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) Abstract
A union closed (UC) family A is a finite family of sets such that the
union of any two sets in A is also in A. Peter Frank] conjectured in 1979,
that for every union closed family A, there exists some x contained in at
least half the members of A. [n this paper, we show that if a UC farnily
A fails the conjecture, then no element can appear in more than two of
its 3-sets, and so the number of 3-sets in A can be no more than 2n/3.

1 Introduction

The Frankl conjecture (or union closed sets conjecture) was stated by Peter
Frankl in 1979: given a finite family of finite sets, closed under unions (a UC
family), at least one element must be contained in at least half the members of
the family. This apparently simple conjecture is remarkably resistant to proof,
though many partial results have been found.

It is easy to see that a UC family which has any sets of cardinality one or
two, satisfies the conjecture. In Section 2, we use a theorem of Bjorn Poonen
[1], together with a technique described in [3] to show that if a UC family A
with UA = {1,2,...,n} fails the conjecture, then A can contain no more than
2n/3 sets of cardinality three.

The general outline of the proof is simple, though the details are rather
complicated. We first prove that if a UC family A contains the 3-sets {1,2, 3},
{1,4,5}, {1,6,7}, then one of the elements 1,2, 3,4,5,6,7 must appear in at
least half the members of A.

In (3], we proved that il T = {{1,a,b}, {1,c,d}, {1,e, f}} and |{a, b, ¢, d, ¢, f}]
< 6, then for every UC family containing T, one of the elements 1,a,b, ¢, d, ¢, f
must appear in at least hall the members of A.

It follows that if any UC family contains three 3-sets with a common element,
then one of the elements of those three 3-sets is contained in at least hall the
members of A.
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_From this, if a UC family .A fails the conjecture, then no element can appear
in more than two of its 3-sets; then the number of 3-sets in A can be no more
than 2n/3.

In Section 3, we prove a result which might lead to a proof that if a UC family
A fails the conjecture, then the number of 3-sets in A can be no more than n/2.
This proof could be completed by the successful verification of results like those
of Section 2, for finitely many UC families involving 8, 9, or 10 elements.

For simplicity we use the notation e.g. 123 for {1,2, 3}; and if T is a collection
of sets, then < T > represents the UC family generated by T. Throughout, B
is the UC family generated by 123, 145, 167.

2 B is an FC family.

In this section, we prove that il a UC family A contains the three 3-scis
{123,145,167}, then one of 1,2, 3,4, 5,6, 7 is contained in al least hall the mem-
bers of A. The proof uses a theorem given by Bjorn Poonen in [1]. To state
this theorem, we require some definitions.

Definition 2.1 N;(A) is the number of members of A which conlain the ele-
ment t.

Definition 2.2 If A and B are UC farmilies, then AWB = {XUY : X € A, Y €
B}.

Definition 2.3 An FC family B is a UC family having the properly that for
every UC family A containing B, il is true that one of the elements of UB is in
at least helf the members of A.

Theorem 2.4 (Poonen) B C P(n) is an IFC family if and only if there caast
non-negalive real numbers ¢y, ¢y, - -, &, with surn 1 such thal for cuery UC furnily
A € P(n) satisfying AWBC A,

Zt&Ne(A) 2 |Al/2.

i=1
In this section, we prove that the UC family
B = {123, 145,167, 1234, 12345, 12367, 14567, 1234567}

is an FC family. Using the method described in {3], we find that suitable numbers
carecy=1/4,and¢; =1/8for2<i<7. '
We firsL give sorne notation.

S ={1,2,3,4,5,6,7}, and P(S) is the power set of S.
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For X # 0 and X € P(S), put f(X) = 3, ci and h(X) = f(X) - 1/2.
Put (@) =0, and h(0) = —-1/2.

For a collection T of subsets, A(T) = 3_ x4 h(X).

For a UC family A in P(S), E; is the collection of sets in A4 which have
cardinality <.

