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Abstract
We consider the rank of the adjacency matrix of the line graph for
some classes of regular graphs. In particular, we study the line graphs
of cycles, paths, complete graphs, complete bipartite and multipartite
graphs, circulant graphs of degrees three and four and some Cartesian
graph products.

1 Introduction and Preliminary Results

Let Pg()) denote the characteristic polynomial of the adjacency matrix of
a graph G. The characteristic polynomials of the graphs in this paper can
be found in [1] unless otherwise cited. Note that if G is a regular graph of
degree r with n vertices, then G has m = %nr edges. The line graph of G,
L(G), is regular of degree (2r — 2), has m vertices and nr(r — 1) edges.
The following lemma, found in [1], relates the eigenvalues of a regular graph
to those of its line graph.

Lemma 1 If G is a regular graph of degree r with n vertices and m = %nr
edges, then the following relation holds: Prg)(A) = (A+2)™ " Pg(A—r+2)

Having the characteristic polynomial of the line graph, finding its eigen-
values is a straightforward procedure. The rank is then found by sub-
tracting the number of zero eigenvalues from the number of vertices. The
following alternative statement of Lemma 1 is sometimes more useful in
directly computing eigenvalues.

Lemma 2 IfG is a regular graph of degree r having n vertices and m edges,
and Ay, ..., A, are the eigenvalues of G, then the eigenvalues of L(G) are
m—n values of =2 and \; +r—2 fori=1,...,n.

In the sections that follow, we investigate when zero eigenvalues can
occur for various classes of graphs. We consider cycles, paths, complete
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graphs, complete bipartite and multipartite graphs, circulant graphs of de-
grees three and four and some Cartesian products of graphs.

2 Some Well Known Graphs

The rank of a cycie C. is given by rank(C,) = n otherwise

Since the line graph of a cycle is a cycle of the same order, we can make
the following observation.

n—2 ifn=0mod4 }

Observation 1 For n > 3, rank(L(C,)) = rank(Cy,).

Similarly, the rank of a path P, is given by
—1 ifnisodd . .
rank(P,) = { nn ifz g :ven 2 Since the line graph of a path of

order n is a path of order n — 1, we have a second observation.

Observation 2 For n > 2, rank(L(P,)) = rank(P,_,).

The rank of the complete graph K, is n. The characteristic polynomial
reveals not only the complete eigenvalue structure of KX, but also that of
its line graph. Since

P, N =A-n+1)(A+1)*!
and since K, is regular of degree (n — 1), Lemma 1 gives

PL(Kn)(’\) = (A + 2)m-nPKn (A - (n - ]) + 2)
A+2)" ™A -2n+4)(A—n+ 4)n—1

implying that there are (m —n) eigenvalues equal to —2, (n — 1) eigenvalues
equal to (n — 4), and one eigenvalue equal to (2n — 4). Thus the rank is
full unless n = 2 or n = 4; in which case the rank is (m —1) =1—-1 =0,
or (m — 3) = 6 — 3 = 3, respectively. Hence, since m = in(n — 1), we have
the following theorem.

0 ifn=2
Theorem 1 Forn > 2, rank(L(K,)) = 3 ifn=4 .
in(n—1) otherwise

We close this section by examining three famous regular graphs, Pe-
tersen’s Graph, the “Cocktail Party” Graph, and the n-dimensional hyper
cube. . :
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Petersen’s Graph has 10 vertices, is regular of degree 3, has 15 edges, and
its characteristic polynomial (found in [5]) is

Pe(N) = (A=3)(A—1)°(A +2)%.

As
Prip(A) =+ 25(A —4) (A - 2)°(1 +1)*

from Lemma 1, there will be no zero eigenvalues, and we have a third
observation.

Observation 3 rank(L(P)) = 15, where P is Petersen’s Graph.

The so-called “Cocktail Party” Graph CP(n) is the only (n — 2)-regular
graph on n vertices. It consists of a complete graph on an even number
of vertices with a perfect matching removed. Having n = 2k vertices and
2k? — 2k edges, its characteristic polynomial is

Popm() = (A=—n+2X"/2(a+2y27
= (A—2k+2X (A +2)F!
Therefore,
Pricpmy(N) = (A + 2275 4 (X — 4k + 6)(A — 2k + 4)*()A — 2k + 6)*~"

Hence, there will be no zero eigenvalues unless k =2 or k = 3. If k = 2,
then there will be k = 2 zero eigenvalues. If ¥ = 3, then there will be
k — 1 = 2 zero eigenvalues. Thus we have the following.

