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Abstract

For each vertex v in a graph G, let there be associated a partic-
ular type of a subgraph F, of G. In this context, the vertex v
is said to dominate F,. A set S of vertices of G is called a full
dominating set if every vertex of G belongs to a subgraph F, of
G for some v € S and every edge of G belongs to a subgraph
Fy of G for some w € S. The minimum cardinality of a full
dominating set of G is its full domination number vr(G). A
full dominating set of G of cardinality vr(G) is called a yp-set
of G. We study three types of full domination in graphs: full
star domination, where F,, is the maximum star centered at v,
full closed domination, where Fy, is the subgraph induced by the
closed neighborhood of v, and full open domination, where F,
is the subgraph induced by the open neighborhood of v.

A subset T of a yp-set S in a graph G is a forcing subset
for S if S is the unique yp-set containing I'. The forcing full
domination number of S in G is the minimum cardinality of a
forcing subset for S, and the forcing full domination number
S+ (G) of the graph G is the minimum forcing full domination
number among all yg-sets of G. We present several realization
results concerning forcing parameters in full domination.
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1 Introduction

A set S of vertices in a graph G is a dominating set for G if every vertex
of G is either an element of S or is adjacent to an element of S. Thus, a
vertex v in a dominating set of G is said to dominate itself as well as its
neighbors. The minimum cardinality of a dominating set is the domination
number v(G). A dominating set of cardinality v(G) is called a y-set. A set
S of vertices in a graph G is an open dominating set if every vertex of G
is adjacent to at least one vertex of S. In this case, a vertex v in an open
dominating set of G is said to openly dominate its neighbors but not itself.
The minimum cardinality of an open dominating set is the open domination
number 7;(G) of G. An open dominating set of cardinality v,(G) is a ;-
set for G. The open domination number is also referred to as the total
domination number. A thorough treatment of domination in graphs can be
found in the book by Haynes, Hedetniemi, and Slater [7]. '

In domination, a vertex dominates a set of vertices (according to some
rule); while in covering, a vertex covers the edges incident with it. These
concepts have been combined and extended to describe another variation
of domination in [1]. For a graph G, let there be a function F' that maps
each vertex v of G into a particular subgraph F, of G (or possibly F, = §).
Then the vertex v is said to dominate F,. In this context, each vertex and
each edge of F, is said to be dominated by v. A set S of vertices of G is
called a full dominating set if every vertex and every edge of G is dominated
by some vertex of S; that is, every vertex of G belongs to a subgraph F, of
G for some v € S and every edge of G belongs to a subgraph F,, of G for
some w € S. For each full dominating set S of G and v € V(G) — S, the
set SU {v} is also a full dominating set. If G has no isolated vertices, then
we need only be concerned with each edge of G being dominated by some
vertex of S. The minimum cardinality of a full dominating set of G is its
Jull domination number (with respect to the function F') and is denoted by
vr(G). A full dominating set of G of cardinality vr(G) is called a vp-set
of G. Certainly, vr(G) is defined for a graph G if and only if V(G) is a
full dominating set for G. The following three examples of full domination
were studied in [1]:

1. full star domination, where F, is the maximum star S, centered at v;

2. full closed domination, where F,, = (N[v]) the subgraph induced by
the closed neighborhood of v;

3. full open domination, where F, =: (N(v)), the subgraph induced by
the open neighborhood of v.

For a graph G, the corresponding domination numbers are called the full
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star domination number yrs(G), the full closed domination number yrc(G),
and the full open domination number vYro(G) of G, respectively.