Note that 37", ¢;N;(A) — JA|/2 = h(A), so that in terms of the function k,
the condition of Poonen’s theorem is, that h(A) > 0 for every A C P(S) such
that AWB C A.

Throughout, we consider only UC families A C P(S) such that AWB C A.

Our procedure may be briefly described as follows: First, partition the sub-
sets of P(S) in orbits of the automorphism group of B. All the subsets in one
orbit have the same h-value. Then we consider the sums &(T') for each collection
T of subsets of A having Lthe same (plus or minus) h-value. Finally, we show
that the sum of all these is non-negative.

The automorphism group of B consists of all permutations which permute
the pairs 23, 45, 67 among themselves. This includes, for example, the transpo-
sitions (23), (45), (67), and “interlaced” cycles such as (2,4,3,5), or (2:4,6,3,5,7).

Given A, each subsel I is partitioned into sets /%5 by intersection with the
orbits of the automorphism group. These sets, together with their k-values, are
listed below, excluding 3-sets containing 1, and 4-sets which do not contain 1
(for such sets X, h{X) = 0, so Lhey contribute nothing one way or the other, 1o
h(A)).

Eo C {0}; h(Ep) = (—1/2)| Lol
En C {1} h(En) = (—1/4)|En]
Eyp C {2r 3,4,5,6, 7}; h(El2) = (_3/8)“312'

Ex C {12,13,14,15,16,17}; h(En) = (=1/8)|Fa |

Ez2 C {23,45,67}; h(liz) = (-1/4)| 52|
Ep3 C {24, 25,26, 27,34, 35, 36,37,46,47,56,57); h(Lop) = (= 1/1)| L)

E3, C {abcla,b,c # 1;ab € Ea2}; h(Ea1) = (—1/8)|E3|

Es; C {abcla,b,c # 1;ab,ac,bc € Ex}; h(Es) = (—1/8)| Esa|
Eqy C {labclab € Exn}; h(E£4)) = (1/8)|Eay|

Ey2 C {labclab, ac,bc & Lay}; h(Eg2) = (1/8)|£42]

Esy C {labed|ab, cd € [Fa2}; h(£5)) = (1/4)|Es1 |

Esa C {labed|ab € By, cd € Ena}; h(fs2) = (1/1)| Esql
Es3 C {S - {1,4}}; h(f253) = (1/8)| Esal

Egy C{S —{i}} (i > 1); h{li61) = (3/8)|/561]

Lgy € {S = {1}}; h(Le2) = (1/1)| g2l
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Er = {1234567}; h(E7) = (1/2)|E7] = 1/2

In absolute value, there are just four h-values: 1/2,1/4,1/8,3/8, and we
have four sums, listed below.

S1 = (1/4)[| Ee2| + |Es1| + | Es2| — | Eni| — | E22| — | Eas]
Sz = (1/8)[|Ear| + |Ea2| + | Esal — | E2i| — |Eai| = | Esal)
S3 = (3/8)[|Ee1| — | E12]]

Sa = (1/2){| E7| — | Eol)

and we have h(A) =S| + Sy + S3 + S,

Since we are assuming that Aw B C A, there are many relations among Lhe
Ei;j. The next lemmas describe some of these relations.

For the first lemma, we use the [ollowing notation. The automorphism group
of B contains the permutation o = (23)(45)(67), a product of transpositions.

For each X € A, put X* = a(X). For example, if X = 2, then X* =2* = 3.

We state the first lemma only for representatives under the automorphism
group of B.

Lemma 2.5 (a) If2€ A,orif12 € A, then $S-2" =S5S-3¢€ A, and
S—1{6,7},5 - {4,5},5 — {4,5,6,7} € A, and S — {2,4,5},5 - {2°,6,7} € A.

(b) If24 € A, then S—27,5—4*,S—{2*,4°} € A and also S—{d°,6,7},5 -
{2°,6,7},S - {67} € A.

(c) If234 € A, then S — 4*,5 — {4°,6,7},S - {6,7} € A.