Observation 4 For n even, n > 4, let CP(n) be the complete graph K,
with a perfect matching removed. Then,

2 ifn=4¢4
rank(L(CP(n)) = { 10 ifn==6 } .
n2/2—n otherwise

Finally we examine Q,,, the n-dimensional hypercube graph defined re-
cursively by:

Q1 = K
Qn+1 = QnXKZfO"'nZ]-

It follows that Q,, has 2™ vertices., is regular of degree n and thus has n2"~?
edges.

Theorem 2 rank(L(Q.)) = n(2"~! — 1), where Q,, is the n-dimensional
hypercube greph..
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Proof. The spectrum of Q,, consists of the numbers (n — 2k), each with
multiplicity (}),k = 0,1,...,n. Since Q, is regular of degree n, there are
in(27) = 2n~1n vertices in L(Qx). Hence, the spectrum of L(Q,) consists
of 2"~1(n — 2) values of —2 and the numbers (\;+n—2) =n—2k+n—2=
2(n—k—1), each with multiplicity (}),k = 0, 1,...,n. Setting (\;+n—2) =0
gives 2(n — k — 1) = 0, whose only solution is k = (n — 1). The multiplicity
of this eigenvalue is (,”,) = n. Therefore rank(L(Q,))=n(2"~1 - 1).1

3 Complete Multipartite Graphs

We now investigate the complete bipartite graph K, . This graph has 2n
vertices, n? edges and is regular of degree n. Since

Pg, .(A) = (W —n?)X¥""2
we have from Lemma 1

PrgnyN) = (A+2)"720((A=n+2)2 = n2)(A - n + 2)2"~2
= A+2" A —n+2-n)A—n+2+n)-
(A—n+2)%n-2
= (A +2)"2"(A =20+ 2)(A + 2)(A — n + 2)2"2
(A+2)" 72741 () — 20 + 2)(A — n + 2)22

Thus there will be zero eigenvalues only when n = 2, which implies a rank
of n? — 2n + 2 = 2. This proves the following theorem.

0 ifn=1
Theorem 3 rank(L(K,n))={ 2 ifn=2 .

n? otherwise

The complete bipartite graph K, , is only slightly more complicated.

This graph is not regular, but semiregular with degrees n and m. More
generally, if G is a semi-regular bipartite graph with n; mutually non-
adjacent vertices of degree r; and np mutually non-adjacent vertices of
degree 12, where n; > njy, then

431

Prig)(A) = (A +2)mni—m—na ¢(_—) o Pe(yajaz)Pg(—+/a102)

Q2
where a; = A —r; + 2 and ap = A — 7 4+ 2. For the complete bipartite

graph Km,ru
Prtpa(Y) = (A% — mm)A™+=2

116



and the graph has n vertices of degree m, and m vertices of degree n so
that a; = A —n +2, and ag = A — m + 2. In our attempt to simplify the
expression, we first examine the product Pg(,/a1a2)Pg(—\/c1a2). Upon
substitution, this becomes

(Varaz® — mn)(yaiaz)™ "~ %((—y/a1az)? — mn)(—y/araz)™t"2
which simplifies to
(102 — mn)?(—ayag)™ "2,

Now letting v = (A + 2)™*~™~", we have

a m—n
v (—a—l) (103 — mn)?(—aqap)mHn—2
2

= 'Y(alaz - mn) \/(_1)2m-2 aT'"O;m+naT+n_202m+”-2
= YA +2)(A+2-m—n)ai™ 232
= A+2)™ ™"\ +2-m—n)al lai ™!

Pr(K ) ()

Therefore, there will be zero eigenvalues only when a; = A —n+2=0or
az = A —m + 2 = 0, which implies zero eigenvalues for n = 2 or m = 2.
Hence we have a proof of the following theorem.

mn—(m—l) ifn=2
Theorem 4 Form # n, rank(L(Kmpn)) = mn—(n—-1) ifm=2
mn otherwise

It turns out that the rank of the line graph of the complete multipartite
graph K, . ..n with nk vertices neatly divides into two cases. Note that
having nk vertices implies that n appears as a subscript in Ky, n,...,n exactly
k times.

