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ABSTRACT. A (k,d)-total coloring (k,d € N, k > 2d) of a graph G is
an assignment ¢ of colors {0,1,...,k — 1} to the vertices and edges
of G such that d < |c(z;) ~ c(z;)| £ k — d whenever z; and z; are
two adjacent edges, two adjacent vertices or an edge incident to a
vertex. The circular total chromatic number x%(G) is defined by
x2(G) = inf{k/d : G has a (k, d)-total coloring}. It was proved that
x"(G) -1 < x¥(G) < x""(G) — where x"(G) is the total chromatic
number of G — with equality for all type-1 graphs and most of the
so far considered type-2 graphs. We determine an infinite class of
graphs G such that x7(G) < x"(G) and we list all graphs of order
< 7 with this property.

1. INTRODUCTION

Given positive integers k and d with k > 2d, a (k, d)-total coloring of a graph
G is an assignment ¢ of colors {0,1,...,k — 1} to the vertices and edges
— together called the elements — of G such that d < [c(z:i) — ¢(z;)| <
k — d for every two neighbored elements z; and z;. Two elements are
called neighbored if they are either adjacent or incident. The circular total
chromatic number x7(G) of G is defined to be the infimum of fractions k/d
such that G admits a (k, d)-total coloring.

Since a (k,1)-total coloring is an ordinary k-total coloring, the circular
total chromatic number can be regarded as a refinement of the total chro-
matic number. For the total chromatic number x/(G) it is conjectured that
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X"(G) < A(G) +2 [2, 18]. Since x"(G) > A(G) + 1 is obvious, the truth
of this so-called total coloring conjecture would imply that x”(G) attains
one of two values for every graph G. A graph G is called a type-1 graph if
x"(G) = A(G) + 1 and a type-2 graph if x""(G) = A(G) + 2, respectively.

Circular vertex colorings were introduced by Vince. He used the name

star chromatic number instead of circular chromatic number (see, e. g.,
(5, 17, 20] for results).

First properties and some exact values for the circular total chromatic num-
ber can be found in [10]. For example, it was proved that every (k, d)-total
colorable graph has a (k', d')-total coloring whenever k'/d’ > k/d. More-
over, the infimum in the definition of the circular total chromatic number
can be replaced by the minimum and the number k of colors can be bounded
from above by the number of elements of the graph. It also holds that
x"(G) — 1 < x¥(G) < x"(G) which implies x"(G) = [x?(G)]. Moreover,
if G is type 1 then x2(G) = x"(G). Therefore, the task is to determine
x2(G) for type-2 graphs G. In [10] the circular total chromatic numbers
are determined for cycles, complete graphs and some classes of complete
multipartite graphs. It turns out that among these graphs x”(G) < x"(G)
only holds for cycles C, with p = 3n+ 1 or p = 3n + 2. Therefore, in [10]
it was asked to determine further graphs or infinite classes of graphs such
that their circular total chromatic number is less than their total chromatic
number.

In this note, we list all graphs of order < 7 with this property. Moreover, we
determine an infinite class of graphs G such that xZ(G) < x"(G), namely
a class of cubic circulant graphs.

2. SMALL GRAPHS

A graph of type 2 is called critical with respect to total coloring if dele-
tion of any edge results in a type-1 subgraph. It is easy to see that
each type-2 graph G of order p < 7 contains a critical subgraph H with
A(H) = A(G) since x""(G) < A(G) + 2 is known for A(G) < 5 [3,13-16]
and for A(G) > 3|V(G)|/4 [12]. Thus, all type-2 graphs of order p can be
determined by inserting additional vertices and edges in all critical graphs
of order < p having the same maximum degree A in such a way that A
remains unchanged. A list of all critical graphs of order < 7 can be found
in [11).

By this method, the 17 graphs shown in Figure 1 are determined to be a
complete list of type-2 graphs with order p < 7.



FIGURE 1. Circular total chromatic number of type-2 graphs with p < 7.

To calculate the circular total chromatic number of these graphs we used
a backtracking algorithm which determines the circular chromatic number
of a given graph [19]. Considering the total graph T(G) of the graphs
G = Gy, ...,Gy7of Figure 1 the algorithm determines x(G;),i =1,...,17.

Theorem 1. There are ezactly 8 connected graphs G with order |V (G)| < 7

such that x7(G) < x"(G) (see graphs G4, Gs, Gs, G1o,G11,G12,G13 and
G4 in Figure 1).
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3. CIRCULANT GRAPHS

If a;, ¢ = 1,...,r, are positive integers such that a; < a3 < ... <
a, < p/2 then the circulant graph Cy(ay,...,q,) is defined having vertices
V1,9,...,v and edges v;u; whenever there exists an index t, 1 <t<r,

such that i — j = +a, (modulo p).

Circulant graphs are 2r-regular if a, < p/2 and (2r —1)-regular if a, = r/2.
We consider cubic circulant graphs which implies that r = 2, p is even and
a =a, az = p/2.

In the following we show that all cubic circulant graphs Cp(a,p/2) are
isomorphic to a number of copies of either Cy(1,p/2) or Cr(2,p/2).

For this characterization we use the following lemmas.

Lemma 1 ([6], see also [4]). If! is the greatest common divisor of ay, ...,
ar, p then the circulant graph Cp(ay, ..., a,) is isomorphic tol copies of the

graph Cpi(ar/l,.. ., a. /).