(d) If 246 € A, then A contains all of the following sets:
§-2*,8-4",5-6*,5—-{4°,6*},5 - {2*,6"},5 - {2*,4*}

Proof: We are assuming AW B C A. All the results above follow [rorn this.
We do (a) as an example: Suppose 2 € A. The members of B are 123, 145, 167,
12345, 12367, 14567, 1234567; any one of these that contains 3 also conlains 2
and vice versa; only 145, 167, 14567 do not already contain 2, and so we gt
1245, 1267, 124567 (without 3, and not in B), and 123, 12345, 12367, 1231567
(with 3, and in B). Since all members of B contain 1, we gel the same list of
sets il 12 € A.

,From this lemma, we sec that for example, there is an injection [rom [,
to Eg,;, which implies that |Eg;| — |12} > 0; and similarly for some of the other
E;;. The next lemma lists these injections.

Lemma 2.6 There are injeclions from lLi; Lo [ys for the following sels:
(1) Ex2 — Eg;
(2) B2y — Ee:
(3) Eya — Eg
(4) 223 — Es2
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(5) BEay — En
(6) Eaz — Es2

There are other relations also among the E;;; the next lemma lists the most
useful of these.

Lemma 2.7 (i) If 1€ A, or if |Eqy| > 4, then Eay —» Eyo.

(i) If |[En| =3 then |Eqo|—|Esz] 2> =1; if | Eay| = 2 then |Eaz| —|E32] 2 =2,
and if |Eoy| = 1 then |Esp] — | E32| > —4.

(i) |Eq1| 22 max(|Ey2l, | En|)

(i) If |Es1]| 2 9, then |[Is3] > 5, if |log| > 7, then |lgs] > 4, and if
[£a1] 2 5, then |F5a| > 1.

(v) If |E32] 2 8, then |Ess| 2 1; if |loan| = 5, then |l5g3] > 3; of |foaa| = 6,
then |Es3| 2 4; and if |y > 7, then |[25a] = 6.

Proof: (i) Every possible member of £3; contains just one of 2, 3; one of 4,
5; and one of 6, 7. Suppose e.g. 246 is in A, Then il any ol 1,12, 14, 16 is also
in A, then 1246 € A also. If |Ey ] > 4, then 23, must contain either both of
12, 13 or both or 14, 15, or both of 16,17, and so for every member X of /94,
one of the pairs in E2; has a common element with X, so that {1} U X € [y,

(ii) Every possible member ol E3; contains just one of 2, 3; one of 4 , 5; and
one of 6, 7. Then given any three 2-sets 1a, 1b, 1¢, there is at most one member
of E3 which does not contain one of a, b, c. Given 1a, 1b, there are at most two
members of E3zs which do not contain one of a,b, and given just la, Lhere are
at most four members of 3, which do not contain a.

(iii) follows from Lemma 2.5.

(iv) We prove only the second statement; the others are similar. I [,
contains four 3-sets with a common pair (one of 23, 43, 67) then [l > 1. 1
not, and if |E3;| = 7, then E3; must contain three 3-sets with a common pair,
say 234, 235, 236, and either three 3-sets with common pair 45 and one 3-sct
with 67, or vice versa, or two 3-sets with common pair 45 and two with common
pair 67. Checking all possibilities, we find that |[553] > 4.

(v) In the set T = {246, 247,256, 257, 346, 347, 356, 357}, cach pair appears
exactly twice; of any three of these sets, two of them will have a common element
but not a common pair, and their union is a 5-set. Each possible member of F53
can be written as a union of two ol the members of E3s, in two diflerent ways,
e.g. 34567 is the union of 346 and 357, and also of 356, 347. Taking out, say,
356, 357 we lose 34567, and also 23567 (since the remaining members containing
3 are 346, 347, both of which contain 4), but. we have all Lthe rest, so that any
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six sets in T will generate at least four 5-sets in [B53. The rest of (v) is done
similarly.

Using these lemmas, we can show that $),S5,, S; are all non-negative, and
get partial results for S,.

Theorem 2.8 S, > 0.

