since G is 3-regular, each vertex
in S has cxactly one neighbour in N(z), and since cach vertex of N(z) has
at most two neighbours in S, it follows that some vertex of N(z) has exactly
two neighbours in S. Without loss of gencerality, assume that v is adjacent
to exactly two vertices of S, one of them being b, and that G contains the
subgraph shown in Figure 8(ii). Il v is adjacent to d, then by the planarity
of G, either a or ¢ must also be adjacent to v (in order to be adjacent to
some vertex ol N(z)), giving v degree greater than three, a contradiction.
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Thus, without loss of gencrality, we may assume that v is adjacent to ¢, and
that G contains the subgraph shown in Figure 8(iii). Notice that if either
u or w is adjacent to both a and d, then {u,v} or {w,v} is a dominating
set, a contradiction. Therefore, u is adjacent to exactly one of a and d;
similarly, w is adjacent to exactly one of a and d. Because of the planarity
of G, it must be that ua € E(G) and wd € E(G). Since G is 3-regular,
uw € E(G); but G has no short path from u to c, a contradiction. Thus,
G[S] is neither a path nor a cycle, and hence must consist of a cycle on
three edges and an isolated vertex.

Finally, suppose G[S] consists of the isolated vertex a and the 3-cycle
bedb. Then, the subgraph G[N(z) U {a}] is isomorphic to K3 3. Since each
vertex in {u,v,w} is adjacent to exactly one vertex in {b,c,d}, we may
assume by symmetry that the remaining edges of G are bu, cv and dw.
But then the graph G — {bd} is a subdivision of K33, contradicting of the
planarity of G.

(c) We are now left with the case n = 9. Recall G is planar, has diameter
two, and that v(G) = i(G) = 3. Also, by our earlier remarks, 3 < A < 5,
and 6 > 3. First notice that A = 3 is impossible, since there is no 3-regular
graph on nine vertices. We are therefore left with the two cases: A = 5
and A =4.

First suppose that A = 5, and let z be a vertex of degree five; let
N(z) = {u,v,w,y, 2z} be the neighbours of z, and let S = {a,b,c} be the
three remaining vertices of G that are distance two from z. Suppose that S
is an independent set; since G has diameter two, cach pair of vertices in S
has a common neighbour in N(z). If e, b, and ¢ have a common ncighbour,
u € N(z), then {z,u} is a dominating sct, a contradiction. Therefore,
a and b have a common neighbour, » € N(z), b and ¢ have a common
neighbour, v € N(z), and a and ¢ have a common ncighbour w € N(z),
u # v # w. Without loss of generality, we may assume that G contains the
subgraph shown in Figure 9. Furthermore, the remaining two vertices of
"N(z) must lie in Ry, R or R3. However, to ensure that a, b and c each have
degree at least three, there would need to be a vertex of N(z) in each of R,
Ra, and Rj, which is impossible. Therefore, S is not an independent set.
But, if G[S] contains a vertex of degree two, say vertex a, then {z, a}isa
dominating set, a contradiction. It follows that CG[S] has maximum degree
one; since S is not an independent set, this implics that G[S)] contains a
single edge.
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Figure 9: Case 3.2(c)

Without loss of generality, we may assume that ab € E(G) and that
bc,ac ¢ E(G). Since ac ¢ E(G), a and c have a common neighbour, say
u, in N(z); if b is also adjacent to u, then {z,u} is a dominating set, a
contradiction. Thus, bu ¢ E(G), but because bc ¢ E(G), b and c have a
common neighbour, say v, in N(z) (v # u). Also, a is not adjacent to v,
since this would result in {z,v} being a dominating set. Thus, we may
assume, without loss of generality, that G contains the subgraph shown in
Figure 10(i).

z R2 T
ab a b
@ (ii) (iii)

Figure 10: Case 3.2(c)

Notice that the remaining (three) vertices of N(z) must all lie in R; or
R5. Furthermore, to ensure that a has degree at least three, there must be
at least one vertex of N(z)\{u,v} in Iy; also, to ensure that ¢ has degree
at least three, there must be at least one vertex of N(z)\{u,v} in R;. We
may therefore assume that y lies in R; and is adjacent to ¢, that w lies
in R and is adjacent to a, and that G contains the subgraph shown in
Figure 10(ii). From this figure, we see that the only short path from y to b
contains v, and that the only short path from y to a contains u, implying
that yu, yv € E(G). Thus, G contains the subgraph shown in Figure 10(iii).

