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1. Introduction.

A Steiner triple system (more simply, triple system) is a pair ( K,,, ') where K, is
the complete undirected graph on n vertices and T is a collection of edge-disjoint
triangles (triples) which partition K,. The number m is called the order of the
triple system ( K, T). It is well-known that a necessary and sufficient condition
for the existence of a triple system (K,,T) isn= 1o0or3 (mod 6) and in this
case |T| = n(n— 1) /6. A triangulation is a triple ( K,,,T(3), D) where T'(3)

is a collection of edge-disjoint copies of the graph

(called a 3-triangle)

and D is a collection of edge-disjoint triangles such that T(3) U D is an edge-
disjoint partition of K,. The collection of triangles D is called the deficiency of
the triangulation ( K,, T'(3), D). If we set
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then ( K5, T(3)* U D) is a Steiner triple system.
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Now given a triple system ( K,,T), the problem of finding a triangulation
(K,,T(3),D) such that T = T(3)* U D with deficiency D as small as pos-
sible is immediate. For our purposes “small” means |D| = 0, 1, or 2. Whether
or not such a triangulation exists for an arbitrary triple system is undoubtably an
extremely difficult problem. A more tractable problem is the construction, for
eachn = 1 or3 (mod 6), of a triple system of order n having a triangulation
with deficiency D, where |D| = 0, 1, or 2: that is to say, the construction for
eachn=1o0r3 (mod 6) of a triangulation ( K, T(3), D) with |D| =0, 1, or
2. In [3] R.C. Mullin, A L. Poplove, and L. Zhu gave a complete solution of this
problem by constructing a triangulation ( K, 7°(3), D) with: |D| = O for every

=1lor9 (mod 18),|D|=1foreveryn=3or7 (mod 18),and|D|= 2 for
every n= 13 or 15 (mod 18). In the case with deficiency |D| = 2, two trian-
gulations are given forevery n = 13 or 15 (mod 18): one where the deficiency
consists of a pair of disjoint triangles and one consisting of a pair of triangles with
exactly one vertex in common (the only two possibilities). It is worth remarking
that P. Horak and A. Rosa [1] have studied the decomposition of triple systems
into subgraphs other than 3-triangles.

A 2-fold triple system is a pair (2 K,,T) where T is a collection of edge-
disjoint triangles which partition 2 K ,,. It is well-known that a 2-fold triple system
of order nexists precisely whenn= 0 or1 (mod 3) and that |T| = n{n—1)/3.
A 2-fold triangulation is a triple (2 K, T(3), D) where T'(3) and D are defined
as before and such that T'(3) U D is an edge-disjoint partition of 2 K. If T'(3)*
is defined as before, then (2 K,,, T(3)* U D) is a 2-fold triple system.

The object of this paper is to give a complete solution of the 2-fold riangulation
problem. In particular, we construct a 2-fold triangulation (2 K, T'(3), D) with:
|D| =0 foreveryn=0o0r1 (mod 9),|D|= 1foreveryn=4 or6 (mod 9),
and |D| = 2 foreveryn=3 or7 (mod 9). In the case with deficiency |D| = 2,
there are four possibilities for the deficiency D:

N\

disjoint sets of vertices

one vertex in common

two vertices in common
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@ three vertices in common.

We handle all four possibilities.

2. 2-fold triangulations with | D| = 0.

In what follows, we will abbreviate *“2-fold triangulation with | D| = 0 to simply
“2-fold triangulation”. Additionally we will denote the triangle

a
cAb by {a, b, c}, and the 3-triangle

a

consisting of the 3-triangles

{a,b,c},{c,d,e}, and {e, f, a} by any cyclic shift of (a*,b,c*,d,e*, f) or
(a*, f,e*,d,c*, b).
Example 2.1: Each of the following is a 2-fold triangulation of the given order n.
n=9,

{(1%,3,0%,7,5*,00) +1 (mod 8) |i € Z3}, where oo+ i = o0.
n=10.

{((0,00%,(0,1),(4,1)%,(2,1),(2,0)*,(4,0)) +(i,0) (mod 5) | i€ Zs}U
{((0,00*,(1,1),(3,1*,(4,0),(2,D*(1,0)) + (i,0) (mod 5) | i € Zs}.



n=18.