Theorem 5 Forn>2and k > 3,

- 10 fn=2andk=3
rank(L(Knn,....n)) = { in%k(k —1) otherwise

}, where
Knpn,...n has nk vertices.

Proof. Let n > 2 and k > 3. The graph of K, n,.. o has nk vertices and
is regular of degree n(k — 1). Thus L(K, nn. .n) has 1n%k(k — 1) vertices.
The characteristic polynomial of Ky p,...,n is

Pk ) = XD+ 1 — nk) (A +n)*?
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We see immediately that the rank of K, 5,...» can never be full, as there
will always be k(n — 1) zero eigenvalues, making its rank nk —k(n—1) = k.
Hence the characteristic polynomial of the line graph
Pistnmm)N) = (A 2)FWRED=1E () (1) 4 )M
A=n(k—-1)+2+n—-nk)(A—n(k—1)+2+n)*?
(A + 27k =1)=nk(y 4 1 _ ik 4 2)R(-D)

(A+2(n —nk +1))(A +2n — nk +2)%?

Since n > 2 and k > 3, zero eigenvalues can only occur when —2n +nk —
2 =0, which implies n = 2 and k = 3. In that case, the rank will be 10 and
the result holds.l

4 3-Circulant Graphs

For n even, a 3-circulant graph G with n vertices determined by the set
S = {a,3,n — a} has vertex set V = {0,1,2,...,n — 1}, and vertex % is
adjacent to vertex j if and only if |i — j|modn € S. For information on
3-circulant graphs, including their ranks and eigenvalues, see [2]. Hence all
3-circulant graphs are 3-regular. In this section we will assume that n is
even and n > 4. ’

Lemma 1 implies that L(G) has m = 3n vertices, and that Pp(g)(}) =
(A+2)"/2Pg(X\ — 1). Thus, the line graph L(G) will have a zero eigenvalue
if and only if the original circulant graph G has an eigenvalue of —1. As
there is a formula for the eigenvalues of a 3-circulant see [4], some algebraic
conditions follow describing when such zero ) can exist.

Theorem 6 If A is an n xn circulant matriz with first row [ey, 2, . .., 4],
then the eigenvalues of A are given by A\, = Y awt0? p=0,1,2,...,
(n — 1), where w = e2mi/n,

Applying the above theorem to the line graph case, we have the following.
Lemma 3 Let G be the 3-circulant graph determined by {a, 2,n—a}. Then

if Ap is an eigenvalue of G, A, = WP + WP + WP = _1 if and only if
D satisfies

ap = g-modg for p odd (1)
ap = g-modn for p even (2)
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Proof: Since w = €2™/" = cos(2/n) + isin(27/n), we have that w? +
wBP 4 w(*—9)P = _1 implies

2cos(2map/n) +cos(mp) = -1
sin(nm) = 0

The second relationship is an identity, and the first relationship naturally
splits into the two cases of p odd and p even. For p odd, 2 cos(2wap/n) =0
if and only if ap is an odd multiple of . For p even, 2cos(27ap/n) = —2 if
and only if ap is an odd multiple of 7.0

Recall that a 3-circulant is connected if and only if ged(a, §) = 1. We
are now able to determine the rank of the line graph of any connected
3-circulant.

Theorem 7 Let n be even, n > 4 and G be a connected 8-circulant withn
vertices defined by {a,3,n —a}. Then
(@ m i % odd
rank(L(G)) = (#) m-1 i 3=0mod4 »,
(##) m—-3 i % =2mod4
where L(G) has m = &n vertices.

Proof. (i) Suppose % is odd. Using Lemma 3, if p is odd, then ap =
2 mod % has no solutions since 4 is not an integer. Similarly, if p is even,

ap = modn has no solutions since ap is even and % is odd. Thus, L(G)
has no zero eigenvalues, and has rank m.
(ii) Suppose 2 = O0mod4. If p is odd, ap = § mod § can have no solution

since ged(a, 2) =1land § is even Ifpis even, ap = 3 modn has exactly
one solution, again since gcd(a, ) = 1. In fact, this solution is p = §. Thus,
rank(L(G)) =m — 1.