The remaining vertex of N(z), z, lies in R3, R4, Rs, or Re. If 2 lies in
Rs, there is no short path from z to b. If z lies in Rg, then because b has
degree at least three, wb € E(G), and thus, by planarity, there is no short
path from z to a. If z lies in R4, then a short path from z to b contains w,
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and a short path from z to ¢ contains u, so zu, zw, wb € E(G). But then
G has a dominating set {u, b} of cardinality two, a contradiction. Finally,
if 2 lies in R3, then a short path from 2 to ¢ contains v, so vz € E(G), and
so {v,a} is a dominating set of cardinality two, a contradiction. Therefore,
A =5 is impossible, and the only possibility A = 4.

Suppose that A = 4, and let = be a vertex of degree four; let N(z) =
{u,v,v, 2z} be the neighbours of z (in clockwise order around z in a plane
embedding of G), and let S = {a, b, c,d} be the vertices distance two from
z. We claim that the graph shown in Figure 3(i) is the unique planar graph
(up to isomorphism) that satisfies all of the necessary conditions: planar,
diameter two, nine vertices, A = 4, § = 3, 7(G) = i(G) = 3. Notice that
the graph in Figure 3(i) is 3-connected, and thus has essentially only one
embedding as a plane graph. Furthermore, the addition of any edge to this
‘graph results in a violation of planarity, the degree condition (A = 4), or
of the domination number condition (y(G) = 3).

To show that the graph in Figure 3(i) is unique, the first step is to
show that G[S] is a cycle. First notice that G[S] has maximum degree
two. Otherwise, a degree three vertex in G[S], along with z, shows that
~¥(G) < 2, a contradiction.

Secondly, G[S] has no isolated vertices. To see this, assume that G[S]
has an isolated vertex; without loss of generality, we may assume that a is
an isolated vertex in G[S]. Since § > 3, a must be adjacent to at lcast three
vertices in N{(z); we may assume that a is adjacent to u,v and y, and that
G contains the subgraph shown in Figure 11.

u 103
Ry
x
z a
Yy Ra

Figure 11: Casce 3.2(c)

Suppose that exactly one of b,¢,d lics in 12y or R3; without loss of
-generality, b lies in Ry. Then, since b is not adjacent to z or a, d(b) < 2, a
contradiction. However, if at least two of b, ¢, d lic in R or R, then we also
obtain a contradiction. To see this, suppose without loss of generality that
b and c lie in R3. Then a short path from z to b or ¢ contains u, implying
that d(u) > 5, and contradicting the fact that A = 4. Therefore, b, c and
d all lie in R;. However, a short path from v to b, ¢ or d now uses u or y,
and it is impossible to have these short paths and also have d(u) < 4 and
d(y) < 4. Thus, G|[S] has no isolated vertices.
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Since G[S] has maximum degree two and minimum degree one, there
are three possibilities: G[S] is a matching with two edges, a path of length
three, or a cycle of length four. We begin by eliminating the first two
possibilities.

Suppose that G[S] is a matching with two edges; without loss of gener-
ality, ab and cd are the edges of G[S]. A short path from b to ¢ contains
a vertex of N(z); similarly, a short path from a to d contains a vertex of
N(z). Because A(G) < 4, the common neighbour of b and c is not the same
as the common neighbour of a and d. We may therefore assume, without
loss of generality, that b and c are both adjacent to v, and that a and d are
both adjacent to y or to 2. These two possibilities are depicted in Figure
12.

z x

[
Q
N
e
&
N

® (i)
Figure 12: Case 3.2(c)

First consider the situation in Figure 12(i). A short path from b to d
contains either v or y; if this path contains v, then dv € E(G), and thus
d(v) = 4. If a short path from b to d contains y, then by € E(G) and
d(y) = 4. In either case, there is no possible short path from a to ¢, a
contradiction. The same argument applies to the situation in Figure 12(ii),
and thus G[S] is not a matching with two edges.