Let S be a full dominating set of a graph G with respect to a function
F, where the subgraph F, of G corresponds to v € S. If |S| = yr(G), then,
of course, S is a yp-set. It may very well occur that G contains several
~r-sets. However, there is always some subset T of S that determines S as
the unique yr-set containing T'. Such “forcing subsets” will be considered
in this paper. More formally, a subset T C S is called a forcing subset for S
if S is the unique vyp-set containing T'. The forcing full domination number
of S, denoted by f,,(S), is the minimum cardinality of a forcing subset for
S. The forcing full domination number of the graph G is

f‘YP (G) = min{fn,,, (S)}’

where the minimum is taken over all yr-sets S in G. For every graph
G, it follows that f,.(G) < 7r(G). Forcing concepts have been studied
previously for such diverse parameters as the chromatic number [4], the
graph reconstruction number [6], and the domination number [2]. A survey
of graphical forcing parameters is discussed in [5]. The following observation
is useful.

Observation 1.1  Let G be a graph. Then f,.(G) = 0 if and only if
G has a unique yp-set, f,.(G) = 1 if and only if G has at least two yF-
sets, one of which is a unique yr-set containing some element of S, and
Fve(G) = vr(G) if and only if no yr-set of G i3 the unique yr-set contain-
ing any of its proper subsets.

We illustrate these concepts with full star domination for the graph G
of Figure 1. Since G has no isolated vertices, Yrs(G) = ao(G), the vertex
covering number of G (the minimum number of vertices that cover all edges
of G). A well-known theorem of Gallai [3] states that if G is a graph of
order n without isolated vertices, then a,(G) + 8,(G) = n, where 8,(G) is
the vertex independence number of G. Therefore, yrs(G) = n — Bo(G) for
every graph G of order n without isolated vertices. Since the graph G of
Figure 1 has order 6 and §3,(G) = 2, it follows that vrs(G) = 4.

Next we show that f,.;(G) = 2. Every yrs-set in G is of the type
V(G) -1, where I is a maximum independent set of vertices in G. Since the
complement G of G is the path P; : v, 2, %, w, u, y, it follows that G contains
five ypg-sets, namely S1 = {u,w,z,y}, S2 = {u,v,w,y}, Ss = {u,v,y,2},
Sy = {v,z,y,2}, and S5 = {v,w,z,2}. Since every vertex of G belongs
to at least two distinct yrs-sets, fyps(G) > 2. Furthermore, since S is
the unique yrgs-set of G containing the 2-element subset {u,z}, it follows
that fy5(S1) = 2 and fy.5(G) = 2. On the other hand, > is not a unique
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Figure 1: A graph G with f,.,(G) = 2 and yrs(G) = 4

7YFs-set containing any of its 2-element subset, but S, is the unique yrs-set
containing the 3-element subset {u, v, w}; 80 fy,¢(S2) = 3. It can be shown
that fy05(S5) = 2 and fy.5(S3) = faps(81) = 3. Therefore, fars(G) = 2.

We now review some of the results (see [1]) related to the full star
domination number Yrs(G), the full closed domination number yp¢ (@),
and the full open domination number yrc(G) of a graph G, beginning
with yrs(G). Since every full star dominating set of a graph is also a
dominating set, it follows that v(G) < yrs(G) and so

1<9(G) <rs(G)<n—1

for every graph G of order n with at most n — 2 isolated vertices. Certainly,
YFs(G) = n — 1if and only if G = K, which implies that v(G) = 1. On
the other hand, the independent domination number i(G) satisfies

Y(G) <i(G) < Bo(G) =n — vrs(G)

for graphs with no isolated vertices. This implies that v(G) + vrs(G) < n,
thereby obtaining Ore’s [10] well-known inequality v(G) < n/2 for graphs
G of order n without isolated vertices. The following realization result
appeared in [1].

Theorem A For every triple a,b,n of integers withn >3,1<a<b<
n—2, and a + b < n, there ezists a graph G of order n without isolated
vertices such that v(G) = a and yrs(G) = b.