Proof:

We have |E51| > |E22| and |Esg| 2 |Bes|, from Lemma 2.6.

If 1 € A, or if 234567 € A, then S, > (1/4)(|Ee2| — [£511] = 0.

If 1 € A, and 234567 ¢ A, then A contains B (so |F5;| = 3), but cannot
contain all of 23, 45, 67, and then |[55,| — |[293] > 1, and S, > 0.

Theorem 2.9 [f|F2| = 5,6 then S, > 0.

Proof: We have S; = (1/8)[|E41 |+ |E42| + |E53| - |E21 | =1L - IE;;Q”. FFrom
Lemma 2.6 and Lemma 2.7, we have |E4| — |ls1] 2 0, and [[42| — | F232] > 0.

Suppose |£21] = 5. Then |Ea| > 10 by Lemma 2.7. Il |[F5] < 5, then
Sy 2 0. If |[Egy| =6, then |Es3} > 1 and S2 > (1/8)(10-6+1-5) > 0. If
|Es1| = 7,8, then |Es3] > 4, and S, > (1/8)(10~8+4-5) > 0. Il |/54,] = 9, 10,
then |Es3| 2 5, and Sz > (1/8)(10 — 10+ 5 — 5) 2 0. Finally, if |[23,| = 11,12,
then |Es3| = 6 and S; > 0.

The proof for |Ey;| = 6 is similar.

Theorem 2.10 S; > 0.
Proof: This follows from Lemma 2.6; we have |Igg,| — | 12| > 0.
Theorem 2.11 5, > 0.

Proof: Our assumptions on A imply that 1234567 € A, and so |[7] — | Eo| >
1-|Eo| 2 0.

In general, the sum S, does not have to be non-negative, but as we show in
the next series of lemmas, the sum S; + S is always non-negative. Lach lemma
deals with one value of |[Fs3|. In view of Theorem 2.9, we. need only consider
values of | £;| which are no more than four.

Lemma 2.12 /f |Es3| = 6, then S) + S2 2 0.

Proof: We have Sy = (1/8)[(|Lar| = |En1|) + (| Ess| = | E21]) + (| aa] ~ | E52]))-
Also (|Eq1| = | E31]) = O (from Lemma 2.6) and (| Esa] — |£23]) = 0. 11 | /o] > 4,
then (| Eq42| — |E32]) = 0 by Lemma 2.7, and so S, > 0.

If |Eqy| = 3, then (|Es3| — |£2:]) = 3 and (|Eaz] = |£42]) = =1 (by Lemma
2.7),s0 S2 > 0.
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The argument is similar il |£2,| = 1,2.

Now suppose |E2;| = 0. If 1 € A, then (|Es| — |E32|) > 0and S, > 0.

Since |Es3| = 6, then |[Ego] = 1, and so if 1 & A, then Sy > 1/4. Also,
{Esa| — |E32] 2> (6 —8) = —2,50 S > (1/8)(-2) = —1/4, and then S) + S, > 0.

Lemma 2.13 If |Es3| = 5, then S + S; > 0.

Proof: Suppose A contains all but 23456 of the 5-subsets of 234567. Then A
can contain at most one 4-subset of 23456, and at most four 3-subsets of 23456;
thus |Es)| + |E32| < 14, and |Es;| < 10 and |[Bsp| < 6.

If[Eg1| =4 then (|Eg)|—|Eail) 2 0, (| Ess|— | £21]) 2 0 and (| Eaz| —{£5a2]) 2
0,s0 S > 0.

If | Eqy| = 1,2,3, the argument is similar Lo that in Lemma 2,12,

Suppose |2y = 0. If 1 € A then (|22 = |L2s2]) > 0 and S, > 0.

IT1 € A, since we do have Lhat A contains 234567, we gel S; > 1/4. Since
|E32] < 6, then S, > (1/8)(=6+5) > —1/8, and S + S» > 0.

Lemma 2.14 [f |Es3| =4, then 51 + S2 2 0.

