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Abstract Informally, a (t, w, v; m)-threshold scheme is a way of distributing partial
information (chosen from a set of v shadows) to w participants, so that any t of them can easily
calculate one of m possible keys, but no subset of fewer than t participants can determine the
key. A perfect threshold scheme is one in which no subset of fewer than t participants can
determine any partial information regarding the key. In this paper, we study the number
M(t, w, v), which denotes the maximum value of m such that a perfect (1, w, v; m)-threshold
scheme exists. It has been shown previously that M(t, w, v) S (v-t+ 1)/ (w-t+1),
with equality occurring if and only if there is a Steiner system S(t, w, v) that can be partitioned
into Steiner systems S(t - 1, w, v). In this paper, we study the numbers M(1, w, v) in some
cases where this upper bound cannot be attained. In particular, we determine improved bounds
on the values M(3, 3, v) and M(4, 4, v).

1. Introduction

A w-uniform hypergraph is a pair (X, A), where X is a set of elements called points, and 4 is
a collection of w-subsets (blocks) of X. We allow A to contain “repeated” blocks; the
multiplicity of a block is the number of times it occurs in A. If every subset in A has
multiplicity one (i.e. Ais a set), then we say that (X, A) is simple.

A perfect (1, w, v; m)-threshold scheme is a simple w-uniform hypergraph (X, 4), where X is
a set of v points (which we refer to as shadows), together with a partition of the block set 2 into
m parts, say A= {4, ..., An}, such that the following properties are satisfied:

1) if Be A and B'e 3, where i # j, then IB n B'l <t (i.e. all blocks containing
any fixed subset S of t shadows occur in the same 4;),

2) for any subset S of t' < t shadows, there exists a non-negative integer A(S) such
that for every i (1 £ i < m) there are exactly A(S) blocks B such that S Be 4;
(i.e. there are the same number of blocks containing a subset S of ' < t shadows in
each of the m 4;s).

We note that property 2) implies that every 4 contains the same number of blocks.

The application of threshold schemes is to give partial information (shadows) to w people, so
that any t of them can determine a key, but no group of fewer than t can do so. For example, the
key could be the combination of a safe, and we might desire that two of three specified people be
required in order to determine this combination. This would correspond to a threshold scheme
witht=2and w=3.
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Suppose there are m possible keys, namely the integers 1, 2, ..., m. Let (X, A) be a perfect
(t, w, v; m)-threshold scheme, which is made known to all w participants. Now, suppose we
want to distribute shadows corresponding 1o key k (1 €k £ m). We do this by choosing at
random a block B € 4. Then, we give each of the w participants a different shadow in B.
Property 1) ensures that any t participants can determine the set A, and hence the key (namely,
k), from the t shadows they collectively hold. Property 2) ensures that it is impossible for a
group of t' (< t) participants to obtain any partial information about the key.

These ideas are made rigourous in terms of probability distributions, as follows. We assume that
there is a fixed probability distribution on the set of keys (1, ... , m}, known to all the
participants. Suppose a subset of the participants have been given the shadows in the set S € B.
They can then calculate a conditional probability distribution on the keys, given the shadows that
they possess (see, for example, [24]). If it happened that p(k) # p(k | S) for some key k, then
these participants would have obtained some (partial) information regarding the actual key that
was sent. Property 2) guarantees that p(k) = p(k | S), for every key k, and for every subset S of
fewer than t shadows that occur in some block.

Threshold schemes were first described by Shamir [12) and Blakley [3} in 1979. Since then,
many constructions have been given for threshold schemes. Most of these constructions have
employed techniques from linear algebra. In [14], Stinson and Vanstone investigated the
combinatorial properties of threshold schemes, and gave some new constructions for threshold
schemes based on combinatorial designs. They presented constructions for perfect threshold
schemes with t = 3 and w = 3 and 4 that handled more keys than previously known schemes did.
The implementation of these schemnes was also discussed. We continue this investigation in the
remainder of this paper. We note that all threshold schemes discussed in this paper are perfect.