Now suppose that G[S] is a path of length three, say abcd. Since a and
d are not adjacent in $, they must have a common neighbour in N(z);
without loss of generality, a and d are both adjacent to u, and G contains
the subgraph shown in Figure 13(i).

Figure 13: Case 3.2(c)
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Since 6§ > 3, a is adjacent to at least one more vertex in N(z), and
we claim that a must be adjacent to 2. To see this, first suppose that a
is adjacent to y but not to z. Then, for z to have degree at least three,
2y,zu € E(G). Hence d(u) = 4 and d(y) > 3, and it is impossible to
have short paths from z to both b and c. Therefore if ay € E(G) then
az € E(G). Secondly, suppose that a is adjacent to ». Then, since d has
degree at least three, dv € E(G); also since b and ¢ each have degree at
least three, bu,cv € E(G) or bv,cu € E(G). In either case, u and v have
degree four, and there is no possible way to have short paths from z and
y to b and c. Therefore, az € E(G), and by symmetry, we may assume
that dv € E(G) (see Figure 13(ii)); also, av ¢ E(G), and symmetrically,
dz & E(G).

Since G has diameter two, b is adjacent to at least one vertex in N(z).
If b is adjacent to v, then either cu € I(G) or cv € E(G). In either case,
there are no short paths from d to both y and z, a contradiction. Thus,
b is adjacent to y, 2z or u, and, by symmetry, c is adjacent to y,z or u. If
b is adjacent to y, then a short path from z to c contains b or . In the
first case, bz € E(G) and d(b) = 4; in the sccond case, zy,yc € E(G) and
d(y) = 4. In both cases, the only way Lo have a short path from a to v is il
uv € E(G). However, this leads to {u, b} being a dominating set in the first
case, and {u,y} being a dominating set in the second case, a contradiction.
Therefore, b is adjacent to z or u, and by symmetry, c is adjacent to v or u.
‘Not both b and ¢ can be adjacent to u, and thus because of the symmetry
we may assume that bu & E(G), and thus bz € E(G).

Consider a short path from a to y; since by &€ E(G), such a path contains
z, so yz € E(G) and d(z) = 4. Now consider a short path from a to v;
since d(z) = 4 and since bv ¢ L(G), this short path contains u, and thus
uv € E(G). This implies that cu € FE(G), and so cv € E(G). But then
there is no short path from d to z, a contradiction.

Since all possibilities lead to a contradiction, G[S] is not a path of
length three, and thercfore we conclude that G[S] is a cycle. Without loss
of generality, we may assume that G[S] is the cycle abcda. Suppose that
some vertex of S has exactly one neighbour in N(z); we may assume that
u € N(z) is the unique neighbour of a € S. Since N(a) = {d, u, b}, a short
path from a to ¥ contains one of these vertices. Suppose a short path from
a to y contains u; then uy € E(G), and by the symmetry of the graph, we
may assume that G contains the subgraph shown in Figure 14(i).
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® (ii)
Figure 14: Case 3.2(c)

It follows that a short path from 2 to any vertex of S contains u or y, so
{u, y} dominates S. Therefore N(u)UN(y) 2 SU{u, z,y, z}, and since both
u and y are adjacent to z, d(u) + d(y) > 9, a contradiction (since A = 4).
‘Therefore, a short path from e to y contains b or d; by the symmetry of
the graph, we may assume that a short path from a to y contains d, and
thus G contains the subgraph shown in Figure 14(ii). From Figure 14(ii),
we see that a short path from z to b contains either y or u. If such a short
path contains y, then zy,yb € E(G) and d(y) = 4. This implies that the
subgraph induced by the vertices in V(G)\N[y] is a cycle of length four;
i.e., G[{a,u,v,c}] is a cycle of length four. But this is impossible since a is
not adjacent to v or ¢. Therelore a short path from z to b must contain w,
so zu,ub € E(G).