{(0%,11,3*,13,7*,00) + i (mod 17) | i € Z17}U
{(0*,1,2*,16,4*,9) +i (mod 17) |i € Z17}, where oo+ = oo.

n=19.

{(0*,18,5%,9,2*,10) + i (mod 19) |i € Zis}U
{(0%,1,14*,10,17*,9) + i (mod 19) | i € Zs}.

Let H = {hy, hz,..., h} be a partition of the set Q. In what follows we will
call the sets h; € H holes. Now let (Q, o) be a quasigroup with the property that
for each hole h; € H, (h;,0) is a subquasigroup. Such a quasigroup (Q, o) is
called quasigroup with holes H.

The 9k construction. Let (Q, o) be a quasigroup of order 3 k with k holes
H={hy, hz,... hg}ofsize3andsetS = Q x{1,2,3}. Nowdefine (S, T(3),
D = ¢) as follows:

(1) Foreach hole h € H,let (h x {1,2,3}, T(3h),D = ¢) be a 2-fold
triangulation of order 9 and place the cight 3-triangles of T(3 h) in T'(3);
and

(2) forcach z and y belonging Lo different holes of H place the two 3-triangles
((z,D*(y,D,(z0oy,2)*,(z,2),(y,3)*,(z0y,3)),and
Wy, D" (z,D),(yoz,2)*,(y,2),(z,3)*,(y 0 2,3)) inT(3).

Claim: (S,T(3), D = ¢) is awiangulation. It suffices to show that every edge of
the form {(a, 1), (b, 7) }, a and b in different holes of H , belongs to two 3-triangles
of T(3). We handle the case {(a,1),(b,3)}, the other cases being similar or
trivial. Leta oc = band a 0 b = d. Then (by part (2) of the construction) the two
3-triangles

((a, )", (c,1),(a0¢,2)* (a,2),(c,3)",(a0¢c,3)) =

((a, )", (¢, 1),(b,2)*,(a,2),(c,3)*,(b,3)) and
((a,1)*,(b,1),(a0b,2)*,(a,2),(5,3)*,(a0b,3)) =
((a,1)*,(b,1),(d,2)*,(a,2),(d,3)*,(d,3)) belong to T(3).

1

The 9k + 1 construction. Let (Q,0) be a quasigroup of order 3 £ with holes

H = {hy,ha,...  hg} of size 3and set § = {o0} U (Q x {1,2,3}). Define
(8,T(3),D = ¢) by:

(1) Forecachhole h € H,let ({0} U(h x {1,2,3}),T(3h),D=¢) bea

2-fold triangulation of order 10 and place the ten 3-triangles of T(3 h) in



T(3);and
(2) the same as part (2) in the 9 k£ construction.

Then (§,T(3), D = ¢) is a 2-fold triangulation of order 9k + 1. |

Theorem 2.2. A 2-fold triangulation of ordern exists precisely whenn= 0 or
1 (mod 9).

Proof: Let k > 3 andlet (@, o) be a quasigroup of order 3 k with holes of size 3.
(Take the direct product of an idempotent quasigroup of order k and a quasigroup
of order 3.) Then the 9k and 9 + 1 constructions produce a 2-fold triangulation
of everyordern=0 or 1 (mod 9) > 27. The cases n=9, 10, 18, and 19 are
taken care of by Example 2.1. 1

3. 2-fold triangulations with |D| = 1.

A necessary condition for the existence of a 2-fold triangulation with |D] = 1 is
n=4 or6 (mod 9). We handle thecase n= 6 (mod 9) first. We begin with
three examples.

Example 3.1: Each of the following is a 2-fold triangulation with |D| = 1 of the
given order n.

n=06.

T(3) ={(2*,1,3%,6,4*,5),(3%,1,4*,2,6*,5),(5*,4,1*,6,2*,3) }and D =
{{5 ’ 1 16 }}'

n=15.

