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ABSTRACT

Given a convex lattice polygon with g interior
lattice points, we find upper and lower bounds
for the perimeter, diameter, and width of the
polygon. For small g, the extremal figures were
found by computer.

A lattice point in the plane is a point with integer coordinates. The
set of all lattice points in the plane is denoted by Z2. A lattice polygon is
a simple polygon whose vertices are all lattice points.

In this article, we will discuss inequalities for convex lattice polygons
containing g interior lattice points. With g fixed, we will find upper and
lower bounds for the perimeter P, diameter D, and width w, of the lattice
polygon.

1. Inequalities for Perimeter
Let P denote the perimeter of the lattice polygon.

Proposition 1.1 (P unbounded). For any positive integer, g, there are
convex lattice polygons with g interior lattice points and arbitrarily large
perimeter.

Proof. Consider the lattice triangle OAB where O = (0,0), A = (29+2,0),
and B = (0,2). Applying a shear of magnitude k, leaving the x-axis fixed,
namely,

=z +ky

y =y
where k € Z, we find that O and A remain fixed, and B moves to (2k, 2).
This triangle has g interior lattice points and has a perimeter larger than
OB = /4k? + 4. But we can make vV4k2 + 4 arbitrarily large by making &
arbitrarily large. Thus, P is unbounded. M|

Two polygons are said to be lattice congruent if they are congruent

and each is a lattice polygon.
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The author investigated by computer the relationship between P and
g for all convex lattice polygons with D < 10 and ¢ < 10. In each case, the
minimum value of P was found, which was always less than 14. For details
of the computer search, see [4].

Proposition 1.2 (effectiveness of search for minimum P). No lattice
polygons with P < 14 were missed by the computer search.

Proof. Consider any polygon with ¢ < 10 and P < 14. Then using the
fact that in any convex body in the plane, D < P/2, we would have D < 7.
Thus the polygon would have been found in our search since we searched
all polygons with D < 10. O

The following results were found by computer:

Proposition 1.3. If g = 0 then P > 2 + V2 ~ 3.414. Equality occurs
when and only when K is lattice congruent to the isosceles right triangle
with vertices (0,0), (0,1), (1,0). See figure 1-1.

Figure 1-1
Unique polygon with g=0
and smallest perimeter

Proposition 1.4. If g =1 then P > 4v/2 ~ 5.657. Equality occurs when
and only when K is lattice congruent to the diamond with vertices (0, 1),
(1,0), (1,2), (2,1). See figure 1-2.

Figure 1-2
Unique polygon with g=1
and smallest perimeter
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Proposition 1.5. If g = 2 then P > 2v/2 + 21/5 & 7.301. Equality occurs
when and only when K is lattice congruent to the kite with vertices (0,1),
(1,0), (1,2), (3,1) or to the parallelogram with vertices (0,1), (1,0), (2,2),
(3,1). See figure 1-3.

Figure 1-3
Only polygons with g=2
and smallest perimeter

Proposition 1.6. If g = 3 then P > 3v2 + 24/5 ~ 8.715. Equality occurs
when and only when K is lattice congruent to the quadrilateral with vertices
(0,1), (1,3), (2,0), (3,1) or to the quadrilateral with vertices (0,1), (1,3),
(1,0), (3,1). See figure 1-4.

Figure 1-4
Only polygons with g=3
and smallest perimeter

Proposition 1.7. If g = 4 then P > 45 ~ 8.944. Equality occurs when
and only when K is lattice congruent to the square with vertices (0,1),
(2,0), (1,3), (3,2). See figure 1-5.

. . 0.
Figure 1-5

Unique polygon with g=4
and smallest perimeter
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Proposition 1.8. Ifg =5 then P > 3v/54+/13 ~ 10.314. Equality occurs
when and only when K is lattice congruent to the quadrilateral with vertices
(0,2), (2,3), (3,0), (4,2). See figure 1-6.

. .0
o o

. 0.
Figure 1-6

Unique polygon with g=5
and smallest perimeter

Proposition 1.9. If g = 6 then P > 2v/5 + 2/10 ~ 10.797. Equality
occurs when and only when K is lattice congruent to the parallelogram
with vertices (0,1), (1,3), (3,0), (4,2). See figure 1-7.