A set S of vertices in a graph G is a full closed dominating set if every
vertex and every edge of G belongs to (N[v]) for some v € S. The minimum
cardinality of a full closed dominating set is the full closed domination num-
ber 7rc(G)- A full closed dominating set of cardinality yrc(G) is referred
to as a yrc-sel. This parameter was first introduced by Sampathkumar
and Neeralagi in [9], where it was called the neighborhood number of a
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graph, and further studied by Jayaram, Kwong, and Straight in [8]. The
following result appeared in [9].

Theorem B For every graph G, v(G) < vrc(G) < vrs(G). Moreover,
if G is a triangle-free graph, then Yrc(G) = Yrs(G).

If v(G) = 1, then ypc(G) = 1 while 1 < vps(G) < n — 1. For each
integer k with 1 < k < n — 1, the graph H obtained by deleting the edges
of a complete subgraph of order n — k from K, has y(H) = ypc(H) = 1
and yrs(H) = k. For 4(G) > 2, the following realization result appeared
in [8].

Theorem C  For every triple a, b, c of integers with 2 < a < b <c, there
ezists a graph G with v(G) = a, Yyrc(G) = b, and yrs(G) = c.

A vertex v in a graph G openly dominates the subgraph (N (v)) induced
by the (open) neighborhood N (v) of v, but not » and any edge incident with
v. A set S of vertices in G is a full open dominating set if every vertex and
every edge of G belongs to (N (v)) for some v € S. The minimum cardinality
of a full open dominating set is the full open domination number yro(G). A
full open dominating set of cardinality vro(G) is referred to as a yro-set.
Note that a graph G has a full open dominating set if and only if every
edge of G lies on a triangle in G. It was shown in [1] that every vertex in
a full open dominating set S in a graph G belongs to some triangle all of
whose vertices belong to S. Thus every full open dominating set of a graph
G must contain at least three vertices and so yro(G) > 3. Certainly, every
full open dominating set of a graph G is also a full closed dominating set
and so Yro(G) 2> Yrc(G). Therefore, for a graph G in which every edge
belongs to a triangle,

vro(G) > max{3,vrc(G)}.

The following result was established in [1].

Theorem D  For each pair a,b of integers with 1 < a < b, there exists
a connected graph G with yrc(G) = a and vro(G) = b unless (a,b) €
{1,1),(1,2),(2,2)}.

Certainly, every full open dominating set of a graph G is also an open
dominating set. Thus if G is a graph without isolated vertices in which
every edge is in a triangle, then vyro(G) > 7:(G). In fact, more can be say
as we state the following result which appeared in [1].

Theorem E If G is a graph without isolated vertices in which every
edge is in a triangle, then Yro(G) > 1t(G). Moreover, for every pair a,b
of integers with 2 < a < b, there erists a graph G with v(G) = a and
7Fo(G) = b.
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2 Forcing Full Domination Numbers of Graphs

For ordinary domination, the problem of determining all integers a,b with
0 < @ < b for which there exists a graph G with f,(G) = a and v(G) = b
was solved in [2]. In this paper, we consider the corresponding problems
for full star domination, full closed domination, and full open domination,
beginning with star domination.

Proposition 2.1 For every pair a,b of integers with0 < a<bandb>1,
there exists a connected graph G with f,..(G) = a and yrs(G) = b.

Proof. For a = 0, let G be the complete bipartite graph Kj 341 with
partite sets V; and V5, where |Vi| = b and |V2| = b+ 1. Since V; is the
unique yrs-set for G, it follows that f,..(G) = 0 and yrs(G) = b. For
a =1, let G = K, with partite sets V; and V5. Then yps(G) = b. Since G
has two distinct yrs-sets, it follows that f.;(G) > 1. On the other hand,
for every u € V(G), the partite set containing u is the unique yrg-set of G
containing u. Thus, f,,s(G) =1.

