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Abstract

A minimum feedback arc set of a digraph is a smallest sized set
of arcs whose reversal makes the resulting digraph acyclic. Given
an acyclic digraph D, we seek a smallest sized tournament 7" having
A(D) as a minimum feedback arc set. The reversing number of a
digraph D equals |V(T)| — |[V(D)]. We investigate the reversing
number of the kth power of directed Hamiltonian path P¥, when k is
fixed and n tends to infinity. We show that even for small values of k&,
where |A (P¥)| is much closer to |A (P,)| than |A (T5.)|, the opposite
relationship holds for the reversing number.
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1 Introduction

A tournament is a digraph whose underlying undirected graph is com-
plete. A minimum feedback arc set of a digraph is a smallest sized set of
arcs whose reversal makes the resulting digraph acyclic. Given an acyclic
digraph D, we seek a smallest sized tournament T having A(D) as a min-
imum feedback arc set. Barthélemy et al. [2] showed that every acyclic
digraph D arises as a minimum feedback arc set of some tournament T' and
defined the reversing number of a digraph to be r(D) = |V(T)| — V(D).
Reversing numbers have been studied for many classes of digraphs [2], (3],
), (5], (6}, and [7).

We investigate the reversing number of the k-th power of a directed
Hamiltonian path, denoted P¥. Recall P¥ is the digraph containing the
directed Hamiltionian path with vertices vy, ..., v, and arcs v;u; where i > j
and |i — j| < k. Note that in our statement of the definition if vertices
vy, ...,Vn are ordered from left to right, the arcs of P* are directed from
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right to left. This arrangement will be convenient since A (P¥) will be the
set of feedback arcs.

It is helpful to consider minimum feedback arc sets in the context of
player rankings. Given a ranking of players an inconsistency arises when-
ever one player defeats another and the winner is ranked below the loser.
Determining the size of a minimum feedback arc set is then equivalent to
finding a player ranking that minimizes the number of inconsistencies. If
players are ranked in this manner then n + r(T},) is the size of a small-
est (round robin) tournament having an optimal ranking with a set of n
players that are all ranked inconsistently with respect to each other. We
seek n+7(PF) which is the size of a smallest tournament having an optimal
ranking where most, but not all of the players are ranked inconsistently. An
interesting property of the tournaments with A (P¥) as a minimum feed-
back arc set is that the corresponding rankings do not have inconsistencies
where the winner and loser are placed excessively far apart.

We continue by restating an elementary, but important result (2].

Lemma 1 Let D and D' be digraphs on n vertices. Then D' C D =
r(D’) < r(D).

Reversing numbers have been investigated for extreme cases of weakly
connected digraphs: directed paths and acyclic tournaments (2] and (7).
In particular it was established that 7(P,) =n — 1 and 2n — 4log,n <
r(T,) < 2n — 4. Note that P¥ includes both directed paths and acyclic
tournaments.

We investigate r (P%) for fixed values of k as n tends to infinity. By
Lemma 1, r(P,) < r(P¥) < r(T,) but it is not clear where r(P¥) lies
between these bounds. When & is much smaller than n, |A (P¥)| - |A(P,)|
< |A(T)| — | A (P¥)| and when k is close to n the opposite inequality holds.
It is tempting to think that the same relationship holds for the reversing
number. However we show that suprisingly even for small values of k,
r(Tn) — r (P¥) < v (P¥) — r(P,). This provides an easy construction of
pairs of digraphs whose arc sets differ greatly in cardinality yet have little
or no difference in their reversing numbers.

In the final section of the paper we present and discuss some related
open problems.

2 Background

Values of r(P¥) have been determined for k < 7 [1] and [4]. This is restated
in our next lemma.
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Lemma 2 Let P* denote the k-th power of the directed Hamiltonian path
P,. Then

r(P)=n-1,

r(P3) =r(P}) = [¥554],
r(P3) =r(PS) = [827], and
r(P8) = (P = [122].