. 0 .

Figure 1-7
Unique polygon with g=6
and smallest perimeter

Proposition 1.10. If g = 7 then P > 2v/5 + 21/13 ~ 11.683. Equality
occurs when and only when K is lattice congruent to the kite with vertices
(0,1), (2,0), (2,4), (4,1) or to the parallelogram with vertices (0,2), (1,4),
(3,0), (4,2). See figure 1-8.

Figure 1-8
Only polygons with g=7
and smallest perimeter
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Proposition 1.11. If g = 8 then P > 4v5 + /10 ~ 12.107. Equality
occurs when and only when K is lattice congruent to the pentagon with
vertices (0, 1), (1,3), (3,4), (4,1), (2,0). See figure 1-9.

Figure 1-9
Unique polygon with g=8
and smallest perimeter
Proposition 1.12. If g = 9 then P > 4/10 = 12.649. Equality occurs

when and only when K is lattice congruent to the square with coordinates
(0,1), (1,4), (4,3), (3,0). See figure 1-10.

°

o
. 0.
Figure 1-10

Unique polygon with g=9
and smallest perimeter

Proposition 1.13. If g = 10 then P > 6v/5 ~ 13.416. Equality occurs
when and only when K is lattice congruent to the equilateral hexagon with
vertices (0, 1), (1,3), (3,4), (5,3), (4,1), (2,0). See figure 1-11.

Figure 1-11
Unique polygon with g=10
and smallest perimeter
A general result can also be obtained, although this result is not best
possible.
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Theorem 1.14. P > \/(4g + 2)7.

Proof. Pick’s Formula (see [2]) says that for a lattice polygon with area
A, g interior lattice points, and b boundary lattice points, 4 = b/24+g—1.
Since b > 3, we see that A > g + 1/2. Combining this result with the
isoperimetric inequality, P2 > 47 A, (see [1], p. 117) gives

1
P> anA > 4n(g +3)

or taking square roots,

P> /(49 + 2)n.

Proposition 1.15. P > 2[,/7] +2.
This will be proven in the next section (corollary 2.15).

The Enclosed Square Lemma. Let g be a positive integer. Then there
is a convex lattice polygon containing exactly g interior lattice points and
bounded by a square of side [Val+1.

Proof. Suppose that g is between n? + 1 and (n + 1)? inclusive, so that
[Ve]=n+1.

If g = (n+1)2, then we may take the square with side length n + 2
whose sides are parallel to the axes. This contains exactly g interior lattice
points.

Keeping the outer square ABCD fixed, we wish to show that we can
remove interior lattice points by making the enclosing convex lattice poly-
gon smaller. The number of lattice points we need remove varies from 0 to
2n since (n + 1)2 — 2n = n? + 1. It suffices to show that we can remove
anywhere from 0 to n lattice points near edges AB and BC or near vertex
B, not including the interior lattice points closest to vertices 4 and C. For
then we can apply the same process around vertex D, along edges DA and
Dc.

Consider point B to be the origin. To remove one lattice point, move
the vertex at (0,0) to (1, 1). To remove two lattice points, choose vertices at
(2,0) and (0,4) instead. To remove three lattice points, choose as vertices
(3,0) and (0,3). To remove four lattice points, choose (2,1) and (0,5) as
vertices. To remove five lattice points, choose (2,1) and (0,7) as vertices.
To remove six lattice points, choose (4,0) and (0, 4) as lattice points. (Note:
this assumes n > 6. Smaller values of n can easily be handled as special
cases.)
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Finally, to remove from 7 to n lattice points, choose as vertices (2, !
(2k + 2,0), and (0,25 + 2) where

n

13

1<k< |3

1<j <

which removes 44j+k lattice points. As j and k are varied in their allowal
ranges, from 7 to n lattice points can be removed.

Proposition 1.16. Let P(K) denote the perimeter of lattice polygon .
Let P(g) = min{P(K)|g(K) = g}. Then P(g) < 4([\/g] +1).

Proof. This follows from the Enclosed Square Lemma which guarant
a polygon containing g lattice points and enclosed inside a square of si
[v/7]+1. The polygon must have perimeter less than the perimeter of t
square (since both are convex).

