Indecomposable Triple Systems with $\lambda = 6$

Jeffrey H. Dinitz 1
University of Vermont

Abstract

A triple system $B[3,\lambda;v]$ is indecomposable if it is not the union of two triple systems $B[3,\lambda_1;v]$ and $B[3,\lambda_2;v]$ with $\lambda=\lambda_1+\lambda_2$. We prove that indecomposable triple systems with $\lambda=6$ exist for v=8, 14 and for all $v\geq 17$.

1. Introduction

A balanced incomplete block design, denoted $B[k,\lambda;v]$, is a pair (V,B); V is a v-set of elements and B is a collection of k-element subsets of V called blocks. Each 2-subset of V appears in precisely λ blocks. When B contains no repeated blocks we say the block design is simple. When k=3 block designs are called triple systems.

A B[k, λ ;v] design (V,B) is decomposable if B = $B_1 \cup B_2$ and (V, B_1) is a B[k, λ_1 ;v] design and (V, B_2) is a B[k, λ_2 ;v] design with $\lambda_1 + \lambda_2 = \lambda$. If a balanced incomplete block design is not decomposable then it is termed indecomposable.

It would be of interest to find all orders v for which there exist simple indecomposable triple systems. Kramer [5] solved this problem for $\lambda=2$ and 3. He showed that when $\lambda=2$, simple indecomposable B[3,2;v] exist for all $v\equiv0,1$ (mod 3), except for v=7 and when $\lambda=3$, simple indecomposable B[3,3;v] exist for all $v\equiv1$ (mod 2), $v\geq5$. The case of $\lambda=4$ was solved by Colbourn and Rosa [2] who showed that simple indecomposable B[3,4;v] exist if and only if $v\equiv0,1$ (mod 3) and $v\geq10$. When λ is odd and v is sufficiently large, Colburn [1] proved the existence of indecomposable B[3, λ ;v]. These triple systems are not necessarily simple, however. We see that the case of $\lambda=6$ is the smallest unknown case. In this paper, we will establish that simple indecomposable B[3,6,v] exists for v=8, 14 and for all $v\geq17$.

This research was carried out while at the Institute for Mathematics and its Applications with partial funding from the National Science Foundation.

1. Main Result

In this section we will establish our main Theorem. We begin with the cases of v = 8 and v = 14.

Lemma 2.1 There exists simple indecomposable B[3,6,8] and B[3,6,14].

Proof. Consider the complete design consisting of all 56 triples on a set of size 8. This is a simple B[3,6;8]. Furthermore it is indecomposable since by the usual numerical conditions on v, k and λ , it is easy to see that there does not exist any design B[3, λ ;8] with λ < 6. By the same numerical considerations, any simple B[3,6,14] must be indecomposable. In [3] Dehon deduces the existence of simple B[3, λ ,v] for all λ and v which satisfy the necessary conditions. Thus a simple (indecomposable) B[3,6,14] exists. \Box

The following lemma is the main tool in constructing indecomposable designs for larger orders. It makes note of the fact that if a subdesign of a design is indecomposable, then the entire design is indecomposable. A $B[k,\lambda;v']$ design (V',B') is a subdesign of a $B[k,\lambda;v]$ design (V,B) if $V' \subset V$ and $B' \subset B$. In this case we also say that the design $B[k,\lambda;v']$ is embedded in the design $B[k,\lambda;v]$.

Lemma 2.2 If a $B[k,\lambda;v]$ design D contains an indecomposable subdesign $B[k,\lambda;v]$, then D is indecomposable.

Proof. A decomposition of the entire system would necessitate a decomposition of the (indecomposable) subsystem.