2. A combinatorial characterization of perfect threshold schemes

A characterization of perfect threshold schemes in terms of the blocks corresponding to each key
was presented in [14]. Suppose (X, A) is a w-uniform hypergraph. Given any integer t' < w,
define a t'-uniform hypergraph (X, A(t)), where A(t') is the multiset union

Uae a(S:181=1, S ¢ A}, Note that A(t') need not be simple, even if A is. We say that
(X, A(1")) is the r"-induced hypergraph of (X, A).

Two w-uniform hypergraphs (X, A4;) and (X, A3) are defined to be t-compatible if the
following two properties are satisfied:

1) A(t-1)=Ay(t - 1), and
2) AN A1) =2,

The following result characterizes perfect (t, w, v; m)-threshold schemes in terms of t-compatible
w-uniform hypergraphs.
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Theorem 2.1 [14] There exists a perfect (t, w, v; m)-threshold scheme if and only if there
exist m mutually t-compatible w-uniform hypergraphs on v points.

Our interest is in finding the maximum number of keys, m, that can be handled by a perfect
threshold scheme, given t, w, and v. We shall also require that every shadow occurs in at least
one block (otherwise, we can take the number of shadows to be some number less than v). This
maximum number of keys is denoted M(t, w, v). In view of Theorem 2.1, M(t, w, v) also
denotes the maximum number of mutually t-compatible w-uniform hypergraphs on v points (in
which every point occurs in at least one block). The following upper bound on M(t, w, v) was
presented in [14].

Theorem 2.2 [14] M(t, w,v)S(v-t+1)/(w-t+1).

In [14], a characterization of when equality can be met in the above bound is obtained. This
characterization is given in terms of certain combinatorial designs (for a general reference on
design theory, we mention [2]). Let1 St < w <v. A Steiner system S(t, w, v) is a simple w-
uniform hypergraph (X, A) on v points such that every t-subset of points occurs in a (unique)
block. That is, A(t) consists of every t-subset of X, occurring once each. We say that the
Steiner system is partitionable if we can partition the block set A into sets A), ... , & (where j
=(v—t+1)/(w~t+1)) such that each (X, 4) (1 Si<j)is a Steiner system S(t— 1, w, v).

Theorem 2.3 [14] M(t,w, v) = (v-t+ 1)/ (w -t + 1) if and only if there exists a Steines
system S(t, w, v) that can be partitioned into Steiner systems S(t — 1, w, v).

As a consequence of this theorem, the numbers M(t, w, v) can be determined exactly in certair
circumstances.

Theorem 2.4 {7, 8] Suppose v =1 or 3 modulo 6, v > 7, and v # 141, 283, 501, 789
1501, or 2365. Then M(3,3,v)=v -2,

Proof: In (7, 8], Lu proves that the set of all 3-subsets of a v-set (where v is as stated above
can be partitioned into S(2, 3, v). B

It is worth remarking that, when v = 7, it is impossible to partition the set of all 3-subsets of a v-
set into S(2, 3, v) (see, for example, [4]). The existence of such a partition for the remaining
six exceptions of v in Theorem 2.4 is unresolved.

Theorem 2.5 (1, 18] For every integer j 2 1, M(3, 4, 22j) = 22j-1-|.

Proof: In [1] and [18), it is shown that there exists a partition of the planes of the affine
geometry AG(2j, 2) (which form an S(3, 4, 22j)) into Steiner systems S(2, 4, 2%). W

Exact values of M(2, w, v) are known whenever a resolvable (v, w, 1)-BIBD exists. Fo
example, known results concerning resolvable BIBDs imply the following.
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Theorem 2.6 1) Forall v=3 modulo 6, M(2,3,v)=(v-1)/2.

2) Forall v=4 modulo 12, M(2,4,v)=(v-1)/3.

3) For all v =5 modulo 20, v 223105, M(2, 5,v)=(v~-1)/4.