(iii) Suppose 2 = 2mod4, so that n = 8k + 4 for some integer k. If p
is odd, ap = -mod 2 implies ap = (2k + 1) mod(4k + 2). Thls equatlon
has exactly two solutxons, p = (2k+1) and (6k +3), or p = 2 and 3.
This is because ged(a, 3) = ged(a, (4k +2)) = 1. Similarly, if p is even,
ap = % mod n implies ap = (4k+2) mod(8k + 4). This equation has exactly
one solutlon, and it is p = (4k + 2) = %, since a and (4k + 2) have no
common factors. Thus, rank(L(G)) =m — 3.0

The previous theorem gives the rank of the line graph of any connected
3-circulant. If the circulant is not connected, it splits into isomorphic con-
nected components. The following result describes this case, and further
details can be found in [2].

Theorem 8 Let n be even, n > 4 and S = {a, §,n —a}. If gcd(a,§,n) =
d, then the circulant graph with n vertices formed by S has d compo-
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nents each isomorphic to the circulant graph on L vertices formed by S’ =
We now give the rank of the line graph of a disconnected 3-circulant.

Corollary 1 Let n be even, n > 4 and G be a 3-circulant with n vertices
- defined by {a, 3,n —a}, with d = gcd(a, §). Then

{ () m  if &odd }

rank(L(G)) =< (i) m—-d if Z5=0mod4 }, where L(G) has
(i) m—-3d if 2 =2mod4

m = 3n vertices.

Proof. If d = 1, the result follows from Theorem 7. If d > 1, then G
has d isomorphic connected components, each isomorphic to the 3-circulant
defined by {§, 75, 23 }. If & is odd, each component has a line graph of
full rank, and rank(L(G)) = m. If 34 = Omod4, then each component
has a line graph rank deficient by 1, and rank(L(G)) = m —~d. f & =
2mod 4, then each component has a line graph rank deficient by 3, and
rank(L(G)) = m — 3d.0

5 4-Circulant Graphs

A 4-circulant graph G with n vertices determined by the set S = {a,b,n —
a,n—b}, denoted 4C,,(a, b), has vertex set V = {0,1,2,...,n—1}, and vertex
i is adjacent to vertex j if and only if | — j|modn € S. Thus all 4-circulant
graphs G are 4-regular. In this section we will assume that n > 5.

Lemma 1 implies that L(G) has m = 2n vertices, and that Ppg)()) =
(A +2)*Pg(X — 2). Thus, the line graph L(G) will have a zero eigenvalue
if and only if the original circulant graph G has an eigenvalue of —2. As
there is a formula for the eigenvalues of a 4-circulant [4], some algebraic
conditions follow describing when such zero A can exist (see [4]).

By applying Theorem 6, we have the following.

Theorem 9 The eigenvalue A, of L(4Cn(a,b)) is zero if and only if one
or more of the following holds:

= B =" n
@ = 3 modn and bp = 7 mod 5 3)
= 1 n =1
@ = 7 mod 5 and bp = 5 modn (4)
ap = gmodn and bp = :l:g- modn (5)
ap = 2?’1 modn and bp = :i:%" modn (6)
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Proof. From Lemma 1, L(4C,(a,b)) has a zero eigenvalue if and only if
» = —2 in 4C,(a,b). Thus, A, = W + W + WP 4 (P=AP = 2,
Since w” = cos(2£2) + sin(2Z2), A, = —2 if and only if

27bp

n

-2

2n(n - b)p 2n(n — a)p
n n )

c0s(ZZ22) + cos( Z2) + cos( ) + cos(

2n(n—b -
sin(27mp) + sin(211'bp) + sin( w(n )p) + sin(21r(n a)p) = 0
n n n n
The equation in sines reduces to an identity; the equation in cosines reduces

to cosa + cos § = —1, where & = 2%%2 and 8 = 222, The only rational
multiples of 7 with a, 8 € [0, 2] that solve this equation are

al = T 3% i3 .63
2° 2

8 T 9% T 2o dm | 2% 4n

23 2 313 33

Supposing o = 7 + 2kx for k € Z implies 2ap = n(2k + 1). Hence, ap =
£ mod n. This also implies 8 = §(2j+1) for j € Z. Hence, 2bp = 3(2j +1)

.and bp = Zmod %. Similarly, if 8 = 7 + 2km, then bp = § modn and
ap = 2 mod §.

