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Abstract

In this paper we consider a variation of the classical Turédn-type
extremal problems. Let S be an n-term graphical sequence, and
a(S) be the sum of the terms in S. Let H be a graph. The problem
is to determine the smallest even ! such that any n-term graphical
sequence S having ¢(S) > | has a realization containing H as a
subgraph. Denote this value I by o(H, n). We show 0(C2m41, 1) =
m(2n—m—1)+2, form > 3, n 2 3m; 0(Cam42, n) =m(2n-m—
1)+4,form >3, n>5m—2.
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1 Introduction

If S = (dy,dy, ..., dy) is a sequence of non-negative integers, then it is called
graphical if there is a simple graph G of order n, whose degree sequence
(d(v1), d(v2), ..., d(vy)) is precisely S. If G is such a graph then G is said to
realize S or be a realization of S. A graphical sequence S is potentially H
graphical if there is a realization of S containing H as a subgraph, while S
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is forcibly H graphical if every realization of S contains H as a subgraph.
Let o(S) = d(v1) + d(v2) + ... + d(v,), and [z] denote the largest integer
less than or equal to z. If G and G, are graphs, then GUG) is the disjoint
union of G and G1. If G = G, we abbreviate G U G; as 2G. Let Kj,

and Cj denote a complete graph on k vertices, and a cycle on k vertices,
respectively.

Given a graph H, what is the maximum number of edges of a graph
with n vertices not containing H as a subgraph? This number is denoted
ez(n, H), and is known as the Turdn number. This problem was proposed
for H = C4 by Erdés [2] in 1938 and in general by Turén [11]. In terms of
graphic sequences, the number 2ez(n, H) + 2 is the minimum even integer
I such that every n-term graphical sequence S with o(S) > [ is forcibly H
graphical. Here we consider the following variant: determine the minimum
even integer ! such that every n-term graphical sequence S with o(S) > I
is potentially H graphical. We denote this minimum ! by o(H,n). Erdés,
Jacobson and Lehel [3] showed that o(Kj,n) > (k—2)(2n—k+1)+2 and
conjectured that equality holds. They proved that if S does not contain
zero terms, this conjecture is true for ¥ = 3, n > 6. The conjecture is
confirmed in [4],[7],(8],[9] and [10].

Gould, Jacobson and Lehel [4] also proved that o(pK2,n) = (p—1)(2n— .
2) + 2 for p > 2; 0(Cy,n) = 2[3872] for n > 4. Lai [5, 6] proved that
o(Cs,n) = dn—4forn > 5, and 6(Cs,n) = dn—2forn > 7, 6(Coms1,n) =
m(2n—m—1)+2, for n > 2m+1,m > 2, 0(Com42,n) > m(2n—m—1)+4,
for n > 2m +2,m > 2, o(K; — e,n) = 2[252] for n > 7. In this paper
we prove that 0(Comy1,n) = m(2n —m — 1)+ 2, for n > 3m, m > 3;
0(Cams2,n)=m(2n—m—1)+4forn>5m—2, m > 3.

2 Main results

Theorem 1. Let £ > 4. Let S be a potentially Ci-graphical n-term
sequence. If there exists z ¢ Ck, w € C such that d(z) > [£]+1, d(w) > 3.
Then S has a realization containing a Cg4.1-

Assume Cf is wiws - - - wrwy. Let wiy¢ = w;. We first give the following
three results.

Lemma (a) For any = ¢ Cy, if there is wy, w41 such that w,z, w1z €
E(G), then G contains a Ci4+1 : WiW2 -+ WrTWr41 * * * WrW].

Lemma(b) For any z,y ¢ Ck,zy € E(G), if there is w, such that w,.z €
E(G), w,y ¢ E(G), then S has a realization containing a Cx1. (We see the
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edge wy+1Z is not in G or a C41 would exist, but then the edge interchange
which removes the edges wyw,+1 and zy and inserts the edges w,+3z and
w,y produces a realization containing a Cxy1 : w Wy« - - WpZWryy + * - WrWy )

Lemma(c) For any z,y ¢ Ck, zy € E(G), if there is wy, w42 such
that wyz, wri2z € E(G), then S has a realization containing a Cg4;.
(If wryoy ¢ E(G), then by Lemma(b), S has a realization containing a
Ck+1. Otherwise, wy40y € E(G) and so G contains a Cx4 : wiws -« - Wy TY
Wy 42Wri3 - - - WeW1)

Proof of theorem 1. Assume every realization of S does not contain
a Ci41. By Lemma(a), = is adjacent to at most [-§] vertices of Ck. Since
d(z) > (%] + 1 there exists z; ¢ Ck such that zz; € E(G). Thus, by
Lemma(c), z is adjacent to at most [£) vertices of Cx. Note that [£] < [£]-1
since k > 4. Hence there is z2 ¢ Ck, Z2 # =1, such that 222 € E(G).