4) For any k 2 3, there exists a constant c(k) such that M(2, k, v) =(v-1)/(k-1)forall v >
c(k) such that v = k modulo k(k - 1).

5) For any prime power q, M(2,q,q%) =q + 1.

Proof: Resolvable (v, 3, 1)-BIBDs are shown to exist in [9]; resolvable (v, 4, 1)-BIBDs in (5];
and resolvable (v, 5, 1)-BIBDs in [19]. For any k 2 3, asymptotic existence of resolvable
(v, k, 1)-BIBDs was shown in [10]. The resoivable BIBDs in 5) are affine planes. B

3. Some upper bounds on M(t, w, v)

One way to approach the construction of a perfect (t, w, v; m)-threshold scheme is to start with a
fixed (t — 1)-uniform hypergraph on v points, say (X, .5), and attempt to find t-compatible w-
uniform hypergraphs A, ..., Ay such that F(t - 1) =5, 1 £i <m (that is, so that (X, §) is
the (t - 1)-induced hypergraph of (X, 4), 1 i <m). Givent, w, v, and S, we would want 10
find the maximum number of such hypergraphs (= the maximum number of keys in the resulting
threshold system). We denote this number by M(t, w, v, S). Hence,

M(1, w, v) = max{M(1, w, v, 5): (X, S) is a (t - 1)-uniform hypergraph on v points}.
So, we might learn more about M(t, w, v) by studying the numbers M(t, w, v, S). The
following upper bound on M(t, w, v, S) was presented in [14].

Theorem 3.1 [14] Suppose (X, 5) is a (t - 1)-uniform hypergraph on v points. Let A be the
largest multiplicity of any (t — 1)-subset in S. Let u denote the smallest positive integer such that

[ 4 )21.
w-t+1

Then M(t, w, v, ) S(v-t+1)/u.

Corollary 3.2 Suppose (X, S5) is a (t — 1)-uniform hypergraph on v points which is not
simple. Then M(t, w,v, S) S(v—-t+1)/(w—-t+2).

Proof: In Theorem 3.1, A22,sou2w-t+2 0

Corollary 3.2 suggests that we are most likely to maximize M(t, w, v, S) when (X, $) is simple,
since the upper bound in Corollary 3.2 is already a factor of (w —t + 1) / (w — t + 2) less than the
upper bound of Theorem 2.2.

Let's now try to improve the bound of Theorem 3.1, when (X, ) is a simple (t - 1)-uniform
hypergraph on v points. For any induced (1t — 2)-subset B € S(t - 2), define
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N(B) = {x: Bu {x} ¢ S}.

We say that N(B) is the neighbourhood of B. Also, define the deficiency of S to be

d§ =max {1\, . A NA\ (xD)]: A€ S},

Theorem 3.3 Suppose (X, S) is a simple (t — 1)-uniform hypergraph on v points. Then
M(t, w, v, ) S(v-t+1-d))/(w-t+1)

Proof: Suppose there exist m t-compatible w-uniform hypergraphs, A, ... , Am, such that

At-1)=5,1<i<m Choose A € S such that [ , . o, N(A\ (x})| = d(S). Each &
contains a (unique) block A; such that A € A;. Suppose x € A,and 1 i< m. Then
INCAN [x]) N A =0. Also, (A;NA) N (ANA) =0ifi=]j. It follows thatm(w -t + 1) <
v —t1+ 1 -d(S), which gives the desired inequality. B

4. The numbers M(3, 3, v)

As indicated in Theorem 2.4, the numbers M(3, 3, v) are almost all determined whenv=1or3
modulo 6. In this section, we investigate these numbers when v =0, 2, 4, or 5 modulo 6. We
establish upper bounds on M(3, 3, v) using the results proved in Section 3. First, let's note that
M@, 3, v) = 1if v £ 5; hence we shall assume that v 2 6 for the remainder of this section.