Now supposing a = 33’—' + 2km for k € Z implies 2ap = 2?"(3k +1).
Hence, ap = % modn. This also implies § = £ + 2jm where j € Z.
Hence, bp = nj &+ § and bp = +§ mod n. Similarly, if a = 533 + 2km, then
ap = % modn and bp = £3 mod n.W

Corollary 2 Ifn # 0mod3 and n # 0mod 4, then
rank(L(4Cr(a,b))) = 2n.

Proof. By Theorem 9, at least one of conditions (3) through (6) must be
satisfied for there to be any deficiency in rank. However, if n is not divisible
by 4, neither (3) nor (4) are satisfied, and if n is not divisible by 3, neither
(5) nor (6) are satisfied. Thus, there can be no rank deficiency and rank
L(Cr(a,b)) =2n.1

To examine the rank of the line graph of a 4-circulant determined by
{e,b,n —b,n —a}, the quantities d; = ged(a,n) and dp = ged(b, n) play an
important role. The following lemma from number theory is an important
tool in this study.

Lemma 4 If d; = ged(r,n) and d2 = ged(s,n) where r, s and n are

integers, then
n n n

ged(d_l’ ¢T2) ~ lem(dy, d3)’
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Now there naturally arise four cases: n = (1,2,5,7,10,11) mod 12, n =
(3,6,9) mod 12, n = (4,8) mod 12, and n = O mod 12. In the following, we
assume connected graphs; so ged(a, b,n) = 1.

Theorem 10 Let 4C,(a,b) be connected with n = 0mod 3, d; = ged(a,n)
and dz = ged(b, n). If 3 divides (d3—d, ) or (d2—2d,), then rank(L(4Cy(a,b)))
< 2n—-2. Equality holds if n = (3,6,9) mod 12 and if 3 divides (dz—d,) or 8
divides (dz —2d, ). Furthermore, ifn = (3,6,9) mod 12 and 8 does not divide
(d2 — d1) and 3 does not divide (dp — 2d;), then rank(L(4Cyn(a,bd))) = 2n.

Proof. Let 4C,(a,b) be connected with » = 0mod 3, d; = ged(a,n) and
dz = gcd(b,n). By Theorem 9, conditions (5) and (6) could be satisfied.
Thus, we determine the number of simultaneous solutions of (5) and (6).
Assume first that each of the two congruencies in (5) have solutions. Then
we can reduce the system by the technique of Corollary 3 in (3] and then
apply the Generalized Chinese Remainder Theorem. Thus, the system has
ged(dy,dz) = ged(a,b,n) = 1 solution if and only if ged(F, Z) divides
ﬂ};ﬁﬂ) or if gcd(dll, %) divides 1(%:—1-‘:%1. However, note that d; and da
are reiatively prime; and so by Lemma 4 gcd(%, d%) = WZTTE = g
So there is one solution to (5) if and only if zf%- divides al—':,;(ézg-‘i’-) or if
a.q; divides ﬁ(ﬁz‘s—z"l). This implies that there is one solution to (5) if
atd only if 3 divides {(dz — dy) or if 3 divides (dz — 2d3)

We can proceed similarly with (6), resulting in one solution if and only
if 3 divides 2(d2 — d;) or (2d2 — dy).

Next, if (5) has a solution and if 3 divides (d2 — d,), then 3 of course
divides 2(d; — d;). Also, if (5) has a solution and if 3 divides (dz — 2d;),
then 3 also divides (2dz — d;) since d; and d; are relatively prime. So if (5)
has a solution, then (6) also has a solution. Thus, there are two solutions,
and rank L(4Cp(a,b)) < 2n — 2. Now, if n = Omod 12, there could be
more solutions given by (3) and (4) which implies a greater rank deficiency.
So if n = (3,6,9)mod 12, (3) or (4) could not be satisfied and there is no
further possibility of rank deficiency; thus if n = (3,6,9) mod 12 then rank
L(4Cn(a,b)) = 2n — 2.0

Corollary 3 Let 4C,(a,b) be connected with n = 0mod 3, d; = ged(a,n)
and dy = ged(b,n). If & divides a or 8 divides b, then neither (5) nor (6)
are satisfied.