We now assume that @ > 2. If a = b, then let G = Ky41. So 7rs(G) =
a. Since every yrs-set of G has the form V(G) — {v} for some vertex v
in G, it follows that f,.;(G) = a as well. Next assume that ¢ < b. Now
let the graph G be obtained from the graph K,;; and the path P,_, :
wiWs - - » Wy—q by first adding the edge uw;, where u € V(K,4,1), and then
adding 2(b — a) new vertices u;,v; (1 < i < b— a) and the edges u;w;, viw;
(1 <i £ b—a). The graph G is shown in Figure 2.

Ko Wy wp Wp—q
¢ ®7X A /‘E ]\
Uy U1 Us Vs Up—a Vb—a

Figure 2: The graph G for2<a <
Every yrs-set of G has the form
(V(Kar1) = {v}) | {wr, w2, -, ws-a},
where v € V(K,+1) and so yrs(G) = b. Since each yrg-set is uniquely

determined by the subset V(K,4+1) — {v} for some vertex v in K, 44, it
follows that f,.;(G) = a. ]
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Next we consider the forcing full closed domination and full closed dom-
ination numbers of a graph.

Theorem 2.2 For every pair a,b of integers with0 < a<bandbdb > 1,
there ezists a connected graph G with fy..(G) = a and yrc(G) = b.

Proof. For a =0, let G = Kpp41; while for a = 1, let G = Kpp. This
gives us the desired results when a € {0,1}. For 2 < a < b, we consider
two cases.

Case 1. 2 < a = b. We construct a graph G from K, as follows.
For each edge e in K,4;, we add two new vertices, each joined to the two
incident vertices of e. The graph G for a = 2 is shown in Figure 3. Every
yrc-set of G has the form V(K,41) — {v} for some v € V(K,41). Hence

f1ec(G) = 1rc(G) = a.

Figure 3: The graph G in Case 1 for a = 2

Case 2. 2 < a < b. We now construct a graph G’ from the graph G
defined in Case 1 and the path Py—, : wiws « - wp—, by first adding the
edge uw,, where u € V(K,y41) and then adding 2(b — a) new vertices u;, v;
(1 € i < b—a) and the edges u;w;, viw; (1 < i < b—a). Every yrc-set of G
has the form (V(K,+1) — {v}) U {w1,w2,---,wp~q}. An argument similar
to the one employed in the proof of Theorem 2.2 shows that f,..(G) =a
and yrc(G) = b. =

Finally, we consider the forcing full open domination number and full
open domination number of a graph. Recall that a graph G has a full
open dominating set if and only if G contains no isolated vertices and every
edge of G lies on a triangle. Moreover, every full open dominating set of
a graph G must contain at least three vertices and so yro(G) > 3. For
the complete graph K,,, where n > 4, each 3-element subset of V(K,) is a
yro-set. Thus f..,(Kn) = 7ro(Kyn) = 3. In fact, every integer b > 3 is
simultaneously realizable as the forcing full open domination number and
full open domination number of some connected graph, as we show next.
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Theorem 2.3 For every integer b > 3, there exists a connected graph G

with
Frro(G) =7F0(G) =b.

Proof. Since fy., (Kn) = Yro(K,) = 3 for each integer n > 4, we assume
that b > 4. For each integer b > 4, we construct a graph G; from the
complete graph Kp+; as follows. For each 3-element subset T of V =
V(Kb+1) = {1,2,---,b+ 1}, we add a new vertex T to K, and join
T to each vertex in T. Thus the order of Gs is (b+ 1) + (*}'). Then
V(Gy) = VUU, where

U=V(G) -V ={T:TCV,T|=3}.

The graph G, is shown in Figure 4, where each vertex {,j,k} in U (with
1 < j < k) is denoted by ijk.

125
135 124

134

Figure 4: The graph G4

First we show that every set of the form V — {i}, where 1 <i <b+1,
is a full open dominating set of G,. It suffices to show that every edge of
G is openly dominated by some vertex of V — {¢}. Since yro(Kp+1) = 3,
it follows that every edge of Kp4; is openly dominated by some vertex of
V - {i}. Let zy be an edge of G that does not belong to Kp41. Thus we
can assume that x = T for some 3-element subset of V and y € T. Since

104



|T| = 3, there exists z € T —{y,i}. Because zy is openly dominated by z, it
follows that V — {i} is a full open dominating set of G and, consequently,
¥ro(Gs) < b.