(3, 3, v; m)-threshold schemes are related to packings of pairs into triples. It will be useful to
define some terminology. A (2, 3)-packing is a 3-uniform hypergraph (X, A), such that every
pair of points is contained in at most one block (i.e. A(2) is simple). The leave of the packing is
the graph 4(2)°, where the superscript ¢ denotes complement. That is, the leave consists of all
pairs which do not occur in a block of the packing.

A (2, 3)-packing (X, A) is said to be maximum if there does not exist any (2, 3)-packing on IXI
points with more blocks. The packing number D(2, 3, v) is defined to be the number of blocks
in a maximum (2, 3)-packing on v points. The packing numbers D(2, 3, v) and the leaves of the
maximum packings have been determined exactly, in [11] and [13}. We summarize these results
in the following two theorems.

Theorem 4.1 [11, 13] The packing numbers D(2, 3, v) are as follows:

1) If v=1or 3 modulo 6, then D(2,3,v) =v(v-1)/6.
2) If v=5modulo 6, thenD(2, 3,v) =(v(v-1)-8)/6.
3) If v=0or 2 modulo 6, then D(2, 3, v) = v(v-2)/6.
4) If v=4modulo 6, thenD(2, 3, v) = (v(v-2)-2)/6.

Theorem 4.2 [11, 13] Leaves of maximum (2, 3)-packings are isomorphic to the following
graphs:
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1) If v=1 or 3 modulo 6, then the leave is (K,)c.

2) If v =5 modulo 6, then the leave is a 4-cycle.

3) If v=0or2 modulo 6, then the leave is a one-factor.

4) If v=4 modulo 6, then the leave is the disjoint union of (v ~ 4) / 2 edges and one K, 3.

In fact, the leave of any (2, 3)-packing must satisfy certain obvious numerical properties, which
we state without proof.

Theorem 4.3 Suppose L is the leave of a (2, 3)-packing on v points. Then the following
properties hold:

i) for any point x, d, = (v — 1) modulo 2, where d, denotes the degree of x in L, and
ii) €= v(v-1)/2 modulo 3, where € denotes the number of edges in L.

Now, suppose we have 3-compatible 3-uniform hypergraphs A, ..., 4, such that Z;(2) = S,
1 £i<m. Sisa 2-hypergraph on v points (i.e. a graph with (possibly) repeated edges, but with
no isolated vertices). If S has a repeated edge, then M(3, 3, v, §) < (v - 2) / 2, by Coroliary
3.2. If S is simple, then each A;is a (2, 3)-packing with leave S°. Then, M(3, 3, v, $) €
v — 2 —d(S), by Theorem 3.3. A lower bound on d(S) will give us an upper bound on
M(3, 3, v, 5). Properties of leaves will then allow us to find upper bounds on M(3, 3, v).

For example, when v = 0 or 2 modulo 6, we have the following.
Lemma 4.4 If v =0 or 2 modulo 6, then M(3, 3, v)<v-4.

Proof: Suppose we have 3-compatible 3-uniform hypergraphs 4, ... , A, such that Z(2) =
S, 1 i <m. As observed above, if S has a repeated edge, then M(3,3, v, $5) S(v-2)/2, and
if S is simple, then M(3, 3, v, ) S v -2 - d(5). Since we can assume v 2 6, we will be done
if we can show that d(5) 2 2 if Sis simple. Since v is even, each point x has odd degree in the
leave, SF (Theorem 4.3). It follows that we can find an edge xy of S such that IN(x) U N(y)l 2
2 (note that this is not true if we allow § to contain isolated vertices). Hence, d(5) 2 2, as
required. B

It is also easy to characterize S when equality occurs in the above bound.

Lemma 4.5 If v= 0 or 2 modulo 6 and M(3, 3, v, ) = v - 4, then each 4; is a maximum
packing of pairs into triples.

Proof: For every edge xy of S, we must have that IN(x) U N(y)l S d(5) = 2. Also, for every
vertex x, x has odd degree in 5°. This can happen only when SF is a one-factor of the point set.