We may summarize this data as follows:

Theorem 1.17. Let P(K) denote the perimeter of the convex lattice pc
gon K. Let P(g) = min{P(K)|g(K) = g} where g(K) denotes the num
of lattice points in the interior of K. Then

a. P(0) =2+ V2.

b. P(1) = 4V2.

c. P(2) =2v2+2V5.
d. P(3) =3v2+ 2V/5.
e. P(4) = 4/5.

f. P(5) = 3v5 + V13.
g P(6) =25+ 2V/10.
h. P(7) = 2v5+ 2V/13.

i. P(8) = 45+ V10.
Jj- P(9) = 4\/ﬁ.

k. P(10) = 6/5.

1. P(g) > /(49 + 2)m.
m

- 2([Ve1+1) < P(g) < 4([val+1)
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2. Inequalities for Diameter
Let D denote the diameter of a convex lattice polygon, K.

Proposition 2.1 (D unbounded). For any positive integer, g, there are

convex lattice polygons with g interior lattice points and arbitrarily large
diameter.

Proof. Consider the lattice triangle OAB where O = (0,0), A = (29 +
2,0), and B = (0,2). Applying a shear of magnitude k, leaving the x-axis
fixed, we find that O and A remain fixed, and B moves to (2k,2). This
triangle has g interior lattice points and has a diameter at least as large as
OB = \/4k? + 4. But we can make v/4k? + 4 arbitrarily large by making k&
arbitrarily large. Thus, D is unbounded. O

The author investigated by computer the relationship between D and
g for all convex lattice polygons with D <10 and g < 10. In each case,
the minimum value of D was found, which was always less than 5. No
lattice polygons with D < 5 were missed by the computer search because
all lattice polygons with D < 10 were examined.

The following results were found by computer:

Proposition 2.2. If g = 0 then D > V2. Equality occurs when and only
when K is lattice congruent to the square with vertices (0,0), (0,1), (1,0),
(1,1) or to the isosceles right triangle with vertices (0,0), (0,1), (1,0). See
figure 2-1.

oo o .
oo oo
Figure 2-1

Only polygons with g=0
and smallest diameter

Proposition 2.3. Ifg = 1 then D > 2. Equality occurs when and only
when K is lattice congruent to the diamond with vertices (0,1), (1,0),
(2,1), (1,2). See figure 2-2.

. 0 .

Figure 2-2
Unique polygon with g=1
and smallest diameter
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Proposition 2.4. If g = 2 then D > 3. Equality occurs when and only
when K is lattice congruent to one of the figures shown below.

. 00 . . 0-0 .

Figure 2-3
Only polygons with g=2
and smallest diameter

A pair of circles connected by a dash means that the polygon must
contain one or both of these lattice points as vertices.

Proposition 2.5. If g = 3 then D > 3. Equality occurs when and only
when K is lattice congruent to the trapezoid with vertices (0,1), (1,0),
(1,3), (3,1). See figure 2-4.

o
o. .o
. 0
Figure 2-4

Unique polygon with g=3
and smallest diameter

Proposition 2.6. Ifg =4 then D > V10. Equality occurs when and only
when K is lattice congruent to a polygon whose vertices consist of a subset
of the vertices of the octagon pictured below. Remove any 0, 1, 2, 3, or 4
of its vertices, but never remove two consecutive vertices.

Figure 2-5
Polygon with g=4
and smallest diameter
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Proposition 2.7. If ¢ = 5 then D > 4. Equality occurs when and only
when K is lattice congruent to one of the polygons pictured below.
. 0 .

. 0 . . 0700 .

Figure 2-6
Only polygons with g=5
and smallest diameter

A set of three circles connected by dashes means that some non-empty
subset of these three vertices must be vertices of the polygon. A lattice
point marked with an x represents an optional point; it may or may not
belong to the polygon.

Proposition 2.8. If g = 6 then D > 4. Equality occurs when and only
when K is lattice congruent to one of the polygons pictured below.
.0 . 0.

. 0=0-0 .

Figure 2-7
Only polygons with g=6
and smallest diameter

A set of three circles connected by dashes means that some non-empty
subset of these three vertices must be vertices of the polygon.