Lemma 2 ([1, 9]). Let n,m and p be non-negative integers with p > 1,
m < p, and n = m modulo p). Define (n), = m if m < p/2 and (n), =
p— m otherwise. Let b < p/2 be an integer such that b and p are coprime.
Then Cyp(a1,...,a,) is isomorphic to Cp((a1b)p, ..., (arb)p).

With this, we can characterize cubic circulant graphs (see also [9}; a similar
result has been proved just recently in [8]).

Theorem 2. Ifl is the greatest common divisor of a and p/2 and a = Im,
p/2 =In, then Cy(a,p/2) is isomorphic to l copies of Can(1,n) if m is odd
or of Can(2,n) if m is even.

Proof. Lemma 1 implies Cp(a,p/2) = ICan(m,n). If m is odd then
Can(1l,n) = Can(m,(mn)2n) = Can(m,n) which follows from Lemma 2
since m and 2n are coprime and m < n.

If m is even, say m = 2's where s and t are positive integers and s is odd,
then Cp,(2%, 1) = C2n((2°5)2n, 1) = C2n(m, n) by Lemma 2 since s and 2n
are coprime. If t = 1 we are done. If ¢t > 1 then let £ = n + 2!, Since n
and therefore z is odd which implies that z and 2n are coprime we obtain
Can(2,n) = Con((22)2n, 1) = Con((2n + 2)24, n) = C2n (2%, n). Therefore,
Can(m,n) = Cya(2,n). a

4. CUBIC CIRCULANT GRAPHS

In the following lemma the total chromatic number of cubic circulant graphs
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Lemma 3. Let | be the greatest common divisor of a and p/2, a = Im,
p/2 =In. Then G = Cp(a,p/2) is a type-1 graph if and only if m is even
and G is not isomorphic to IC1o(2,5). Otherwise, G is a type-2 graph.

For a proof of this lemma see [7] or [9].

For every type-1 graph its circular total chromatic number coincides with
its total chromatic number (see [10]). We use Lemma 3 to determine

upper bounds for the circular total chromatic number of type-2 graphs
G = Cy(a,p/2).

Theorem 3. Every cubic circulant type-2 graph Cyin (Im,in), where m and
n are coprime and n > 4, is (9, 2)-total colorable.

Proof. Let G = Cyun(lm,In) be a cubic circulant type-2 graph with co-
prime m and n and n > 4. Lemma 3 implies that either m is odd or
G =1C10(2,5). In the first case, G = ICy,(1,n) by Theorem 2. Therefore,
to prove Theorem 3 it suffices to show that every graph Cs,(1,n) with
n > 4 as well as Cy0(2, 5) admits a (9, 2)-total coloring.

In order to construct such a coloring for C2,(1, n) we draw the graph such
that vy, v, ...,vs, are the vertices of a regular 2n-gon in clockwise order
and vertices v; and v+, are joined by a diagonal.

According to the residue class of n modulo 3 we distinguish three cases to
construct a (9, 2)-total coloring ¢ of Caa(1,n).

065(1,35)
n1 Vg
l 3
V4
V6+n 6 495
0

Us¢n O

4
V44n

1
03+n 5
V24n

FIGURE 2. (9,2)-total coloring of Cs,(1, 3s).

If n = 3s, s > 2, then we color ¢(v1) = 1, ¢(viv2) = c(v24n) = 5,
c(v2) = c(va4nvsn) = 3, ¢(v2v3) = c(va4n) = 1, ¢(vs) = c(¥34+nva+n) = 8,
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¢(vava) = c(vasn) = 4, c(va) = c(Vagn¥s4n) = 6, c(vavs) = c(vs4n) =
0 and ¢(vs) = c(vs4nVe4n) = 4, the 2(n —3) — 1 = 6s — 7 elements
V56, VU, - - -, Vi4+nV24n Successively with colors 7,0,5,7,0,5,...,7,0 and the
2(n—4)—2 = 65— 10 elements Ve4n, V64nV74n; - - -, Vani successively with
colors 6,8,4,6,8,4,...,6,8. The diagonals are colored by c(v1v14n) = 3,
¢(v2v24n) = 7, c(v3va4n) = 6, and c(vivipn) = 2 if i > 4 (see Figure 2). It
can be easily checked that this is a (9, 2)-total coloring of Cs,(1, 3s).

If n =3s+1 or n = 35+2 one can find similar constructions for (9, 2)-total
colorings of Ca4(1,n) as shown in Figure 3.

Cs,+2(1,33+ 1) ng+4(l,3s+ 2)

1

V2
7 3

0
Vi4n

V24n

FIGURE 3. (9,2)-total colorings of Ce,4+2(1,35+ 1) and Ce,44(1, 35 + 2).

Figure 4 provides a (13, 3)-total coloring of C10(2,5). This concludes the
proof since 13/3 < 9/2.

11

FIGURE 4. (13, 3)-total coloring of C1¢(2,5).

70



Theorem 3 yields another infinite class of graphs G such that their total
chromatic number exceeds their circular total chromatic number.

The condition n > 4 in Theorem 3 is tight since the graph G = [C2,(1,n)
is isomorphic to ! copies of K4 if n = 2 and to ! copies of K33 if n = 3. For
those graphs x”(G) = x"'(G) = 5 (see [10]).

Theorem 3 states that x%(G) < 9/2 for every type-2 graph Con(Im,in)
with m,n coprime and n > 4. Using the above mentioned algorithm
we determined the exact values of xV(G) for the three smallest cases:
xe (Cs(1,4)) = x¢ (C10(1,5)) = 9/2, x¢(Cho(2,5)) = 13/3.

It would be an interesting task to determine further classes of graphs G
such that x?(G) < x""(G).
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