Next we show that any set S C V(Gs) containing at most b— 1 elements
of V is not a full open dominating set. Then there exist integers ¢ and j
with 1 < i < j < b+ 1 such that 7,7 ¢ S. Consider the 3-element set
T = {i,j,k}, where k # 4,j and 1 < k < b+ 1. Since the edge Tk is not
openly dominated by any element of S, it follows that S is not a full open
dominating set. This implies both that yro(Gs) = b and that the only
Yro-sets of Gy are of the type V — {i} for some integer ¢ with 1 <7 < b+1.
Furthermore, every (b— 1)-element subset of V' is contained in two yro-sets
and 80 fyzo(Gs) = b. [

Next we show that every pair a,b of integers with 0 < a < b -1 and
b > 3 is realizable as the forcing full open domination number and full open
domination number of some connected graph.

Theorem 2.4 For every pair a,b of integers with0 <a<b—1andd > 3,
there exists a connected graph G with fy.,(G) = a and yro(G) = b.

Proof. Assume first that a is an even integer. For a = 0, let F be a copy
of the complete graph K}, with V(Fp) = {uy,u2,--,up}. For each i with
1<i<b,let F;: z;y; be a copy of K2. Let G be the graph obtained from
the graphs F; (0 < i < b) by adding the 4b new edges 1%, uiTi, ui¥i,
and u;4y; for all 1 < i < b, where each subscript is expressed as one of
the integers 1,2,---,b modulo b. Since V(Fp) is the unique yro-set of G,
it follows that fy.o(G) =0 and vro(G) = |V (Fp)| =b.

Next we assume that @ > 0. Then a =2k and b=a+ ¢, where k,¢ > 1.
We consider three cases, according to whether £ =1, =2, 0r £ > 3.

Case 1. £ =1. If k = 1, then let G = Cy4 + K, be the wheel, where
degv = 4. Since every yro-set contains v and any two adjacent vertices
of Cy, it follows that f,.,(G) = 2 and Yro(G) = 3. For k > 2, let
G = kK3 + K, where degv = 3k. Then every yro-set contains v and any
two vertices from each copy of K3. Since there are k copies of K3 in G, it
follows that fy.,(G) = 2k and vro(G) = 2k + 1.

Case 2. £ = 2. If k = 1, then let F be the graph of Figure 5. Since every
~ro-set of F consists of u, v, one of z1, 2, and one of 1, y2, it follows that
frro (F) =2 and yro(F) = 4. For k > 2, let G be the graph obtained from
the graph F of Figure 5 and (k — 1)K3 by joining all vertices of (k — 1) K3
to the vertex u in F. Since every yro-set of G contains u,v, one of z1,
x4, one of y1, ¥2, and two vertices from each copy of K3, it follows that
frro(G) =2+2(k—1) =2k and yro(G) =4+ 2(k— 1) =2k + 2.
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Y2
Figure 5: The graph F' in Case 2

Case 3. ¢ > 3. Suppose, first, that £ is odd. Then £ = 2k + 1 for some
integer h > 1. Let G = (kK3 U hK3) + K;, where degv = 3k + 2h. The
graph G is shown in Figure 6(a) for £ = 1 and h = 2. Since every yro-set
consists of v, all vertices in hK, and any two vertices from each copy of
K3, it follows that fy.,(G) = 2k = a and yro(G) = 2k + 1+ 2h = b.
Next assume that £ is even. Then £ = 2h for some integer A > 2. Let
G = (kK3UPsU (h—-2)K;) + Ky, where P; : vjv2---vs and degv =
3k +2h 4+ 1. The graph G is shown in Figure 6(b) for k = 1 and h = 3.
Now every yro-set consists of v,vq,v3,vs, all vertices of (h — 2)K>, and
any two vertices from each copy of K3. Therefore, f,.,(G) = 2k = a and
Yro(G) =2k +4+2(h—2) =2k +2h =b.