Observe now that d(u) = 4, and thus the subgraph induced by the
vertices of V(G)\N[u] = {c,d,y,v} is a 4-cycle. Since yd,dc are cdges
of G, this 4-cycle must be vydcv, implying that cv,vy € E(G). A short
path from c to z must contain one of a,u,z,y, d; however, this path can
not contain u or z since d(u) = d(x) = 4, and can not contain a since
ca € E(G). If such a path contains y, then 2y,cy € E(G) and d(y) > 5, a
contradiction. Therefore, the short path from ¢ to 2 contains d, implying
that zd € E(G). Since d(z) = 4, there must be a 4-cycle on the vertices
in V(G)\N|z] = {b,u,v,z}, and because d(u) = d(z) = 4 and d(b) =
d(v) = 3, this 4-cycle must be bvzub. Thus bv € E(G) and G contains
the subgraph shown in Figurc 15(i). Ilowever, this can be re-drawn, as
in Figure 15(ii), and we see that this graph is isomorphic to the graph in
Figure 3(i). Therefore, we have shown that if some vertex in S has degree
three (and thus has a unique neighbour in N(z)), then G is isomorphic to
‘the graph in Figure 3(i). The only other possibility is that every vertex
of S has degree exactly four, and thus is adjacent to two vertices of N(z)
(since G[S] is a cycle).
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Figure 15: Case 3.2(c)

Suppose that every vertex of S is adjacent to exactly two vertices in
N(z). Recall that N(z) = {u,v,y, 2} are in clockwise order around z in a
plane embedding of G. Because of symmetry, we may assume without loss
of generality that a € S is adjacent to v and z (nonconsecutive vertices of
N(z)), or to u and v (consecutive vertices of N(z)). First suppose that a is
adjacent to v and z; we may assume that G contains the subgraph shown
in Figure 16(i). In this case, short paths from u to b,c and d must contain
v or z. It is impossible to have these short paths and also d(v),d(z) < 4.
Therefore, a must be adjacent to consecutive vertices of N(z), and, in fact,
every vertex of S must be adjacent to two consccutive vertices of N(zx).
The facts that a is adjacent to » and v, and abcda is the cycle of N[S] in
clockwise order, uniquely determine G as shown in Figure 16(ii).

a b b u

@ (i)
Figure 16: Case 3.2(c)

Therefore, the graph in Figure 3(i) is the unique graph, up to isomor-
phism, with V(G) =9, v(G) = 3, i{(G) = 3, A =4, § = 3. This completes
the proof of the theorem. m

For diameter two graphs in general, the independent domination number
can be arbitrarily large, as illustrated in the following example. For positive
integers m and k, let G, x be the graph constructed as follows. Take a sct of
mk independent vertices partitioned into m scts of k vertices; denote these
sets Iy, Ia,. .., Im. For each p,q with 1 <p < q < m, add a new vertex zj
and join this vertex to all vertices in I, and to all vertices in I,. Finally,

construct a complete subgraph on the (7) new vertices 23, 1 <p < ¢ < m.
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It is not difficult to verify that G,, x is a diameter two graph on mk + ('.:,‘)
vertices. Since at most one vertex of the complete subgraph can be in an
independent dominating set of Gk, We see that i(Gmx) = 1 + (m — 2)k.
If we now consider that ratio of i(Gm k) to |V(Gm k)|, we see that

HGmyx) _ 2km—2k+1)  k(2m—4)+1
[V(Gmy)l ~ m2—m+2mk  k(2m)+m2 —m’

and thus
lim i(Gm,k) _ m — 2

i.e., for k sufficiently large, i(Gm) ~ (2=2) [V(Gm k)l
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