These values suggest that 7 (P2*) = r(PZ**1) and can be approximated
by (%‘_"Tl-) n. We investigate this extension of Lemma 2. We obtain new

results involving 7 (P¥) by establishing new lower bounds for r (Pf) and
combining them with the best known upper bounds for tournaments. For
the following bounds we will use c;(k) to denote a constant that is only
dependent on k, the given power of the directed path. In particular we

show (%(=1)n — co(k) < r(P3* ') < 2mn -4 and(%ﬁ'_‘l-l)n - ca(k) <

r(P2*¥) < 2n — 4 when n > 4k. Note that in both cases the lower and
upper bounds follow the same asymptotic behavior.

As mentioned earlier, 7 (T;,) was studied by Isaak [3]. Because P¥ con-
tains subtournaments we can directly apply known methods used to study
tournaments to investigate r (P¥) . In the next example we illustrate meth-
ods used to obtain lower bounds for the reversing number of tournaments

3l.

Example 3

Let T3 denote the acyclic tournament on three players as shown in Fig-
ure 1. In the context of player rankings r(T3) represents the minimum
number of extra players that are needed to obtain a larger tournament
with an optimal ranking where the original three players are all ranked
inconsistently with respect to each other.

In general we will add extra players that defeated at least one of the
original players or lost to one of the original players. The reasoning is
that extra players that defeated all of the original players or lost to all
of the original players have no effect on the number of inconsistencies in
an optimal ranking. That is when considering inconsistencies among the
original players it does not help to add extra players that beat all of the
original players or lost to all of the original players.
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1 2 3

Figure 1. The acyclic tournament T3.

We use U to represent extra players that lost to player 1 but defeated
players 2 and 3, and U, represents extra players that lost to players 1 and
2 but defeated player 3. This is shown in Figure 2 where the players are
ranked from left to right. We let z; = |U;| and seek to minimize z; + z;
over all optimal rankings.

An optimal ranking must have at least one extra player ranked in be-
tween any two original players. If not we could simply interchange the
ranks of the two original players and reduce the number of inconsisten-
cies, contradicting the optimality. Hence z; > 1 and zo > 1. Then
as mentioned above, any potentially optimal ordering must have the form
1U;2U,3 as illustrated in Figure 2. Comparing this (optimal) ordering
which has three inconsistencies with the ordering U/; 3210, that has z; +z,
inconsistencies we obtain the inequality z; + z2 > 3. Hence »(73) > 3. B

U U
1T ' 2 3

Figure 2. All arcs not drawn are directed from left to right.

Building upon ideas from the previous example, we continue with a
detailed description of the methods used to investigate r (P%) . We define a
tournament T (0,Z, P¥) with minimum feedback arc set P¥, having extra
players T, and an ordermg of the tournament vertices o where each arc in
Pkis directed from right to left.

As mentioned earlier any tournament T (o, T P") having A (P¥) as a
minimum feedback arc set must have its extra players z placed in between
the ranks of the original players. To see this, note that any extra players
that are placed ahead all of the original players or behind all of the original
players may be removed without affecting a minimum feedback arc set of
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T (O’,:_B’,P,’.f). Let V(Pr':) = {‘vl,’Uz,..., v,,} and A(P,’:) = {(vj,v.-) |i < j}
Then V(T (0, Z,P¥)) = V(P) U {w; |1 <i<n-11L7< 2}
and A(T (o, T, P%)) = A(P¥) U {(uij usr) :i < sori=sandj <t}
U {(vi,use) | ¢ < s} U {(usi,j,vs) | i < 8}. That is V(T (0,7, PF)) is
composed of V (PF) along with a set of extra vertices dependent upon P,
and A (T (0,7, P¥)) is composed of arcs consistent with the ordering:

V1, Up,1y eory ULz, V2, U2,14 00y U2,22y U3y o+ Un—1, Un—1,1y -y Un=1,2,_11 Un

except for arcs between v; and vj, i < j, which are inconsistent with the
ordering. Since we are concerned with the number of extra vertices between
each v; and v;4) we may combine each set of z; vertices into a single set
Us.

Then r (P¥) equals the minimum value of 377! z; such that a tour-

nament on n + Y iy z; vertices has A (P}) as a minimum feedback arc
set. We investigate inequalities involving the number of extra vertices
specified by 7. In Example 3 we established z; > 1 for 1 < i < n and
Ti+2ip1 = 3, forl <i<n-1. As we will see in our next lemma,
the same technique can be used to study larger tournaments and estab-
lish bounds such as z; + 2zi41 + Ziy2 = 6 when 1 < i < n -2, and
z; + 22541 + 22542 + Zi+3 > 10 when 1 <7 <n — 3. The following known
bound (3] can be applied to all subtournaments contained in P¥.