Hence, each 4 is a maximum packing, by Theorem 4.2. B

Corollary 4.6 If v =0 or 2 modulo 6 and M(3, 3, v, 5) = v — 4, then there exists a partition of
all triples which do not contain a pair from $* into maximum packings of tiples.
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Proof: The number of such triples is v(v = 1)(v=2)/ 6 - v(v-2) /2 = v(v - 2)(v-4) / 6.
Each of the v — 4 maximum packings uses v(v - 2) / 6 of these triples, which is all of them. W
We can construct such a set of maximum packings of triples whenever v =2 or 6 modulo 12, as
follows.

Theorem 4.7 If v=2 or 6 modulo 12, v 2 6, v # 14, 282, 566, 1002, 1578, 3002, or 4730,
then M(3,3,v)=v-4.

Proof: Let v =2v'; thenv' = | or 3 modulo 6. Start with a Steiner system S(3, 3, v') which is
partitionable into a set of v’ — 2 Steiner systems S(2, 3, v'), say Ay, ..., A - 2, on point set
(1,..,v'}. From each 4, 1 i<V -2, construct two maximum packings, A;, and 4;,,
on point set {1, ..., v}, as follows. Define

Aig={{xy.z), (x,y+viz+v]) {x+v,y,z+ v} {x+ v,y +V,z): (x,y, 2} € A}
and

Aiz={{x.y,z+ v}, {x,y+Vv,z), {x+V,y,z}, [x+ v,y + Vv, z+ v} {x, ¥, 2} € &).
It is easy to see that 4 and 4; > are both maximum packings, covering every pair except those
in the one-factor S° = {{j,j + v'): 1 £j < Vv'}. Also, it is casy to see that no two of these
2(v' - 2) = v — 4 packings contain a common triple; hence they are 2-compatible. W

We can also show that M(3, 3, 8) = 4; see Example 4.1.

Example 4.1 A (3, 3, 8; 4)-threshold scheme. The leave S° is the one-factor {{1, 5}, {2, 6},
{3, 7), (4, 8}).

A, A, A3 A4
(1, 2, 3} (2, 3,4) (3, 4, 5} {4, 5, 6}
{5,6,7) {6,7, 8) (7,8, 1} {8, 1,2}
{1,4,7) {2,5,8) {3,6,1) {4,7,2)
{5, 8, 3} (6,1, 4) {7, 2,5) {8, 3, 6)
{1, 6, 8} (2,7, 1) (3,8, 2) {4, 1, 3}
{5, 2, 4} {6, 3, 5) (7, 4, 6) {8,5,7}
{2, 7, 8} (3,8,1) (4,1, 2) (5, 2, 3}
{6, 3, 4} (7, 4, 5} (8, 5, 6} {1,6,7)

Next, we consider the case v = 5 modulo 6.
Lemma 4.8 If v = 5 modulo 6, then M(3, 3, v) Sv -4,

Proof: Asin Lemma 4.4, it suffices to show that d(5) 2 2 if S is simple. Since v is odd, every

point has even degree in 5°. As well, there must be some point x having positive degree in S,
since S5F has at least one edge (Theorem 4.3). Then, for any y such that such that xy is an edge

149



of 5, we have that IN(x) U N(y)l 2 2; hence, d(5) 2 2, as required. B
Again, equality can occur in the above bound only when each 4 is a maximum packing.

Lemma 4.9 If v = 5 modulo 6 and M(3, 3, v, 5) = v — 4, then each 4; is a maximum packing
of pairs into triples.