Proposition 2.9. If ¢ = 7 then D > 4. Equality occurs when and only
when K is lattice congruent to one of the polygons pictured below.

Figure 2-8
Only polygons with g=7
and smallest diameter

A lattice point marked with an x represents an optional point; it may
or may not belong to the polygon.

128



Proposition 2.10. If g = 8 then D > 3v/2. Equality can hold as can be
seen by figure 2-9 in which g = 8 and D = 3/2.

°
°o. . .0
oo
Figure 2-9

Polygon with g=8
and smallest diameter
There were too many figures in which equality held to warrant listing
them all here.

Proposition 2.11. If g = 9 then D > 3v/2. Equality occurs when and
only when K is lattice congruent to one of the polygons pictured below.

Figure 2-10
Only polygons with g=9
and smallest diameter
A lattice point marked with an x represents an optional point; it may
or may not belong to the polygon.

Proposition 2.12. If g = 10 then D > 5. Equality can hold as can be
seen by figure 2-11 in which ¢ = 10 and D = 5.

. 0 .

Figure 2-11
Polygon with g=10
and smallest diameter
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There were too many figures in which equality held to warrant listing
them all here.

A general result can also be obtained, although this result is not best
possible.

Lemma 2.13. Let K be a convex body and let H = hull(K° N Z?) where
K° denotes the interior of K. Let K. and H, denote the horizontal width
of K and H respectively. Then K, > H, + 2.

This is reasonably obvious after projecting K down to the x-axis.

Theorem 2.14. D > [\/g] + 1.
Proof. Let s=[,/g] — 1= |Vg—1], so that
g> st (1)

Let H be the convex hull of K° N Z2. Let H, denote the horizontal width
of H and let Hy denote the vertical width of H. From (1) we see that either
H; or Hy must be larger than s, for if both H. and H, were less than or
equal to s, then H could be covered by the square of side s — 1 (consisting
of 52 lattice points) and we would have g < s2.

Thus we may assume without loss of generality that H, > s. Then
by lemma 2.13, we would have K, > H, + 2. Thus K. > s + 2. But the
diameter of a convex body must be at least as large as the horizontal width
(after all, the diameter is the largest of all the directional widths), so we
see that D > s + 2. (M|

Corollary 2.15. P > 2[,/g] +2.
This follows from the fact that P is always greater than 2D.

Proposition 2.16. There is a convex lattice polygon with diameter satis-

fying D < ([7] + 1)V2.

Proof. By the Enclosed Square Lemma, we can find a lattice polygon with
g interior lattice points inside a square of side t = [,/g] + 1. The diameter
of this polygon must be smaller than the diameter of the enclosed square,

which is /2. O

Notation. Let D(g) = min{D(K)|g(K) = g} where D(K) denotes the
diameter of the convex polygon K.
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Proposition 2.17. D(10) = D(11) = D(12) = D(13) = 5.

Proof. We have already seen that D(g) > [,/§] + 1 so that D(g) > 5
if ¢ = 10,11,12, or 13. To prove that D(g) = 5 in these cases, it is
only necessary to exhibit a lattice polygon with diameter 5 for these cases.
Figure 2-11 already established this for g = 10. We conclude the proof by

exhibiting lattice polygons with diameter 5 in figure 2-12. O
)
o. o o o ..
o....o0
o ) ) ) .
. o
o ) ° o )
Figure 2-12

Polygons with g=11, 12, and 13
and smallest diameter

Proposition 2.18. D(17) = D(18) = D(19) = D(20) = D(21) = 6.

Proof. Again, we need only exhibit the appropriate lattice polygons with

diameter 6. See figure 2-13. O
- R . .0,
. o
) .
o o ) o
o . . o o
) o o
o . o
o o o
. o . )
o . ) .
°
- .. 0.
Figure 2-13

Polygons with g=17, 18, 19, 20, and 21
and smallest diameter
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Proposition 2.19. D(26) = D(27) = D(28) = 7.

Proof. Figure 2-14 shows lattice polygons with appropriate g and D = 7.
Since we have already shown D(g) > 7 for g in this range, this completes

the proof. a
R T A I ... 0.
. o ) o
o o .
. o °
o .
o ) . 0
o o . . ) ) o
o o )
Figure 2-14

Polygons with g=26, 27, and 28
and smallest diameter

Proposition 2.20. D(37) = 8.