In (3] atriangulation ( K15, T'(3), D) is constructed with deficiency D = {{1,2,3},
{1,4,5}}. Let @ = (15)(26). Then ( K15,T(3) , Dcv) is a triangulation with
deficiency Da = {{3,5,6},{1,4,5}},and (2 K;5,T(3) U T(3)aU {(1*,2,
3*,6,5*,4)},{1,4,5}) is a 2-fold triangulation with deficicncy 1.

n=24,

Let ({0} U Q,T) be a Steiner triple system of order 9 and let H = {{oo} U hy,

{oco} U hy, {00} U h3, {co} U ha} be the 4 triples containing co. Set § = Q x
{1,2,3} and define (S, T'(3), D) as follows:

(1) For each “hole” h;, let (h; x {1,2,3},T(3h;),D;) be a 2-fold triangu-
lation with |D;| = 1 and require T(3h;) C T'(3) and D; C D; and
(2) for each triple {a,b,c} € T\H let
((a, 1)*,(b,1),(c,2)*,(a,2),(b,3)*,(c,3)),
t(a,b,¢) = 3 ((c, % (a,1),(b,2)*(c,2),(a,3)*(b,3)), and
((5,1)*,(¢c,1},(a,2)*,(b,2),(¢c,3)*,(a,3)), and
place two copies of the 3-triangles belonging to t(9) in T(3). Then (S,

T'(3), D) is a 2-fold triangulation with deficiency |D| = 4. We modify
(S, T(3), D) as follows. We can assume D, = {(a,1),(e,2),(a,3)},



Ds = {(b,1), (5,2), (b,3)},and D4 = {(c,1),(c,2),(c,3)} and that
{a,b,c} € T\H. Set T(3)* = (T(3)\t(a,b,c)) Ut(a,b,c)* and D* =
D;, where
(Ca,D*, (3, 1),(c,1)*,(¢,2),(c,3)%,(b,2)),
((e,2)*,(5,2),(¢c,2)*,(a,3),(b, *(c,3)),
((e,3)%,(¢,3),(5,3)*,(3, 1), (b,2)*, (¢, 1)), and
((e,1)*,(a,3),(a,2)*,(c, 1),(b,3)*,(¢c,2)).
Since t(a, b,c) U D; U Ds U D4 and t(a,b,c)* are mutually balanced (= cover
the same edges) (S, T'(3)*, D*) is a 2-fold triangulation with |[D*| = 1. 1
Before plunging into the 9k + 6 construction we need one more preliminary
result.

t(a,b,0)* =

Lemma 3.2, Ifk > 3, there exists a quasigroup of order 3k + 2 with one hole
of size 2 and k holes of size 3.

Proof: Let (Q, o) be an idempotent quasigroup of order k having a transversal
T disjoint from the main diagonal. (A pair of orthogonal quasigroups guarantees
such a quasigroup forall £ > 3,k # 6,and k = 6 is handled easily by example.)
Then the singular direct product (sce [2], for example) constructed from (Q, o)
using the transversal T" and a quasigroup of order 5 with a subquasigroup of order
2, and a quasigroup of order 3, gives a quasigroup of order 3k + 2 with one hole
of size 2 and k holes of size 3. [ ]
The 9k + 6 construction. Let (Q, o) be a quasigroup of order 3k + 2 with holes
H={t,hi,h2,... ,ht}, whereft| = 2 and |h;] =3. Set S =Q x {1,2,3} and
define (S, T(3), D) as follows:
(1) Let(tx{1,2,3},T(3t), D(t)) be a 2-fold triangulation of order 6 with
|D(t)| = 1 and require T°(3t) C T(3) and D(t) = D;
(2) foreach hole h; € H, |hi| = 3,1let (h; x {1,2,3},T(3h;), D; = ¢) be
a 2-fold triangulation of order 9 and require T'(3 h;) C T(3);and
(3) foreach z and y belonging to different holes of H place the two 3-triangles
((z, )*,(y, ), (z0y,2)*,(%,2),(y,3)*,(z 0y,3)), and
(y,D*(z,1),(y01x,2),(y,2),(2,3)*,(y 02,3)) inT(3).
It is immediate that (S, T(3), D) is a 2-fold triangulation of order 9 k+ 6 with
deficiency |D| = 1. 1

Theorem 3.3. A 2-fold triangulation of order n with deficiency |D| = 1 exists
foreveryn=6 (mod 9).