Case 1. Suppose that there is w; € C) such that wiz € E(G). By
Lemmal(b), w;z),w;z; € E(G). By Lemma(a), w;it1Z, w4121, Wit122 ¢
E(G). By Lemma(c) wiyoZ, witaZi, Wi+2Z2 ¢ E(G). Then the edge in-
terchange which removes the edges wii1wi+2 and zz2 and inserts the
edges wi 2z and w;y172 produces a realization containing a Ciy1 @ wiwe
s WT) TWi42Wies -+ - Wirwy. This is a contradiction.

Case 2. Suppose for any w; € Ck,w;z ¢ E(G). Since d(z) > (] +
1 > 241 = 3, hence there is x3 ¢ Ck, z3 # %1, T3 # T2 such that
zz3 € E(G). By Lemma(b), w;z1, wiz2,w;z3 ¢ E(G). Since there is
w € Cy such that d(w) > 3, then there is z4 such that wzq ¢ E(Ck),
wzy € E(G). By Lemma(b), z4 is not one of z1,22,z3. If z3x4 € E(G),
then by Lemma(b) wzs € E(G) and thus, by Lemma(b) as well, so is
wz € E(G). This is a contradiction. Thus z3x4 ¢ E(G). Then the edge
interchange which removes the edges wz4 and zz3 and inserts the edges wx
and z3z4 produces a realization containing the edge wz. By Case 1, S has
a realization containing a Ck+;. This is a contradiction.

Theorem 2. Let m > 3. Let § be an n-term graphical sequence.
Suppose S satisfies the following two conditions: (i) there is a realization G
of S containing a Cam41, such that for all z,y & Coms1, d(z) =d(y) =m
and zy ¢ E(G), (ii) there is no realization of S containing a Com+2. Then
o(S)<m(2n—m—-1)+2.

Proof. Let Copy1 be wiwy - Woms1wy, and wom414i = wi. Since
every realization of S does not contain a Capmy2, by Lemma(a), for any
v ¢ Came1, there is not wy,wry1 such that w,v,w,1v € E(G). Since
for any z,y ¢ Com+1, 2y ¢ E(G), d(z) = d(y) = m, then z,y are
all adjacent to m vertices of Com+1. Assume without loss of generality
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W1T, W4T, W6T, * - , WomE € E(G).

Case 1. Suppose there is y ¢ Comq1,¥ # z such that there is a
w; € Com41 such that wiz € E(G), w;y ¢ E(G).

Subcase 1. Suppose woy € E(G). By Lemma(a), w3y, w1y ¢ E(G)
and at most one vertex of w4, ws is adjacent to y. If wey € E(G), then
G contains a Com42 | WeWr * - - Wom4+1 W1 TWaWaWaywe. This is a contra-
diction, thus wey ¢ E(G). Next, if wyy € E(G), then by Lemma(a),
wgy, wey ¢ E(G). Since y is adjacent to m vertices of Com41, Lemma(a)
forces woy, wn1y, -+ , Wam41y € E(G). Then G contains a Com42 * Wom41¥
WaW1TW4Ws - - - WamWam+1. This is a contradiction, thus wry ¢ E(G). Fi-
nally, suppose wey, w7y ¢ E(G). Then, by Lemma(a), y at most is adjacent
to m — 1 vertices of Comm4; - a contradiction.

Subcase 2. Suppose w3y € E(G). By a similar method as Subcase 1
we can give a contradiction.

Subcase 3. Suppose way, w3y ¢ E(G). Lemma(a) forces y to be ad-
jacent to the following m vertices of Copmq1: wy,wq,we, -+ ,Wom. This
contradicts the supposition of case 1.

Case 2. Suppose for any y ¢ Com+1,y # %, for any w; € Comya, if
w;z € E(G), then w;y € E(G). Then w1y, way, wey, - ,Womy € E(G).

Subcase 1. Suppose wows € E(G). Then G contains a Comyz :
WsWoW3WAT Wi Wam4+1Wam « - - Ws. This is a contradiction.

Subcase 2. Suppose wopm+1we € E(G). Then G contains a Copmy2 :
WolWom4+1W1TWomWam—1 -+ - W2. This is a contradiction.

Subcase 3. Suppose there is an (3 < i < m — 1) such that wows;41 €
E(G) Then G contains a Copmy2 @ Woi41WaW3W4 * * * Woi—2ZW1 W+ 1Woym = * *
Wai42YWo; Woit+1. This is a contradiction.