(51 Vs
Vo U3 U4

(a) (b)

Figure 6: The graphs (K3 U2K3) + K; and (K3 U K3 U Ps) + K, in Case 3

Assume next that a is odd. For a = 1, we consider consider two cases,
according to whether b is even or b is odd.



Case 1. b is even. Then b = 2h for some integer h > 2. If h = 2,
then let F} = Ps + K3, where Ps : v1v2---vs and V(K3) = {u,v}. Since
{u,v2,v3,v4} and {v,v2,v3,v4} are the only two yro-sets in F}, it follows
that fypo (F1)=1and yro(F1)=4. fh >3, thenlet F, = (h— 2)K2 and
let G be the graph obtained from F; and F, by joining all vertices of F
to vz in Fy. Since {u,v2,vs,v4} UV (F2) and {v,v2,v3,v4} UV (F,) are the
only two yro-sets in G, it follows that f,.,(G) =1 and yro(G) = 2h = b.

Case 2. b is odd. Then b = 2h + 1 for some integer h > 1. If h = 1,
then let Hy = P, + K, where P, : v1vav3v4 and V(K3) = {u,v}. Since
{u,ve,v3} and {v,v,,v3} are the only two yro-sets in Hj, it follows that
fyro(H1) =1 and yro(Hy) =3. If h > 2, let H; = (h—1)K>. Then let G
be the graph obtained from H; and H; by joining all vertices of Hy to v,
in H;. Since {u,vs,v3} U V(Hz) and {v,vs,v3} UV (H,) are the only two
Yro-sets in G, it follows that fy.,(G) =1 and yro(G) =2h+1=0b.

We now assume that @ > 3. Then a = 2k + 1 for some integer k > 1,
we consider two cases, according to whetherb=a+1lorb>a+2.

Case 1. b=a+ 1. First we show that the graph H shown in Figure 7
has full open domination number 4 and forcing full open domination number
3. Since {v,v1,va,v7} is a full open dominating set in H, it follows that
vro(H) < 4. Observe that for each ¢ with 1 < ¢ < 8, the edge v;v;+2 (where
the addition 7 + 2 is performed modulo 8) is openly dominated only by v;+;
and v. This implies that every full open dominating set of H contains v or
contains all vertices v; with 1 <4 < 8. Since vro(H) < 4, every yro-set of
H contains v. Thus we may assume that there is a yro-set S containing v
and v,. Since the edges vv;, vv4,vvs,vvg are neither openly dominated by
v or v; nor by any other vertex of H, it follows that yro(H) = |S| > 4.
Therefore, yro(H) = 4.

Next we show that f,.,(H) = 3. Since v belongs to every yro-set of
H, it follows that f,.,(H) < 3. Observe that

(i) {v,v1} is a subset of S; = {v,v1,v2,v4} and Sz = {v,v1,v3,vs5},

(ii) {v1,v2} is a subset of S3 = {v,v1,v2,vs} and Sy = {v,v1,v2,v7},
(iii) {v1,vs} is a subset of S5 = {v,v1,vs,v5} and Sg = {v,v1,v3,v7},
(iv) {v1,v4} is a subset of S7 = {v,v1,v2,v4} and Sg = {v,v1,v3,v4},
(v) {v1,vs} is a subset of Sp = {v,v1,v3,v5} and Sio = {v,v1,v5,07}.

Since S; (1 < i < 10) is a yro-set, fypo (H) = 3. Therefore, the graph H
of Figure 7 has f,.,(H) = 3 and yro(H) = 4, as desired.