Proof. Let 4C,(a,b) be connected with n = 0mod 3, d; = ged(a,n) and
dz = gcd(b,n). Let 3 divide a. Then 3 divides d; and 3 does not divide ds.
Thus 3 does not divide (d2 — d;) nor (dz — 2d,). If 3 divides b, then 3 does
not divide d; and 3 divides d2. Thus again, 3 does not divide (d2 — d;) nor
(d2 — 2d,). Hence, neither (5) nor (6) are satisfied.l

122



The importance of Corollary 3 for rank is that if n = (3,6,9) mod 12 and
3 divides a or 3 divides b, then rank L(4Cy(a,b)) = 2n.

Corollary 4 Let 4Ca(a,b) be connected with n = (3,6,9) mod 12, d; =
ged(a, n) and dp = ged(b, n), then

2n—2 if 3 divides dz — dy or dy — 2d
rank(L(4Cn(a, 1)) ={ n2n .o{herwise B ‘d2 1 }

Now our attention turns to the case where n is divisible by 4.

Corollary 5 Let 4Cy(a,b) be connected with n = 0mod4, d; = ged(a,n)
and dg = ged(b,n). If 4 divides a or 4 divides b, then neither (8) nor (4)
are satisfied.

Proof. Let 4C,(a,b) be connected with » = O0mod 4, d; = ged(a,n) and
dg = ged(b,n). Let 4 divide a. Then in (3) from Theorem 9, 4 also divides
dy, so d; does not divide 3 and (3) has no solutions. If 4 divides b, then in
(4), 4 also divides dy, so dz does not divide Z and (4) has no solutions.l

The importance of Corollary 5 for rank is that if n = (4,8) mod 12 and 4
divides a or 4 divides b, then rank L(4C,(a,b)) = 2n.

Theorem 11 Let 4C,(a,b) be connected with n = 0mod 4, d; = ged(a,n)
and d2 = ged(b,n). If a and b are both odd, rank L(4Cn(a,b)) = 2n.
If 4 divides (2d3 — d,) or (d2 — 2d1), then rank L(4Cp(a,b)) < 2n — 2;
equality holds if n = (4,8) mod 12. Furthermore, if n = (4,8) mod12 and
4 does not divide (2dy — dy) and 4 does not divide (dy — 2d;), then rank
L(4Cyr(a,b)) = 2n.

Proof. Let 4Cy(a,b) be connected with n = 0mod 4, d; = gcd(a,n) and
d2 = ged(b,n). Then we determine the number of simultaneous solutions of
(3) and (4) in Theorem 9. Notice that in (3) we have bp = § mod %, which
is actually two congruencies; one congruent to § mod r and one congruent
to "{T" mod n. Therefore, we only need to consider bp = § modn, since the
number of solutions to this is half the number of solutions to the original

congruence. Hence, we can simplify our examination of (3) and (4):

ap = g—rixodnandbps%modn (7
ap = %modnandbps’—;modn (8)

Now we determine the number of simultaneous solutions of (7) and (8).
Assuming each congruence in (7) has a solution, we can reduce the congru-
encies and apply the Generalized Chinese Remainder Theorem. Condition
(7) has ged(dy,d2) = ged(a,b,n) = 1 solution if and only if ged(F, &
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divides 22%229) But by Lemma 4, ged($, &) = gy = i Since
dy and d; are relatively prime. Thus (7) has one solution if and only if 775~
divides 31"74'(2—“‘3;—‘*). Thus, (7) has one solution if and only if 4 divides
2dy — dy.

Similarly with (8), we have one solution if and only if 4 divides dz —2d;.

Now if a and b are both odd, then d; and d> are odd so (2d2 — d;) is odd
and (d2 — 2d;) is odd. Thus (7) and (8) have no simultaneous solutions,
and rank L(4Cy(a,b)) = 2n.

Since (7) or (8) could have one solution, the original congruencies (3)
or (4) could have two solutions. Thus, there are two solutions if 4 divides
(2d2 — dy) or (dz — 2d;). Therefore, rank L(Cp(a,d)) < 2n — 2. Now if
n = Omod 12, there could be more solutions given by (5) and (6) which
implies a greater rank deficiency. So if n = (4,8) mod 12, (5) or (6) could
not be satisfied and there is no further possibility of rank deficiency; thus
if n = (4,8) mod 12 then rank L(4Cnr(a,bd)) =2n —2.