Proof: If A is missing two of the 5-subsets of 234567, then |E3,|+| /32| < 11,
|Eay| < 8, and |E3s| < 6. '

If 1 € A, or if |Egy| = 4, then |E42| = |Fa2] and S2 > 0. So we suppose that
1¢ A, and |Ey| < 3. Since |Es3| = 4, then 234567 € A, and S 2 1/4.

If | E5| = 3, then by Lemma 2.7, |Eaz] — |Es2| = =1, and |Esa| — [lan] = 1,
and S; > 0.

If |E2]| = 2. then |E42| - |IJ'32| > —2. and II‘;53| - IIJZII =2, and 52 > 0.

I |£31] =1, then |Esy| — | Esg] = ~4, and [Fss] — [F22)] = 3, and S > —1/8,
s0S)+S522>0.

If|E2| =0, then | 24| ~ |E32| = =6, and |Es3| — |Ex | = 4; then Sy 2 —1/4,
s0 S+ 852 2>0.

Lemma 2.15 If |Ess| = 3, then $) + S2 2 0.

Proof: If |Esa| = 3, then |E3,| + |Ea2| € 10, [£31] < 6 (by Lemma 2.7 (iv))
and |E3o| < 5.

If |Egy| > 4, then |Esg| — |Es2| 2 0,and by Lemma 2.7 (iii) , we get Sy 2
(1/8)(2|E21| = 6+ 3 — [Ex]) 2 0.

If|E3| <3and 1 € A, then Sy 2 |lo5s] — |f2y] > 0.

If |Eyy] < 3and 1 ¢ A, then S; > 1/4, and (applying Lemma 2.7 (i)
S; > —1/4,50 Sy + S3 > 0.

Lemma 2.16 If |Eg3| = 2, then S; + S2 2 0.

Proof: If |Ess| = 2, then |Eai| + |Es2} < 10, |E3;| < 6 (by Lemma 2.7 (iv))
and |E3,| < 4.
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I”E21| > 4, then |E42|—|E32| > 0,and S, > (1/8)(2|E2)|—6+2—|/:}21|) > 0.

So we assume that |Eq;| < 3.

Suppose first that |Ezz| = 3. Then |Ez;| = 0 and |£3,| < 4. (To sce this, for
example, if A contains 246, 23, 45, 67, then it also contains 23456, 23467, and
24567.)

Then if |E2;| = 3, we have S > (1/8)((6 —4)+(2~3)+0 > 0, and if
|B2y| 2,52 20+ (2~ |Enl)+020.

Now suppose that |Es2| < 2. If 1 € Athen S; > 1/4, and if 1 € A, then
Sy >1/2.

If1 € A, then S; > (1/8)(|Es3| — | L)) > ~1/8, and so S; + S5 > 0.

1 ¢ A then Sy > 1/2, and by Lemma 2.7 (ii), we have the following.

If B9y = 3, then S2 2> (1/8)(0+ (2 = 3) 4+ (=1) = —1/4; if Fay = 2, then
S22 (1/8)(0+(2-2) +(=2) = —1/4; il iy = 1, then S > (1/8)(0+ (2 - 1)+
(—4) = =3/8; il L5 = 0, then Sy > (1/8)(0+ (2= 0) + (=1) = —1/1; and so in
all cases $) + S, > 0.

Lemma 2.17 Suppose that 1 € A, and 234567 & A and |luz3] = |. Then
IEq1| - |E3|| - |1321| >—-1land Sy, > 0.

Prool: Suppose A contains 23456. Then (since 234567 € A) any set X in
A which contains 7, must also contain 1. In particular, £3; and Easy consist of
3-subsets of 23456.

Since E3; must be contained in the set of 3-subsets of 23456 containing one
of 23, 45, and since 1 € A, E,; contains one set matching each member of g, ;
none of these contain 7. For every singleton j or doubleton 13 in A, il j # 6,7,
we will also get the 4-set 1567. If 17 € A, we also gel the 4-sets 1237, 1457.