It is our plan to construct triple systems B[3,6,v] for $17 \le v \le 36$ which contain the indecomposable subsystem B[3,6;8]. In order to do so we use a slightly modified version of the Stinson hill-climbing algorithm for Steiner triple systems (i.e. triple systems with $\lambda = 1$). In [7] Stinson describes a hill-climbing algorithm which is very successful at finding Steiner triple systems even with large fixed subsystems. We modified that algorithm to work for higher λ . For a given v we construct a simple triple system on v points which contains all of the triples from the set $\{1,...,8\}$. By the previous lemma we have that these systems are indecomposable.

Lemma 2.3 There exist simple indecomposable triple systems B[3,6;v] for v=18,19,21,22,24,25,26,27,28,30,31,33,34, and 36.

Proof. These designs are all given in [4]. They all contain the indecomposable subsystem B[3,6;8] on the set {1,..,8}. Lemmata 2.1 and 2.2 assure the indecomposablity of the triple systems. □

In order to proceed recursively we cite the following results of Colbourn and Rosa [2].

Theorem 2.4 A simple $B[S,\lambda;v]$ can be embedded in a simple $B[S,\lambda;2v+1]$, a simple $B[S,\lambda;2v+4]$, and a simple $B[S,\lambda;2v+7]$.

Lemma 2.5 There exist simple indecomposable triple systems B[3,6;v] for v=17,20,23,29,32 and 35.

Proof. Embed the simple indecomposable B[3,6;8] into simple (and thus indecomposable) designs B[3,6;17], B[3,6;20], and B[3,6;23]. Embed the simple indecomposable B[3,6;14] into simple indecomposable designs B[3,6;29], B[3,6;32], and B[3,6;35]. □

Just to reiterate what was shown in Lemmata 2.3 and 2.5, we now have that there exist simple indecomposable triple systems B[3,6;v] for all $17 \le v \le 36$. We are now in a position to prove the main theorem.

Theorem 2.8 There exist simple indecomposable B[9,6,v] exists for v=8,14 and for all $v \ge 17$.

Proof. If $v \le 36$ then the theorem holds by Lemmata 2.1, 2.3 or 2.5. Now consider an arbitrary $v \ge 37$. By way of induction assume that there exists simple indecomposable triple systems B[3,6;v'] for all v' < v. If v is even, then $17 \le (v-4)/2 < v$ and thus there exists a simple indecomposable B[3,6;(v-4)/2]. By Theorem 2.4 this design can be embedded into a simple B[3,6;v] which is therefore indecomposable. If v is odd, then $17 \le (v-1)/2 < v$ and thus again there exists a simple indecomposable B[3,6;(v-1)/2] which embeds into a simple (indecomposable) B[3,6;v]. \square

Acknowledgement. I would like to thank C.J. Colbourn for his helpful comments concerning this problem.

Addendum. We have learned that this same result has recently been proven independently by S. Milici [6]. In his proof he derives recursive constructions which embed simple B[3,6;v] into simple B[3,6;w] for w = 2v+1, 2v+2 and 2v+4. He then constructs roughly the same set of "small" orders as were constructed in this paper but without the use of a computer.

References

- [1] Colbourn, C.J., Simple neighborhoods in triple systems, to appear.
- [2] Colbourn, C.J. and Rosa, A., Indecomposable triple systems with $\lambda = 4$, Studia Scientarum Mathematicarium Hungarica. 20 (1985), 139-144.
- [3] Dehon, M., On the existence of 2-designs $S_{\lambda}(2,3,v)$ without repeated blocks, Discrete Math. 43 (1983), 155-171.
- [4] Dinitz, J.H., Indecomposable triple systems with λ = 6: the research report, Research Report 88-07, Dept. of Mathematics, Univ. of Vermont, 1988.
- [5] Kramer, E.S., Indecomposable triple systems, Discrete Math. 8 (1974), 173-180.
- [6] Milici, S., Indecomposable $S_6(2,3,v)$'s, preprint.
- [7] Stinson, D.R., Hill climbing algorithms for the construction of combinatorial designs, Annals of Discrete Math 26 (1985), 321-334.