Corollary 6 Let4C,(a,b) be connected with n = (4,8) mod 12, d; = ged(a,n)
and dp = ged(b,n), then

2n—2 if 4 divides 2dy — dy or do — 2d
rank(L{4Cn(a, b)) ={ 2n _:J{hemz:e B : ' }

Corollary 7 Let 4Cy(a,b) be connected with n = 0mod 12, d; = ged(a,n)
and dp = ged(b,n), then
on—4 if (8 divides dp — dy or d — 2d;) and
(4 divides 2dy — dy or d — 2d,)
2n—2 if (8 divides d2 — dy or dz — 2d,) or
(4 divides 2dy — dy or dy — 2d,)

but not both
2n otherwise

rank(L(4Cn(a,b))) =

Proof: Let 4Cy,(a,b) be connected with » = 0mod 12, d; = gcd(a,n) and
da = gcd(b, n). Then any of the conditions in Theorem 9 could be satisfied,
depending on the divisibility conditions given in Theorems 10 or 11. If all
conditions are satisfied, there are four solutions; if only two sets of condi-
tions are satisfied, there are two solutions; and if none are satisfied, there
are no solutions, and the rank is diminished accordingly.l

Putting the previous results together, we have the following summary
theorem for the rank of the line graph of a connected 4-circulant graph.

Theorem 12 rank(L(4Cn(a,b)) =
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2n—4 if n=0mod12 and (3 divides da — dy or d2 — 2d;) and
(4 divides 2dp — d; or dp — 2d;)
2n—2 if (n=0mod3 and [3 divides dy — d; or dy — 2d,))) or
(n =0mod4 and [4 divides 2da — dy or dz — 2d,])
but not both
2n otherwise
where d; = ged(a, n) and d2 = ged(b, n).

6 Some Cartesian Graph Products

‘We begin by recalling several facts that will be useful in this section. These
basic results are well known and can be found in various sources including

[1].

Lemma 5 (i) The eigenvalues of Cy, are A; = 2cosz—:i forj=1,2,...,n.
(%) The eigenvalues of K, are —1,~-1,...,~1,n—1.

(ii) The eigenvalues of P, are p; = 2co8 23 for j = 1,2,...,n. Hence
the eigenvalues of P are £1.

() If G has eigenvalues Ay, ..., M, and H has eigenvalues p,, .. ., py,, then
G x H has eigenvalues X\; +p; for1<i<nandl1<j<m.

Our first Cartesian graph product is that of C,, with Ps.

Theorem 13 Forn >3,

rank(L(Cp X P2))=¢ 3n—1 n=2mod4

3n n odd
3n—-3 n=0mod4 .

Proof. The eigenvalues of C,, x P are 2 cos -2%:1 —1forj=1,2,...,nand
2cos2—:i +1forj=1,2,...,n. Since C, X P is 3-regular with 2n vertices
and 3n edges, the eigenvalues of L(C, X P,) are n values of —2, as well
as 20032—:i for j =1,2,...,n and 2cosz—::i +2for j=1,2,...,n. These
eigenvalues will equal zero only when either cos 2—:1 =0forj=12,...,n
or cosz—,-’:i =1forj=12,...,n For cosz—:i = (), it must be true that
2—,’:1 = 5&;—])3 for some integer k. Hence, n must be divisible by 4 and
j =% or j =3 For cos 2mi — —1, it must be true that X = (2k + 1)7
for some integer k. Hence, n must be even and j = 3.

Now, if n is odd, neither of these equations will hold for any n. Hence,
L(Cn x P;) will be full rank (i.e. 3n). If n = 2mod 4, n is even but not divis-
ible by 4. So there will only be one eigenvalue equal to zero. If n = O0mod 4,
then n is even and divisible by 4. So there will be three eigenvalues equal
to zero. Therefore the result holds. B
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The case of the product of a complete graph with P, reduces somewhat
further. The rank of this line graph is full except for two special cases.

Theorem 14 Forn > 2,

2 n=2
rank(L(Kn, x P2))=¢ 13 n=4 .
n? otherwise

Proof. The eigenvalues of K, x P, are (n — 1) values each of —2 and 0
along with (n—2) and n. Since K, x P, is n-regular with 2n vertices and n?
edges, the eigenvalues of L(K, x P,) are n? —2n values of —2, (n—1) values
each of (n—4) and (n—2) along with (2n—4) and (2n—2). These eigenval-
ues are never zero whenever n # 1,2,4. Hence, in these cases, L(K, x P)
has full rank (i.e. n2). When n = 2, the only nonzero eigenvalues are —2
and 2. Hence the rank of L(K2 x P;) = 2. When n = 4, the only nonzero
eigenvalues are n2 — 2n = 8 values of —2, n—1 = 3 values of n —2 = 2 plus
2n —4 = 4 and 2n — 2 = 6. Hence the rank of L(K, x P;) = 13. Therefore
the result holds. B