Proof. Figure 2-15 shows a lattice polygon with ¢ = 37 and D = 8. Since
we have already shown D(37) > 8, this completes the proof. a

. 0 .

. 0 .

Figure 2-15
Polygon with g=37
and smallest diameter

We may summarize this data as follows:

Theorem 2.21. Let D(K) denote the diameter of the convex lattice poly-

gon K. Let D(g) = min{D(K)|g(K) = g} where g(K) denotes the number
of lattice points in the interior of K. Then

a. D(0) = V2.
b. D(1) = 2.
c. D(2)=3.
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d. D(3)=3.

e. D(4) = V10.
f. D(5) =4.

g D(6) = 4.

h. D(7) = 4.

i. D(8) = 3v2.
j- D(9) = 3v2.
k. D(10) = 5.
1. D(11) = 5.
m. D(12) = 5.
n. D(13) = 5.
o. D(17) = 6.
p. D(18) = 6.
q. D(19) = 6.
r. D(20) = 6.
s. D(21) = 6.
t. D(26)=1.
u. D(27) =1.
v. D(28) =17.
w. D(37) = 8.
x. [V@1+1< D(g) < ([va]+DV2.

ot

Inequalities for minimal width

Let w denote the (minimal) width of a convex lattice polygon, K.

An altitude of a polygon is a line through a vertex and perpendicular
to a side of the polygon not incident with that vertex. The length of the
altitude is the distance from the vertex to the foot of the perpendicular.

Note that the foot of the perpendicular may lie outside the polygon,
on the extension of the side to which the altitude is drawn.

Algorithm 3.1 (Computation of the width). The width of a convex
polygon can be computed by going to each vertex and finding the length of
the largest altitude emenating from that vertex. The width of the polygon
is then the smallest of these altitudes.

The verification of this is straightforward. This provides an effective
mneans for computing the width of a polygon.

Proposition 3.2 (Minimal w). For any positive integer, g, there are
convex lattice polygons with g interior lattice points and width arbitrarily
small.
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This follows from the fact that D can be made arbitrarily large (while
preserving the area) and the inequality wD < 2A which holds for all convex
bodies in the plane (see [1], p. 87).

The author investigated by computer the relationship between w and
g for all convex lattice polygons with D < 10 and g < 10. In each case, the
maximum value of w was found, which was always less than 5.

Proposition 3.3 (effectiveness of search for maximum w). No lattice
polygons with w > 5 were missed by the computer search.

Proof. Consider any polygon with ¢ < 10 and w > 5. We use the fact that
wD < 2A for all convex bodies in the plane (see [1], p. 87), and that if a
lattice polygon has at least one interior lattice point, then b < 2g + 7 (see
[5]). We also use Pick’s Formula ([2]), A = b/2+ g — 1. Then, for g > 0,

24 _b+29-2 _4g+5 45

D< — — < 9.
T w w - w T 5 =
Thus the polygon would have been found in our search since we searched

all polygons with D < 10. (We handle g = 0 as a special case.) O
The following results were found by computer: ’

Proposition 3.4. If g = 0 then w < V2 ~ 1.414. Equality occurs when
and only when K is lattice congruent to the isosceles right triangle with
vertices (0,0), (0,2), (2,0). See figure 3-1.

o
o.o
Figure 3-1

Unique polygon with g=0
and largest width
Proposition 3.5. If ¢ = 1 then w < 3v2/2 ~ 2.121. Equality occurs

when and only when K is lattice congruent to the isosceles right triangle
with vertices (0,0), (0, 3), and (3,0). See figure 3-2.

o
c. .o
Figure 3-2

Unique polygon with g=1
and largest width
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Proposition 3.6. If g = 2 then w < 2. Equality can hold as can be seen
by the first polygon in figure 3-3 in which ¢ = 2 and w = 2.

)
o. .0
) o
o. .o 0. . .0 0. .0
Figure 3-3

Polygons with g=2, g=3, g=4 and largest width

Proposition 3.7. If g = 3 then w < 2v/2 ~ 2.828. Equality can hold as
can be seen by the triangle in figure 3-3 in which g = 3 and w = 2V/2.