Thus IE4|| - |E31| > |E21 - {16}| > IEQll — 1. Since 1 € A, we have
|Es2| ~ |F32] 20, and then S2 > (1/8)(-14+0+1)=0.

Lemma 2.18 lflEg,gl =1, then Sy + S, > 0.

Proof: If |Ess| = 1, then |3y + |E32| < 10, |£23;] < 6 (by Lemma 2.7 (iv))
and [E32] < 4.

First suppose that Eo2 = 3. Then |£4)| € 2 and |/f2a2] = 0, as in the
preceding Lemma. So S; > (1/8)[|Eq)| + [Eaal + 1 — | Loy = 2). I[ |[l5n] 2 1,
then since |£4,| > 2| E21|, we have S > 0. If |Ey;| = 0, then Sy > (1/8)[|l5a1] —
|E31| + | Ea2| + 1] > 0.

Now suppose that [y < 2. By Lemma 2.17, we may assumnc Lthat either
1 & A, or 1,234567 € A, in either case, Sy > 1/41.

If1 € A, then [or |E2;] > 4 we have Sy > (1/8)(2| 2| =64+ 1=[lon]| = —1/8,
and for |Ey| €3, 822> (1/8)(1 = |Exn| > =1/4. So Sy + S, > 0.

So, suppose 1 € A. If |[52y| = 4, then [549) — |[2a2] 2 0, and the argument
above gives S; > —1/8.

For |Ey| < 3, using Lemma 2.7(ii), we can get Sy > —1/2, and since if
|E22] £ 1 we would have Sy > 1/2, we assume that |/2y3| = 2. Suppose that A
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contains 23456, and 23, 45. Note that [£35 U E3; must be a subset of the set of
3-sets of 23456, and every member of [732 contains the element 6. As in Lemma
2.17, we have |Eqy| — |E3| > |Ex| - 1.

Let |E2;1| = 3; so that A contains at least one of the pairs 12, 13, 14, 15,
If A contains 12, then it also contains 1267, and 267 cannot be a member of
E3y since 45 € A; 267 would give 24567 in A. So |Eq| — |Es1| 2 1. Then
S22 (1/8)(1+(~1)+(1-3)) 2 -1/4, and s0 S; + S> > 0.

Let |E2;| = 2; so that A contains at least one of the pairs 12, 13, 14, 15, 16.
If A contains the pair 16, then |Ey| > |Eaz| and then S; > (1/8)(1-2) > —-1/8.
Otherwise, as above, |E41| — |Eai| > 1. Then Sy > (1/8)(1 +(-2)+ (1 - 2)) >
—1/4. Either way, S; + S, > 0.

Let |Eoy| = 1. If A contains 17, then [£4, contains 1237, 1457, and ncither
237 nor 457 is in [%3,, and so | £oq1] —|[531] 2 2and S2 > (1/8)(2~4+0) = —-1/4.
Il A contains 16, then |[%2| > |E32| and Sy > 0. I A contains 15, then
|[5a2] = | [532] 2 =2 and Sy > (1/8)(0—-2+0) = —1/4. In all cases, $; + Sy > 0.

Let |59} = 0. Then Sy > (1/8)(=|lae| + 1) > =3/8. Suppose first. that
|Eaz| = 4. Then Egy = {246,256, 346,356}, and since A contains 123, 115, 167,
it follows that |Egy| > 8 (IZ.g. from 246, we get 12346, 12456, 12467 in |/[552].)

Thus, we now consider |Fs2| — |Fasl. Il |Fo3] < 7, then Sy > 3/8, and
Sy 4 S2 2 0. If | Ep3| = 8, then A contains all the 2-subsets of 23456, including
26, 36, 46, 56, and then A also contains 1267, 1367, 1467, 1567. Since none of
267,367,467, 567 are in Eg,, then |E4| — |E3)| 24 and S; > 0.

Finally, if | E32] < 3, then S2 > —1/4, and S, + S2 > 0.

This proves the result.

Lemma 2.19 If |Es3| = 0, then S + S2 > 0.