Proof: n = 6, 15, and 24 are taken care of by Example 3.1 and the 9k + 6
construction takes care of the remaining cases. 1

We now shift tothecaseof n =4 (mod 9). As withthecasen=6 (mod 9)
we begin with some necessary examples.



Example 3.4: Each of the following is a 2-fold triangulation with |D| = 1 of the
given order n.

n=13.

In [3] atriangulation ( K13, T'(3), D) is constructed with deficiency D= {{1,2,3},
{1,4,5}}. Leta = (15)(26). Then ( K15,7T(3)a, Da) is a triangulation with
deficiency Da = {{3,5,6},{1,4,5}}. Then (2 K5, T(3) UT(3)aU {(1*,2,
3*,6,5*4)},{1,4,5}) is a 2-fold triangulation with deficiency = 1.

n=22.

In what follows we will denote by ( K9,t(a,b,c)*, ¢) the triangulation of or-
der 9 defined in Example 3.1 and by ( K9,t(a,b,c), D(a,b,c)) the triangula-
tion of order 9 with deficiency |D| = 3 defined in Example 3.1. Finally, let
(K7,T(z,y),{(z,1),(z,2),(z,3)}) be a triangulation of order 7 with defi-
ciency 1 defined on {oo} U ({z,y} x {1,2,3}). Then (2K4;,T(3),{(4,1),
(4,2),(4,3)}) is a 2-fold triangulation of order 22 with deficiency 1 where

T(3) =t(1,4,6)*Ut(2,4,6)*Ut(2,3,6)*Ut(1,3,4)*Ut(1,3,5*
U(3,5,6)*Ut(2,4,7)*Ut(4,5,7)*Ut(1,6,7)*Ut(2,5,N)*
Ut(1,2,5uUT(1,HUT(2,HDUT(3,2)UT(3,4HUT(4,5)
UT(5,6) UT(7,6) UC(7,3),

where (2 K¢, C(7,3),{(7,1),(7,2),(7,3)}) is a2-fold triangulation of order
6 with deficiency 1 based on {3,7} x {1,2,3}.

n=31.

In [3] atriangulation ( K31, T(3), D) is constructed with deficiency D = {{1,2,3},
{4,5,6}}. Ifa = (15)(26) then2( K31, T(3)UT(3)aU {(1*,2,3*,6,5*,4)},
D* = {{1,4,5})) is a 2-fold triangulation with deficiency | D*| = 1.
As with the 9k + 6 construction, we will need one preliminary lemma before
stating the 9 k + 4 construction. |
Lemma 3.5. Ifk > 3, there exists a quasigroup Of order 3k + 4 with one hole
of size 4 and k holes of size 3.

Proof: Let (@Q,0) be an idempotent quasigroup of order k + 1 having a transver-
sal T intersecting the main diagonal in precisely the cell (1,1). (Three mutually
orthogonal quasigroups guarantee such a quasigroup forallk > 3,k+ 16 or
10, and 6 and 10 can be handled without difficulty by example.) Then the singular
direct product constructed from (Q, o) using the transversal T and a quasigroup
of order 4 with a subquasigroup of order 1, and a quasigroup of order 3, gives a
quasigroup of order 3k + 4 with one hole of size 4 and & holes of size 3. [ |

The 9k + 4 construction. Let (Q, o) be a quasigroup of order 3 k + 4 with holes



H = {f,h1,ha,... ,ht}, where |f| = 4 and |h;| = 3. Set 8§ = {00} U (Q x
{1,2,3}) and define (S, T'(3), D) as follows:
(1) Let ({00} U(f x{1,2,3}),T(3f),D(f)) bea2-fold triangulation of
order 13 with [ D(f)| = 1 and require T(3 f) C T(3) and D(f) = D;
(2) for cach hole h; € H, |hi| = 3, let ({00} U (h; x {1,2,3}),T(3h)),
D; = ¢) be a2-fold triangulation of order 10 and require T°(3 h;) cC T(3);
and
(3) foreach z and y belonging to different holes of H place the two 3-triangles
((z,D)*(y,1),(z0y,2)*,(2,2),(y,3)*(z0y,3)),and
(v, )*,(z,1),(y0oz,2)*(y,2),(z,3)* (y0z,3)) inT(3).
Then (S,T(3), D) is a 2-fold triangulation of order 9k + 4 with deficiency
|D] = 1. |

Theorem 3.6. A 2-fold triangulation of order n with deficiency |D| = 1 exists
foreveryn=4 (mod 6).