Proof: It is easy to see that if d($) = 2, then ¥ is a 4cycle. W
Example 4.2 The following is a (3, 3, 11; 7)-threshold scheme. Each of the ;s is a

maximum (2, 3)-packing and each of them has the same leave S® consisting of the 4-cycle
78091

Ay A 3 A4 As As A7

079 179 279 379 479 579 679
08t 18t 28t 38t 48t 58t 68t
016 120 231 342 453 564 605
025 136 240 351 462 503 614
034 145 256 360 401 512 623
712 724 736 741 751 761 704
735 730 745 750 760 702 713

746 756 701 762 723 734 725
813 823 835 840 852 863 802
826 846 841 856 861 801 815
845 850 860 812 803 824 834
914 925 930 945 950 962 901
923 934 946 961 963 904 924

956 960 951 902 912 913 935
t1s 126 134 146 156 160 103
24 t35 150 t52 102 114 112
136 140 161 101 3 123 145

Finally, we consider the case v = 4 modulo 6.

Lemma 4.10 If v = 4 modulo 6, then M(3, 3, v) Sv - 6.

Proof: Here, it suffices to show that d(S) 2 4 if § is simple. Since v is even, every point has
odd degree in S°. Also, there must be some point x having degree 2 3 in 5, since S° has more

than v / 2 edges (Theorem 4.3). Then, there exists a y such that xy is an edge of S having
IN(x) U N(y)! 2 4; hence, d(5) 2 4, as required. B

We now characterize when equality can occur in the above bound.

Lemma 4.11 If v = 4 modulo 6 and M(3, 3, v) = v - 6, then all the ;' are (2, 3)-packings
having the same leave S° which must be isomorphic to one of the following four graphs:
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K|‘3U(V—4)/2K2 K4U (V—4)/2K2
G,U (v-6)/2K, Gyu (v-8)/2K,

Q
G = and G, =

Proof: Itis easy to see that for each S° above, d(5) = 4.

where

If S5° has a vertex of degree 5, then d($) 2 5, and if S° has two vertices of degree 3 at a distance
greater than 2, then d(S) 2 6. Therefore, we only consider leaves S° having degrees 1 and 3,
and in which the distance between any two vertices of degree 3 is at most 2. Furthermore, the
number of vertices of degree 3 is congruent to 1 modulo 3 because S is the leave of a (2, 3)-

packing on v = 4 modulo 6 elements.

Let 5° be a leave for which d(5) = 4. Then the induced subgraph of the vertices of degree 3 in $°
is a connected graph of diameter at most 2. Call this graph T.

To obtain a contradiction, assume 5 has at least 7 vertices of degree 3. Then no vertex of T can
have degree 1 because of the diameter and degree constraints. If T has a vertex x of degree 2,
then the diameter and degree constraints imply that T contains a subgraph isomorphic to

y
u X v
>> o <

This completely determines the neighbourhoods of u and v in $°. It follows that IN(x) N N(y)!
=1 and hence, d(S$)2 5. This establishes that T is a 3-regular graph.

If x and y are two nonadjacent vertices of T and IN(x) N~ N(y)I = 1, then d(S) 2 5. Hence, T
must contain a subgraph isomorphic to
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in which each of u, v and w has two common neighbours with x. Now, the distance constraint
implies that T contains no further vertices. Thus we must conclude that T has 7 vertices of
degree 3, which is impossible.

This establishes that T has either 1 or 4 vertices. The result now follows by considering all
possible induced subgraphs T on 4 vertices. B

We now consider the construction of (3, 3, 10; 4)-threshold schemes, for each of the four
possible leaves of Lemma 4.11.

Example 4.3 A (3, 3, 10; 4)-threshold scheme. The leave of each packing is the disjoint
union of K, with 3 K,.

a, 2, ) a,
157 257 357 457
169 269 369 469
180 280 380 480
258 358 458 158
260 360 460 160
279 379 479 179
359 459 159 259
368 468 168 268
370 470 170 270
450 150 250 350
467 167 267 367
489 189 289 389

Another (3, 3, 10; 4)-threshold scheme is given by the fbllowing example.

Example 4.4 The leave of each packing is the union of G, with 2 K,.

157 158 159 150
169 160 168 167
180 179 170 189
259 250 258 257
268 267 260 269
270 289 279 280
340 349 347 348
367 368 369 360
389 370 380 379
458 457 450 459
479 480 489 470
560 569 567 568
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Lemma 4.12 There do not exist four compatible packings on 10 points having leaves
K 13V 3 Kz.