Proof: Note that il A contains 2 or 12, it also has 1245 and 1267; since
|Es3| = 0, E3; cannot contain both 245 and 267; similarly for all values j =
3,4,5,6,7. That is, lor every pair in Eg;, /24y picks up a new (different) 4-set.
Thus |Eqy| 2 |Es1| + |E2il- Then Sz 2 (1/8)(|Ea2| — | Es2))-

Suppose first that |Ey| = 3. Then |E3g| = |£3,] = 0. (For instance, if A
has 23, 45, 67 and 246 (resp. 234), then it also has 23456 (resp. 23467).) Then
Sz 2 (1/8)(|1E42l) 2 0. ,

Next suppose | E9s| = 2; say A contains 23 and 45. Then any 3-seL containing
either 6 or 7 (or both) must also contain 1 (otherwise we would have | 53] > 1),
and so |E32| = 0 and then S; > 0.

If |Ey| €1, then S; > 1/4 and by Lemma 2.7, [Fg| € 2. Then Sy >
(1/8)(1 Ea2| ~ |E32]) > —1/4, and Sy + S2 2 0.

Corollary 2.20 The UC family generuled by {123, 145,167} is an I'C family.

Theorem 2.21 If a UC family A conlains three 3-sels wilh a common elernent,
then A is an FC family, and in particular the Frankl conjecture is salisfied for
A.
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Proof: Suppose that {laeb,lcd,lef} are in A. In (3], we showed that if
[{1,a,b,¢,d,e, f}] <6, then {1ab, 1cd, lef} is an I'C family, and from Corollary
2.20, the same is true if {{1,a,b,¢,d,e, f}| = 7. Since the union of three 3-sets
with a common clement cannot involve more than a total of seven clements,
then A contains an FC family, and hence itself is an FC family.

Corollary 2.22 If A is a UC family in P(n) for which the Frankl conjecture
is not satisfied, then A cannot conlain more than 2n/3 3-sels.

Proof: If the Frankl conjecture fails, then .A cannot contain any FC families,
and so no element can appear in more than two of the 3-sets of A; the result
follows.

3 A Possible Improvement

In {3}, we described a computational method which produces, for any collection
T of sets of cardinality at least 3, with |UT| = n, a certain number, called
NUM(T). We have found (among other things) that if 4 < [UT| < 6 and
NUM(T) <1, then T generates an FC family, and in the preceding section we
found this also to be true for T = {123, 145,167}. However, we have not yet
verified this for any other collections T'.

In view of the possible connection between the value of NUM(T), and
whether or not T generates an FC {amily, it is interesting to consider the behav-
ior of those T which do (or don’t) have NUM(T) < 1. So far, we have cnough
calculations for the case when T consists entirely of 3-sets, Lo make sorne general
statements.

Definition 3.1 Let T be a colleclion of 9-sets, with UT = {1,2,..., n}. We
say that T is proper iy T does nol properly conlain any collection S unth
NUM(S) < 1. Let Y(n,3) be the set of all collections T in P(n) such that
Jor some SC T, NUM(S) <1, and let O(n,3) be the sel of all proper collec-
tions T in P(n) such that NUM(T) > 1. Finally, let M(n,3) be the largest
inleger k such that O(n,3) conlains a collection T with |T| = k.

We will show that M(n,3) < n/2. For this, we need Lhe lists of sets in
O(n,3) for 4 < n < 9. (We give only the isomorphism types of these sets. )

0(4,3): T, = {123,124}

0(5,3): Ts = {123, 145}

0(6,3): Ts = {123,124, 356}

O(7,3): Ty, = {123,124, 567}; T7o = {123, 145,267}

O(8,3): Ts = {128,124, 567,568}; Tgy = {123,124, 356,678};
0(9,3): Ts, = {123,124, 567,789}; T, = {123, 145, 267, 789};
To3 = {123,124, 356, 789}
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Lemma 3.2 Let T = {123,124, 356, 678,abc}, and |UT| =n. If any of a,b,c
is in {1,2,3,4,5,6,7,8}, then T is in Y(n,3).