Proof: n = 13, 22, and 31 arc taken care of by Example 3.5 and the 9k + 4
construction handles the remaining cases. |

4. 2-fold triangulations with |D| = 2,

As mentioned, in the introduction there are four possibilities for the deficiency D
here: a pair of triples having 0, 1, 2, or 3 vertices in common. We handle all four
cases. We begin with some examples.

Example 4.1: For each n we give four 2-fold triangulations of order n and defi-
ciency |D| = 2 covering all four possibilities for D.

n=7.

In [3] a triangulation (K7,T(3),D) is given with |[D| = 1. A suitable per-
mutation (a la Examples 3.1 and 3.4) gives a 2-fold triangulation (2 K-, T(3)Uu
T(3)a, DU Da), where D U Da consists of a pair of triples with the prescribed
number of vertices in common.

n=16.

Set

T(3) = {(0%,4,1%,3,9%,12) + i | i € Z13}
U {(0*,001,2*,002,7*,003) +1 I 1 € Zl3}1

where oo; + 1 = oo;. Define

T(3) = (T(3DH\{(0*,001,2%, 002,7%,003) }) U {(003,001,003,2,7*,0)}
T(3)2 = (T(3)\{(0*,001,2*% 002,7%,003) }) U {(003,001,2%,0,7* 003)}
T(3)s = (T(3)\{(0*,001,2*% 003,7%,003)}) U{(007,0,00%,7,00%,2) }.

Then

10



(2 K16, T(3), {{o01,002,003}, {001,002,003}}),
(2K16,T(31,{{2,0,001},{001,002,003}}),
(2K15,T(3)2,{{0,001,002},{001,002,003}}), and
(2K16,T(3),{{0,2,7}, {001,002, 003 }),

are four 2-fold triangulations with deficiency 2 covering all four possibilities.
n=25.

In [3] a triangulation ( K5, T(3), D) is given with |D| = 1. As above, suitable
permutation give the desired 2-fold triangulations with deficiency 2.

The 9k + 7 construction. Let (Q, o) be a quasigroup of order 3 k + 2 with holes
H = {t,hy,ha,...  hi}, where |t| = 2 and |h;| = 3. Let S = {o0} U (Q %
{1,2,3}) and define (S, T'(3), D) as follows:
(1) Let ({o0} U(t x {1,2,3}), T(3t),D(t)) be a 2-fold triangulation of
order 7 with |D(t)| = 2 and require T(3t) C T(3) and D(t) = D;
(2) same as the 9 k + 4 construction; and
(3) same as the 9 k£ + 4 construction.

Then (S, T(3), D) is a 2-fold triangulation of order 9 k + 7 with deficiency | D| =
2. Since the 2-fold triangulation in (1) can have deficiency any one of the four
possibilities, so can (S, T(3), D). - |
Theorem 4.2. A 2-fold triangulation of order n and deficiency |D| = 2, D any
one of the four possibilities, exists foreveryn=17 (mod 9).

Proof: The cases n= 7, 16, and 25 are handled by Example 4.1 and the 9k + 7

construction takes care of the remaining cases. ]

More examples!

Example 4.3: For each n we give four 2-fold triangulations of order n and defi-

ciency | D] = 2 covering all four possibilities for D.

n=12,

Let

T(3) = {(10*,1,8*2,6%,3),(1*,7,11%,2,9*,12),(7*,1,5%,8,3%,6),
(1*,10,5%,2,12*,6),(4*,1,11*,5 3%, 12),(4*,7’,2*,5,9*,3),
(7*,10,2%,8,12*,3),(4*,8,10*,5,7*,11),
(4*,8,1*,9,6*,5),(3*11,8*,7,9%,10),(2*,4,10*,12,11*,6),
(5*,4,6*,10,9* 11),(6*,7,12*,10,11*,8),(8*,7,9*,4,12%,5) }.