Our next case is that of the product of two cycles.
Theorem 15 For m,n 2> 3, rank(L(Cn, X Cy)) =

[ 2mn -8 if m =0mod12 and n = Omod 12 \

9mn — 6 if (m = 6mod 12 and n = 0 mod 12)
or (m = 0mod 12 and n = 6 mod 12)

! omn—4 if (m =0mod 4 and n = 0mod 4) [

or (m =0mod 3 and n = 0mod 3)

omn — 2 if (m =2mod 4 and n = 0mod 4)
or (m =0mod 4 and n = 2mod 4)

| 2mn otherwise )

Proof. Assume both m,n > 3. The spectrum of L(C,, x C,) consists of
mn values of —2 and mn values of \; + 2, j = 1,...,mn, where }; is an
eigenvalue of C, x C,,. However, \j +2 = 2cos 222 2’”‘ + 2cos 222 2 with
a=1,..,mandb=1,...,n. SettmgA +2= Oglvcwcos 2’“"+cos'. b = 1,
which has already been solved. Reworking the method used in Theorem 9
in this new context reveals the following conditions.

An eigenvalue of L(C), x Cy) will be zero if and only if:

a = %modmandbs:b%modn (9)
ora = ir—;-modmandbsd:gmodn (10)

wherea=1,..,mand b=1,...,,n
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For any nonzero eigenvalues, (9) implies that both m and »n must be even.
Moreover, one of m or n must have an even factor of at least 4. If it is the
case that, say, m’s only even factor is 2 (so that m = 2k, k odd) and n’s is
4 or larger, then cos 2— = cos Z2 will only be equal to —1 once (at a = k),
and thls value will combine w1th the two values of 0 given by cos 222 (at
b= 2 and b= 32). Thus there will be only two solutions that satisfy (9).
More precisely, there will be two zero eigenvalues if and only if m = 2mod 4
and n = 0mod 4 (or if and only if m = 0mod4 and n = 2mod 4).

However, if both m and n have at least an even factor of 4, then each
cosine will give a value of zero and two values of —1, for a total of four
solutions. Hence there will be four zero eigenvalues if and only if m =
Omod4 and n = 0mod 4.

Now (10) implies that both m and n are divisible by 3, so then each
cosine gives two values of —%. Hence, there will be four zero eigenvalues
if and only if m = Omod3 and n = Omod3. Both (9) and (10) together
imply six zero eigenvalues if and only if m = 6 mod 12 and » = Omod 12
(or if and only if m = 0mod 12 and n = 6 mod 12); there will be eight zero
eigenvalues if and only if m = 0mod 12 and n = Omod 12. Thus, the result
is established.l

Our final case involves the product of two complete graphs.

Theorem 16 Form,n > 3,

e fm=n=3
rank(L(Km x Ky)) = { -;-m'n(m+ n—2) otherwise } )

Proof. Assume that m,n > 3. The spectrum of K,,, x K, consists of one
eigenvalue of (m +4-n—2), (n —1) eigenvalues of (m —2), (m —1) eigenvalues
of (n —2), and (m —1)(n — 1) eigenvalues of —2. Since K, x K, is regular
of degree (m+n —2), L(Km X Kp) has imn(m +n — 2) vertices. Then the
spectrum of L(K, x K;) consists of 3mn(m + n — 4) eigenvalues of —2,
and mn values of A\; + m +n —2— 2 = )j + m + n — 4. Substituting the
above four possible values for ), we see these mn eigenvalues of the line
graph are: one value of 2m + 2n — 6, (n — 1) values of 2m +n —6, (m —1)
values of m + 2n — 6 and the remaining (m — 1)(n — 1) values of m +n —6.
Setting all four expressions equal to zero gives that only m +n —6 = 0 will
have a solution since both m and n are at least 3. Hence there are exactly
(m —1)(n - 1) zero elgenvalu&a if and only if m = n = 3, in which case,
rank(L(Km x K,)) = imn(m +n —2) — (m — 1)(n — 1) = 14. Otherwise,
the rank is full.l
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