Proof: We consider maximal (2, 3)-packings which have the graph

1 5 7 9

as their leave $°. We will show that K¢\ S° does not admit 4 block-disjoint maximal (2, 3)-
packings.

There are 2 types of maximal (2, 3)-packings, namely those that contain the block 234 and those
that do not. In order to establish that there do not exist four block-disjoint maximal (2, 3)-

packings, it is sufficient to prove that there do not exist three such packings which avoid the
block 234.

It can be shown that every maximal (2, 3)-packing which avoids 234 is isomorphic to the
following packing (1):

uvw  23u  34v 42w
IuwW 2vW 3wU 4uV
IvU 2VU 3WV 4UW
1wV

where

{{u, U}, (v, V], {w, W]} = ({5, 6}, (7. 8}, {5, 0}).

Therefore, without loss of generality, we may assume that the set of block-disjoint packings we
are seeking contains the particular packing (2):

579 235 347 429
150 270 396 458
176 286 308 460
198
It is easy to see that there are only 2 maximal (2,3)-packings which contain the 4 blocks

uvw  23u  34v 42w,

namely, the one exhibited above and one consisting of the blocks
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uvw  23u 34y 42w
1wV 2vU 3wV 4uW
IvW  2VW 3WU 4UV
1wU

which we name (3). (Note that the permutation (2 3}(v w)(V W) is an isomorphism which maps
packing (3) onto (1).) It can be shown that there are precisely 12 maximal (2, 3)-packings which
are block-disjoint from packing (2) and avoid the block 234, namely,

2, ?, 2, ?, P, 7,
570 589 580 679 670 689
237 238 238 237 236 239
340 349 345 349 340 348
245 245 240 246 247 246
179 180 168 170 169 179
160 169 159 159 180 158
158 157 170 168 157 160
280 279 257 289 250 280
269 260 269 250 289 257
368 367 379 358 358 350
359 350 360 360 379 367
467 468 489 457 468 459
489 470 467 480 459 470
P P Py Pio Py, P2
680 680 680 680 680 680
236 236 238 238 230 230
348 340 346 340 346 348
240 248 240 246 248 246
158 158 158 158 158 158
169 169 169 169 169 169
170 170 170 170 170 170
257 250 267 279 259 289
289 279 259 250 267 257
350 357 379 367 389 359
379 389 350 359 357 367
467 467 489 489 450 450
459 459 457 457 479 479

Now it is easy to check that every pair of these packings has at least one common block. Hence,
there do not exist 3 block-disjoint maximal packings which avoid the block 234. W

Lemma 4.13 There do not exist four compatible packings on 10 points having leaves
Gz v K,
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Proof: Consider (2, 3)-packings which have the graph

1 2

o

(=]

as their common leave $°. Observe that each of the edges (pairs) 57, 68, 95, 96, 97, 98, 05, 06,
07 and 08 is contained in precisely four triples which avoid the 9 edges of $°. Hence, if there
are four (2, 3)-packings having this graph as their common leave, then all 32 of these wiples
must appear in the packings. We now show that it is impossible to distribute these 32 pairs
among four packings.

The four triples 572, 574, 579 and 570 must each be contained in a different packing. Let us call
these four packings A, 4, Ay, and A, respectively. Now the triple 459 cannot be in either of
Ay or 4. We have two cases to consider.

Case 1: 459 € A,.

This implies that the packings have the following substructure:

A, Aq Ay Ao
572 574 579 570
459
053 052 054

953 952
074 071 072
971 972 974

Now the triple 689 can go in any one of these four packings. Notice that two of these subcases
are isomorphic under the isomorphism (1 3)(2 4)(5 7)(6 8). In each case, the triples containing
69, 89 and 68 can be placed in these packings in only one way. Then the triples containing 08
cannot be placed without violating the definition of a (2, 3)-packing.