Define

T(3)1 = (T(3)\{(10*: 1;8";216*13)}) U{(3*12)6*)8| 10*; l)}a
T(3)2 = (T(3)\{(10*: 1)8*32,6*0 3)}) U {(3*: 112*,816*)10)}; and

11



T(3); = (T(3)\{(10*,1,8*,2,6*,3)})) u{(1*,8,2*,6,3*,10)}.
Then

(2K12,T(3),{{1,2,3},{1,2,3}}),
(2K]2,T(3)l,{{1,2,3},{1,2;8}}),
(2K12,T(3)2,{{1,2,3},{1,8,10}}), and
(ZKIZ»T(3)3»{{]:213}1{8:9s10}})

are four 2-fold triangulations with | D] = 2 covering all four possibilities.
n=21.
In (3] a triangulation (K2;,T(3),D) is given with |[D| = 1. Suitable per-
mutations then give four 2-fold triangulations with the desired deficiences D*,
|D*|=2.
n=30.
Let Q beaset of size 9 with holes H = {hy,ha, ha}, |h;] = 3. Let X = {o0}UQ,
andlet( X, T') be a 2-fold triple system of order 10 such that each of ({co}Uh;, T')
is a subsystem of order 4. Let S = X x {1,2,3} and define (S,T(3), D) as
follows:
(1) Foreachh € H,let (({oo}Uh) x{1,2,3},T(h), D(h)) bea 2-fold tri-
angulation , where D(h) = {{(00,1),(00,2),(00,3)}, {(00,1), (00,2},
(00, 3) }}, and require that T(h) C T(3) and D(h) = D;
(2) for each triple {a,b,c} € T\H place the three 3-triangles in t(a, b, c)
(defined in Example 3.1) in T'(3).

Then (S, T(3), D) is a 2-fold riangulation of order 30 with deficiency | D| = 2.
Unplugging any onc of three subsystems of order 12 in (1) and replacing it with a
2-fold triangulation with the required deficiency completes this example.

The 9k + 3 construction. Let (Q, o) be a:quasigroup of order 3k + 1 with holes
H={fh,ha,... hg_} where |f| = 4 and |h;| = 3. Let S = Q x {1,2,3}
and define (S, T(3), D) as follows:
(1) Let (f x {1,2,3}, T(3f), D(f)) be a 2-fold triangulation of order 12
with |D( f}| = 2 and require T'(3 f) C T(3) and D(f) = D;
(2) same as the,9 k + 6 construction; and
(3) same as the 9 k£ + 6 construction.

Then (S,T(3), D) is a 2-fold triangulation of order 9k + 3 with deficiency
|D| = 2. Since the 2-fold triangulation in (1) can have deficiency any one of the
four possibilitics so can (8, T(3), D). [

Theorem 4.4. A 2-fold triangulation of order n and deficiency |D| = 2, D any
onc of the four possibilities, exists foreveryn=3 (mod 9).

Proof: The cases n= 12, 21, and 30 are handled by Example 4.3 and the 9k + 3

12



construction takes care of the remaining cases. [ |

5. Summary and concluding remarks.
The following theorem is a summary of the results obtained in this paper.

Theorem 5.1. There exists a 2-fold triangulation(2 K ,, T (3), D) with: |D| =0
ifandonly ifn=0 orl (mod 9),;|D|=1 ifandonly ifn= 4 or6 (mod 9),
and |D| = 2, with D any one of the four possibilities, if and only ifn = 3 or7
{mod 9).

Problem: It is easy to construct at least one 2-fold triangulation of an arbitrary
2-fold triple system (2 K,,T). Simply take (2K,,T(3) = ¢, D = T). Not
a very interesting 2-fold triangulation since D is as “large” as possible. Much
morc interesting is a triangulation with deficiency D as “small” as possible. The
gencral problem here is to determine a function f so that an arbitrary 2-fold triple
system has a 2-fold triangulation (2 K, T(3), D) where |D| < f(n) and f(n) is
“small”. The same problem, of course, can be asked for triangulations of Steiner
triple systems. Neither problem seems easy.
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