Proposition 3.8. If g = 4 then w < 3. Equality can hold as can be seen
by the last polygon in figure 3-3 in which g = 4 and w = 3.

Proposition 3.9. If g = 5 then w < 8V5/5 ~ 3.578. Equality occurs
when and only when K is lattice congruent to the triangle with vertices
(0,0), (4,0), (2,4). See figure 3-4.

. . .0

Figure 3-4
Only polygon with g=5
and largest width

Proposition 3.10. Ifg = 6 then w < 8\/5/5 a2 3.578. Equality can hold
as can Be seen by the figure below in which g = 6 and w = 8/5/5.

]
o .
. . . 0O
Figure 3-5

Polygon with g=6
and largest width
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Proposition 3.11. If g = 7 then w < 4. Equality can hold as can be seen
by the figure below in which ¢ = 7 and w = 4.

o
o:o
0. ..o
Figure 3-6

Polygon with g=7
and largest width

Proposition 3.12. Ifg = 8 then w < 4. Equality can hold as can be seen
by the figure below in which g = 8 and w = 4.

.o

o
o o
Figure 3-7

Polygon with g=8
and largest width

Proposition 3.13. If g = 9 then w < 9v/5/5 ~ 4.025. Equality can hold
as can be seen by the figure below in which g = 9 and w = 9/5/5.

o
o
o .
oo .
Figure 3-8

Polygon with g=9
and largest width
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Proposition 3.14. If g = 10 then w < 2V/5 ~ 4.472. Equality can hold
as can be seen by the figure below in which g = 10 and w = 21/5.

... .0
Figure 3-9
Polygon with g=10 and largest width

A general result can also be obtained, although this result is not best
possible.

Theorem 3.15. w < {/2(g + 1)V3.

Proof. For g = 0 and ¢ = 1, this result is true by Propositions 3.4 and
3.5. If g > 1, Scott [5] has shown that b < 2¢ + 6. Combining this with
Pick’s Formula, A = b/2+ g — 1, gives A < 2g + 2. We can combine this
with the inequality w? < Av/3 which is true for all convex bodies (see (1},
p. 83), to get w? < (29 + 2)V/3. Taking square roots of both sides gives us
the desired result. O

We may summarize this data as follows:

Theorem 3.16. Let w(K) denote the width of the convex lattice polygon
K. Let w(g) = max{w(K)|g(K) = g} where g(K) denotes the number of
lattice points in the interior of K. Then

a. w(0) = V2.

b. w(1) = 3v/2/2.
c. w(2)=2.

d. w(3) =2v2.
e w(4)=3.

f. w(5) = 8\/5/5.
g w(6) = 8/5/5.
h, w(7)=4.

i. w(8)=4.

j. w(9) = 9v5/5.
k. w(10) = 2V/5.

w(g) < \/2(g + V3.
Note the surprising fact that w(g) is not monotonic, since
w(1) > w(2) < w(3).

—
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We mention some known generalizations for arbitrary convex bodies
in the plane. Let g(K) denote the number of lattice points in the interior
of the convex body K. Let w(R') denote the width of the body K.

Result 3.17. If a is a positive real number, then we define W(a) =
min{g(K)|w(X) > a}. Then

a. VV(2'+§VA§)==

2a

W(a
) s W@ < 5]
These results are due to Scott [6] and Elkington and Hammer [3].

References

[1] T. Bonnesen and W. Fenchel, Theory of Convex Bodies. BCS Asso-
ciates. Moscow, Idaho: 1987.

[2] H. S. M. Coxeter, Introduction to Geometry, second edition. John
Wiley and Sons, Inc. New York: 1980.

[3] G. B. Elkington and J. Hammer, “Lattice Points in a Convex Set of
Given Width”, Journal of the Australian Mathematical Society (se-
ries A). 21(1976)504-507.

[4) Stanley Rabinowitz, Convex Lattice Polytopes, Ph. D. Thesis. Poly-
technic University. Brooklyn: 1986.

[5] P. R. Scott, “On Convex Lattice Polygons”, Bulletin of the Australian
Mathematical Society. 15(1976)395-399.

[6] P. R. Scott, “A Lattice Problem in the Plane”, Mathematika.
20(1973)247-252.

138