Lemma 4 Letz; be as defined above. Thenzf,-‘;“l—l iz; + Zt;lr 51 -
i)2i 2 (5)-

This bound is obtained by comparing the orderings 1,0},2,...,U;—1,t
and Ul,... , UL_;_J, t,t— 1,. vey l’Ul,i'J”'l’ ’")Ut—l'

In our next example, we illustrate the main ideas that will be used later
in the general case.

Example 5 Let D = P,.

Using Lemma 4 we construct the inequalities:
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Ty + 2z0+ 3z3+ 2z4+ z5 >15

T2 + 223+ x4+ 225+ z6 >15

z3 + 2x4+ 3z5+ 216+ z7 > 15

Ty + 225+ 3z6+ 227+ 23 >15

s + 2z6+ 3z7+ 225+ z9 > 15

Ty + 2z0+ 223+ x4 + z¢ + 227+ 225+ z9 > 20
z) + 2294 z3 + z7 + 2z5+ x9 > 12
271+ 225 + 2zg+ 229> 12
4z, + 4z9 > 8

Summing these inequlaties yields 9 Y5, z; > 127 = Y0 &; > [2] =
15. Hencer (Pfy) > 15. The combination of this lower bound with a known
upper bound (3] yields r (P§,) < r(Tio) = 15.

Next, we take a closer look at the inequalities from our previous example.
We will show how the inequalities used to establish one lower bound can
be extended to obtain lower bounds for larger digraphs. For example the
inequalities used to obtain r (P§y) > 15 can be used to establish a lower
bound for r (Pf;). We add the inequality z¢ + 2z7 + 3zg + 2z9 + Z10 > 15
and shift the indicies of inequalities in the lower right of the table to obtain
a new set of inequalities:

Ty + 222+ 3z3+ 224+ z5 >15

Ty + 2z3+ x4+ 225+ zs >15

z3 + 2r4+ 3z5+ 236+ 7 >15

T4 + 2x5+ 3zg+ 227+ z3 >15

s + 26+ 3z7+ 228+ x9 >15

x6 + 2274 3zg+ 2x9+ Z10 > 15

Ty + 220+ 223+ 74 + o7 + 223+ 2x:9+ T10 > 20

Ty + 2z0+ T3 + 27 + 239+ T10 212

2z + 2z + 2z9 + 271> 12

4z, + 429> 8
127+(§

Thus r (Pfy) = 322, 2 2 = 16.
This extension is described in Figure 3.



® (ii)

Figure 3. Extending one lower bound to establish another lower bound.

The coefficients of each z; stay fixed at 9. To see that the column sums
stay fixed note that the position of the left triangular block in the table is
unchanged, the second triangular block simply shifts to the right, and the
new column has column sum 9. In general this property will hold whenever
the power of the directed path is less than or equal to %, (that is when the
two ‘triangular blocks’ do not overlap). Given a lower bound of the form

r (P2¥) > (3&‘1—1) n — c;(k) where n > 4k, we use the above methods to

obtain lower bounds for all larger values of n. To simplify the proof of the
general case we observe that the sum of the right side of the inequalities
that correspond to the two triangular blocks, is a constant c;(k).

3 A general lower bound

We obtain lower bounds for Y777 z; and r (P%) by summing a set of
carefully chosen inequalities. We use methods from the previous section
to formulate a general lower bound for r (P¥) for all n > 2k.

In particular we show r (P2¥~1) > (25=1) n — co(k) for n > 4k — 2 and
r(P2k) > (%ﬁ"{-) n — ci(k) when n > 4k. An important property is that
both lower bounds follow the same asymptotic behavior as the best known
general upper bound for tournaments, 7(T,) < 2n —4 [2].

Theorem 6 Letn >4k—2. Then (2%(71)n—co(k) <7 (PZ*!) <2n-4.