Proof: Let t; denote the number of members of T containing i. We have
ty =ty =t3=tg =2,s0ilany of a,b,cis in {1,2, 3,6}, we would have a proper
subset S of T with NUM(S) < 1. If (say) e = 4, then S = {123, 124, 356, 4bc}
has |US| = j < 7, and none of the members of O(j,3) has this form, so
S € Y(5,3). If two of a,b,c are < 8, so that |US| = 5 < 9, then again T
contains a proper subset S with NUM(S) < 1. So the only possible values for
a, b, c (up to isomorphism) are 5,9, 10, and 7,9, 10, and 8,9, 10, and for each of
these we compute NUM(T) < 1.

Corollary 3.3 If T € O(n,3) and if T = SUTyy, then no member of S conlains
any of {1,2,3,4,5,6,7,8}.

Corollary 3.4 IfT € O(n,3) and if T = {123,124,356} 0 S, then by = 1, and
either Ly =1 ortg=1.

Lemma 3.5 Suppose T € O(n,3) and T conlains 123, and L) = Ly = 13 = 2.
Then T conlains (an isomorphic copy of ) Tg.

Proof: Suppose first that T also contains some 12a. Since {3 = 2, there must
be some set 3bc € T; then S = {123,12a, 3bc} has |U S| < 6. Since we assumned
T € O(n, 3), S must be isomorphic to Ts.

Now suppose that none of 1,2,3 appear together in a member of T. We
may assume that T contains S = {123,145, 2ab, 3cd}. If any of a,b,¢,d is in
{1,2,3,4,5}, we would have JU S| < 8, and none of the Ty; for ¢ < 8 are
isomorphic to S, so that NUM(S) < 1, a contradiction. So it must be that
a, b, c,d are distinct, and |U S| = 9. Of the three Ty, only onc of them contains

a 3-set abe such that {g = L, = L. = 2, and that one is Tyz, which contains Tg.

Theorem 3.8 forn >4, M(n,3) < n/2.

Proof: The prool is by induction on n. The statement is true for4 < n <9,
by computation, and we assume it is true for all j, 7<j<n-—1.

Let T € O(n,3), and |T| = k. Let a be the number of integers i such
that ¢; = 2, and b the number of i such that {; = 1. Then (since |UT| = n)
a+b=n,and 2a+b=3k,andso a =3k —nand b =2n — 3k. Il b > k, then
b= 2n — 3k > k gives 2n > 4k, so that k < n/2.

Now suppose that b < k. I {; = 1, then 7 appears in only one of the 3-sets
of T; then at least one 3-sct in T, say 123, has {; = lp = {3 = 2, and so by
Lemma 3.5, we may assume without loss of generality, that T contains {(up Lo
isomorphism) 123, 124, 356, and {4 = {5 = 1.

Suppose that nis even. Let § =T — {123,124}, Then [US] < e — 3 (we
have removed 1,2,4), and |S| = k — 2. Then £k —2 £ M(n - 3,3), so that by the
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inductive hypothesis, k — 2 < (n — 3)/2, that is, k£ < (n+ 1)/2. Since n is even,
then we get k < n/2, as required.

If n is odd, consider the two cases: {5 = 1, and tg = 2. We alrcady have
ts=1 1ftg =1, thenlet S =T —~ {356}. Then |US| <n -2, and |S|=k -1,
and as above, k — 1 < (n - 2)/2, and k < n/2. Il tg = 2, then T must contain
(up to isomorphism) 123, 124, 356, 678, which is Tg,. In particular, by Corollary
3.3, t7=1tg = 1. Then if we put S = T — {678}, Lhe same argument applies, so
that & < n/2 in both cases.

If we knew that every T € Y (n,3), 7 < n < 10, were an FC family, it would
follow that a UC family A with more than n/2 3-sets satisfies the Frankl con-
Jjecture. However, direct verification is extremely tedious even for the smallest
values of n, so it is to be hoped that some other proof will be fortheorning.
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