Next, let a = 2k + 1 and b = 2k + 2, where £k > 2. Let G be the
graph obtained by joining each vertex of (k — 1)K3 to the vertex v in the
graph H of Figure 7. Then each yro-set of G consists of a yro-set of the

107



Figure 7: The graph H with f,.,(H) =3 and yro(H) = 4

subgraph H in G together with two vertices from each copy of K3. Thus
YFo(G) = 4+2(k—1) = 2k+2 =band f,,,(G) = 3+2(k—1) = 2k+1 =aq,
as desired.

Case 2. b > a + 2. There are two subcases, according to whether a = 3
ora2>b.

Subcase 2.1. a = 3. For b= 5, let G = (K3 U P;) + K, where P3 : zyz
and degu = 6. Then every yro-set consists of u,y, one of z,z, and any
two of vertices of K3. Thus fy,,(G) = 3 = a and yro(G) =5 = b. For
b =6, let Fy be a copy of K3 with V(Fp) = {uy,u2,u3} and let F; : z;y;2;
be a copy of P for each ¢ with 1 < ¢ < 3. Then the graph G is obtained
by joining u; to (1) the vertices of F; for each i with 1 < i < 3 and (2)
Z;+1 and z;—;, where addition is performed modulo 3 (see Figure 8). Every
Yro-set in G consists of V(Fp) and one vertex from each set {z;,2;} for
1<i<3. Hence fy,,(G) = 3 and vro(G) = 6.

Now let b > 7. If b = a + 2h for some integer A > 2, then let

G=(Kz3UPU(h-1)K,) + K;.
If b=a+ 2h + 1 for some integer h > 2, then let
G=(K3UP;UP;U(h-2)K3) + K;.
It is routine to verify that f,.,(G) =3 and yro(G) = b.

Subcase 2.2. a = 2k + 1 > 5. Suppose first that b = a + 2h for some
h>1. For k=2and h =1, let F be the graph shown in Figure 9. Then
every Yro-set contains u,v, one of w;,ws, and two vertices from each set
{zi,yi,2i} for i = 1,2. Thus f,.,(F) = 5 = a and yro(F) = 7 = b.
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Figure 8: A graph G with f,.,(G) =3 and yro(G) =6

For k > 3 and h > 1, let G be obtained from the graph F of Figure 9
and H = (h - 1)K, U (k — 2)K3 by joining each vertex in H with the
vertex v in F. Then fy o (F) =5+2(k—-2)=2k+1=a and yro(F) =
2k+1)+2+2h-1)=2k+1+2h=0b.

I wn i)

hn Yo

21 Wa 29
Figure 9: The graph F' in Case 2

Finally, suppose that b = a + 2h + 1 for some 2 > 1. Then let G be
obtained from P; + K3, where Ps : v1v2---vs and V(K3) = {u,v}, and
(h — 1)K2 U kK3 by joining all vertices in (h — 1)K; U kK3 to v3. Then
every yro-set consists of v, vs,vs, all vertices of (h — 1)K>, one of u,v,
and two vertices from each K3. Therefore, f,.o(F) = 2k+1 = a and
Yro(F)=3+2(h-1)+1+2k=2k+14+2h+1=0b. L]

For b = 4, the graph G constructed in the first paragraph of the proof of
Theorem 2.4 is shown in Figure 10. As shown in the proof, yro(G) = 4 and
faro(G) = 0. It is not difficult to see that yrc(G) = 2 and [y (G) = 1,
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that is,
frro(G) < free (G) < 1rc(G) < vro(G).

In particular, fyzo (G) < fyrc(G), despite the fact that yrc(G) < vro(G)
for every graph G.

Figure 10: A graph G with f,.,(G) < fypc(G)

Combining Theorems 2.3 and 2.4, we have the following realization re-
sult.

Corollary 2.5 For every pair a,b of integers with 0 < a < band b > 3,
there erists a connected graph G with f.,(G) = a and yro(G) = b.
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