Proof. Since the upper bound is taken directly from the upper bound
for (T,,) we need only justify the lower bound. Let n > 4k —2. We
consider
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n—2k ko 2k—1 )

2k—2

Zi=1 ai(xi + zn_,-)
where the positive integers a; satisfy:
n=2k ko 2%k-1 .
Zt:O (Z‘i=l Wittt + Zi=k+1 (2k - z)x‘H't)

2k—2 n—1l
+ 3 Ntz = Y

=1

and

Then combining the following two inequalities,

n—2k L 2k—1 . 2%
Zt:o <Ei=l 1Ti4t + Zi=k+1(2k - 1)$i+t) >(n—-2k+1) ( 5 )
and

2k—2 2k—2
Yoo, ailmitTa)22) e
gives us

n—2k ko 2k—1 '
Zt=0 (Zizl zxi-{-t + z$=k+l(2k - 1,):1:,'.,_‘)
2k—2 5 n—1
+ zi:l ai(xi + zn—i) =k Zi:l x;
2k 2k—2
which implies
n-1 1 2k 2k 2k—2
e ) cnen(®)

Since a; < k2 for all i it follows that

2k—-2
23 a4 < 2(2k - 2)(K) = 4k° — ak”.



Then (—2k + 1)(%) + (4k3 — 4k?) = (—4k® + 4k2 — k) + (4k® — 4k?)
=-k<0

= (=2k+1)(%) + 2% %a; <0
Since this last term only depends on k, we have

Som2 [wp(3)rcaen(3) )

> (2kk— )n— c(k).

r(P¥-1) = Z::ll z; 2 (%k_ 1) n — c(k).

Hence

The next result is an an analog of the previous theorem and is proved
in a similar manner. For completeness we include the details.

Theorem 7 Let n > 4k. Then (%£)n—cy(k) <r (P2¥) <2n-4.

Proof. Again the upper bound is the best known upper bound for
r(T,,) so we need only show the lower bound. Let n > 4k. Consider

n—2k-1 k 2k R
Zt:o (Zi=1 Wit + Zi:k-f-l(z’c - 2):1:,-.;.;)

and b1

>, bilzit+zasy)
where each b; satisfies
n—2k-1 ko 2k )
Zg:o (Z;: Wit + Zi=k+1 (2 — z)xi“)
2k—1
+ Y btz = (R R) S

We then can combine

E:::k-l (E; v +L k+1(2k i)as +¢) > (n— 2k)(2k+l)

and
2%k— 1

2k—1
Zi =1 bi(@i + Tn—i) 2 22._1 i
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to get

n—2k—1

ko 2k )
S (St o 2= i)
2k—1 n—1
s ) = (k2 .
+ Zi=1 bi(z; + Zn—i) = (k* + k) Zi:l i
2% +1 2k-1
> - .
> (n 2k)( A ) +2Z.-=1 b;.
This gives the inequality
n—1 1 2k +1 2k+1 2k—1
c S| — - ,
Next observe b; < k% + k for all i. Then the statements
2k—1
) _ 2\ — 413 _ k2
2 Z,-=1 b < 2(2k —1)(k?) = 4k® — 2k
and

—2k (2’“ ; 1) = —4k3 — 22

can be combined to get

22{:1 b,-—2k( 0 )<—4k <0.

Since (—2k) (”‘;’ 1) +2 sz_l b; does not depend on n we have

i=1
n—1 1 2k+1 2k+1 2k—1
e [ () -2 () 2l
2k+1
2(k+1)n—cl(k).

Hence 2k n—1 2k + 1
T(Pn ) = Zi:l z; 2> k_-l--l- n—cl(k).

The combination of Theorems 6 and 7 yields a general lower bound for
r (Pk) for all n > 2k.

94



4 Conclusion

We pose the following problem which would be an improvement of the
results contained in this paper.

Problem 8 Determine r(Pk) for all values of k and n.

This problem would require determination of 7(T}, ), which is only known
for relatively few values of n. In addition it is not known if the integer
programming approach used in this paper can be used to obtain r(Pk) ,
even if c;(k) is explicitly determined.

We also present an interesting subproblem. The fact that r(P¥) ap-
proaches r(T},) quickly as k nears n suggests the following problem.

Problem 9 For given n determine the smallest k such that r(PX) = r(T3,).

A partial solution is given in [5] for n = 2° — 2* and s —t > 2, but still
remains open for many values of », for which r(7},) is known. This would
be interesting because it would identify a set of arcs that can be removed
from T,, without affecting the reversing number.
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