Subcase 4. Suppose wsws € E(G). Then G contains a Copmyz :
W3WsW4TWe W * - * Wom+1W1Wow3. This is a contradiction.

Subcase 5. Suppose wawams+1 € E(G). Then G contains & Capmy2 :
Wom+1WaWoW TWaWs - * - WamWam+1. Lhis is a contradiction.

Subcase 6. Suppose there is an (3 < i < m — 1) such that wawe;;) €
E(G). Then G contains a Cop12 ¢ Wejt1W3WowW) TWAWS * * * Wi YWamWam—1
+++woi+1. This is a contradiction.

Subcase 7. Suppose thereis a j(2 < j < m—1) such that woj1Wom+1 €
E(G) Then G contains a sz+2 W41 Wom41W2om * ¢t W24 2T W1 We - -



w2j41. This is a contradiction.

Subcase 8. Suppose there is a j and an i(2 < j < i < m — 1) such that
W2541W2i41 c E(G) Then G contains a sz+2 ¢ W1 W1 W4 ¢ Wa542
TW2i42 W23 **° Wanmt1W1W2 -+ - W2;W2j41. This is a contradiction.

Subcase 9. Suppose for any i( 2 < ¢ < ™), wowait1, Wawair1 ¢ E(G),
and for any i,3(2 < j < i < m), waj41w2i41 € E(G).

Then

d(ws), d(ws) <m+1
d(w5)i d(w7)’ Tty d(w2m+1) <m
Since for any y ¢ Com+1, d(y) = m. Hence

O'(S) <m(n-2m— 1) +d(w2)+d(w3) + d(ws) + d(wr)

+ -+ + d(wam+1) + d(w1) + d(ws) + d(ws) + - - - + d(wam)
<mn-2m-1)+2m+1)+mm—-1)+(n—1)m
=n-2m-14+24+m—-1+n—-1)m+2
=m(2n—-m—1)+2.

Theorem 3. Let m > 2. If k = 2m + 1, n > 3m, then o(Ck,n) =
m(2n —m —1) +2; if k = 2m + 2,n > 3m, then o(Ck,n) < m(2n—m —
1)+2m+2.

Proof. By (5] theorem 2 and 3, 0(Cs,n) =dn—4 for n > 5,0(Cs,n) =
4n — 2 for n > 7. Clearly 0(Cs,6) = 24. Hence for m = 2, if k =
2m+1,n > 3m, then o(C,n) S m(2n—m—1)+2;if k = 2m+2,n > 3m,
then o(C,n) <m(2n—m—1)+2m+2.

t(2n—t—1)+2 and if k = 2¢t+2,n > 3¢, then o(Ck, n) < t(2n—t—1)+2t+2.

Suppose for t, 2 < t < m, if £ = 2t + 1,n > 3¢, then o(Ck,n) <

Case 1. If S is an n-term graphical sequence, with k = 2m +1,n >
3m,o(S) >2m@2n—m —1)+2. Forn=3m, o(S) 2 mém-m—-1)+2=
5m? —m + 2 = 2[(*;%) + (""5*?) + 1), which by [1] (chapter III, theorem
5.9) implies that all realizations of S contain a Cj. Now assume that S;
is a p-term graphical sequence, 3m < p < n, 6(S1) 2 m(2p—m - 1) + 2
and that there is a realization of S containing a Cx. We will show that if
S = (dy,da,...,dp41) is a p + 1-term graphical sequence with realization G
and o(S) > m(2(p+1) — m — 1) + 2, then $ has a realization containing a
Comt1. Assume dy > da > --- > dy, > 0. Let §' be the degree sequence of
G—vp41 and suppose dp 41 < m. Then o(S') > m(2(p+1)-m—1)4+2-2m =
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m(2p — m — 1) + 2. Therefore, by our assumption, S’ has a realization
containing a Ci. Hence S has a realization containing a C. Thus, we
may assume that dy41 > m + 1. Since ¢(S) > m(2(p+1)—m—-1)+2>
(m—1)(2(p+1) = (m — 1) — 1) + 2(m — 1) + 2, by our assumption, there
is a realization of S containing a Cy,,,. Which by theorem 1 implies that S
has a realization containing a Cyppq .

Case 2. If k=2m+2, n> 3m, S is an n-term graphical sequence with
0(S) > m(2n — m — 1) 4+ 2m + 2 then we can prove, via a similar method
as Case 1, that S has a realization containing a Caom42 -

Hence 6(Com+1,n) < m(2n —m — 1) + 2, 0(Come2,n) < m(2n — m —
1) +2m+2.

By (5], theorem 1 (Theorem A below), for m > 2,k = 2m+1,n > 2m+
1,0(Cx,n) > m(2n —m — 1) + 2. Hence, for m > 2, if k = 2m+1,n > 3m,
then o(Cx,n) =m(2n —m —1) 4 2.

Lemma 4. Ifm > 3,n = 3m +t(t = 0,1,2,---,2m — 2), then
0(Com+2,n) < m(2n —m —1) +2m + 2 — 2[&].

Proof. By theorem 3, Lemma 4 holds for ¢t = 0,1. Now assume that
Lemma 4 holds for all t — 1,(1 < ¢t < 2m — 2). We now prove that Lemma
holds for £.

Let S = (d1,da, ..., dn) be an n-term graphical sequence (n = 3m + t),
G a realization of S and o(S) > m(2n —m — 1) + 2m + 2 — 2[£]. Assume
dy>2dy>--->d, 20

Let S be the degree sequence of G — vp. If d, < m — 1, then o(S’) >
m(2n—m~1)+2m+2-2[{]-2(m—1) > m(2(n-1)~m—1)+2m+2-2[t51].
By induction suppose, S’ has a realization containing a Cop, 2. Hence S has
a realization containing a Com42. Thus, we may assume that d,, > m. Since
t < 2m—2, one has 0(S) > m(2n—m—1)+2m+2-2[4] > m(2n—m—1)+2.
This implies, by theorem 3, that S has a realization containing a Cam1.
Let w € Comqi, 7,y € Cam41 and assume that every realization of S does
not contain a Comiz. If d(z) > m + 1, then since d(w) > d, > 3, by
theorem 1, S has a realization containing a Cap+2. This is a contradiction.
Hence for any z ¢ Commy1,d(x) = m.

If for any z,y ¢ Cam+1, 2y ¢ E(G), then, by theorem 2, o(S) < m(2n—
m—1)+2 <m(2n—m—1)+2m+2—2[£] < o(S). This is a contradiction.
Thus, we may assume that there is =,y ¢ Copm+1 such that zy € E(G). Let
S’ be degree sequence of G — {z,y}. Since d(z) = d(y) = m, then o(S") >
m(2n—m—1)+2m+2-2[£]-4m+2 = m(2(n—2)—m—1)+2m+2-2[2].
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By induction suppose, S’ has a realization containing a Copmy2. Hence S
has a realization containing a Czm+2. This is a contradiction.

Therefore ¢(Com+2,n) < m(2n —m — 1) + 2m + 2 — 2[£].
Theorem 5. 0(Comy2,n) =m(2n—m—1)+4, form > 3,n > 5m —2.

Proof. By Lemma 4, for m > 3,n = 5m — 2,0(Com+2,n) < m(2n —
m—1)+2m+2-232=2) =m(2n -m—1) +4.

Suppose for p, ( 5m — 2 < p < n),0(Comt2, p) EM2p-m—1) +4.
Let S = (d,ds,...,d,) be an n-term graphical sequence with realization G
and 6(S) 2 m(2n —m — 1)+ 4. Assumed; >dy >---d, > 0.

If dn < m, then consider the degree sequence, S’, formed by G — v,.
Then o(S') > m(2n—m—1)+4-2m =m(2(n — 1) —m — 1) + 4. By the
induction hypothesis, S’ has a realization containing a Cam42. Hence S has
a realization containing a Cop42. Thus, we may assume that d, > m + 1.
Since o(S) > m(2n — m — 1) + 4 > m(2n — m — 1) + 2, theorem 3 implies
that S has a realization containing a Capmy1. Therefore, by theorem 1, S
has a realization containing a Cop42-

Therefore 0(Com42,n) < m(2n —m — 1) + 4.

By [5] theorem 1 (Theorem A below), for m > 2,n > 2m+2,0(Comy42,n)
> m(2n —m — 1) + 4. Hence 0(Com42,n) = m(2n — m — 1) + 4 for
m2>3,n>5n—2.

For completeness, we give a short proofs of the lower bounds for ¢(Com+1,
n) and 0(Capm+2,n) as following:

Theorem A. 0(Com+1,n) > m(2n—m—1)+2,forn > 2m+1,m > 2,
0(Comt2,m) 2 m(2n —m —1) + 4, for n > 2m +2,m > 2.

Proof. By noting that G = K,, + K,,_,, gives a uniquely realiz-
able degree sequence and G clearly does not contain Com41, H = Ky +
(Kn—m—2J K?2) gives a uniquely realizable degree sequence and H clearly
does not contain Cy,,42, this result can easily be seen.
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