Case 2: 459 € A,

This implies that the packings have the following substructure:

A, A, Ay Ao
572 574 579 570
459
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935 925

045 035 025
017 027 047
947 917 927

This substructure is isomorphic to that in Case 1, by applying the permutation (2 4)(6 8). This
establishes that there do not exist four packings which have G, U K, as their common leave.
n

We have presented examples where the bounds of Lemmata 4.8 and 4.10 are exact, though we
know of no infinite classes of threshold schemes meeting these bounds with equality. However,
by means of a generalization of Theorem 4.7, we can construct infinite classes of threshold
schemes where the number of keys is close to these upper bounds.

Our construction is based on the trivial observation that one can easily construct n Latin squares
of order n, on the same symbol set, such that no two of these Latin squares contain the same
symbol in the same cells. (For example, start with any Latin square L of order n, with the
symbol set Z,,. Foreveryi, 0 <i<n- 1, define L(a, b) = (L(a, b) +i) modulo n.) We say that
the n Latin squares are disjoint. This immediately gives rise to the following recursive
construction.

Theorem 4.14 For all positive integers n and v such that v = 0 modulo n, M(3, 3, v) 2
n-M(3, 3, v/n).

Proof: Denote v' = v /nand m = M(3, 3, v'). Let 4y, ..., Ay be 3-compatible 3-uniform
hypergraphs on a v'-set X, such that 4;(2) = $, 1 €i<m. Let L;, 1<j <n, be n disjoint Latin
squares of order n, on symbol set {1, 2, ..., n). For every x € X, we will take n copies of x,
named x;, 1 <j < n. Impose an arbitrary ordering on the elements of X.

Now, for every 4;, 1 Si < m, we construct n 3-uniform hypergraphs on the v points in
{x; 1<j<n, x € X}, denoted ﬂ!i_j. (1 £j<n), as follows. Define

Aij= X Yo 2): (X, Y, 2) € A, 1Sagn, 1<bsn L b)=c, x<y<z].

It is easy to see that 4;;(2) = Ay 7(2), for all (i, j) = (i', j). As well AN Ay =D for all
(i,j) # (", j). Hence, M(3, 3, v) 2 n-M@3,3,v). B

We note that Theorem 4.7 is essentially the special case of Theorem 4.14 when n = 2.

Corollary 4.15 Suppose v = 4 or 12 modulo 24, v / 4 # 7, 141, 283, 501, 789, 1501, or
2365. Then M(3,3,v)2v -8,

Proof: Apply Theorem 4.14 with n=4. M(3, 3,v/4) = (v -8)/4 by Theorem 2.4. B

Leuing n = 5, we obtain in a similar fashion the following corollary.
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Corollary 4.16 Suppose v = 5 modulo 30, v/ 5 # 7, 141, 283, 501, 789, 1501, or 2365.

Then M(3, 3, v)2v -10.

Finally, we summarize our results on M(3, 3, v) in Tables 1 and 2. Table 1 contains all values
M(3, 3, v) that we know for v < 13. For the sake of completeness, we observe that M(3, 3,7) =
3. Itis well-known that the maximum number of disjoint S(2, 3, 7) designs is 2 (this was first
shown by Cayley in [4]). However, we can obtain a (3, 3, 7; 3)-threshold scheme as follows.

Example 4.5 A (3, 3, 7; 3)-threshold scheme. The leave of each packing is the triangle 123.

A, A, A
145 146 147
167 157 156
246 247 245
257 256 267
347 345 346
356 367 357
Table 1
M(@3,3,v)forvs13
v M@3,3,v) authority
6 2 Theorem 4.7
7 3 Example 4.5
8 4 Example 4.1
9 7 Theorem 2.4
10 4 Examples 4.3 and 4.4
11 7 Example 4.2
12 m
13 11 Theorem 2.4
Table 2

Bounds on M(3, 3, v)

bounds on M(3, 3, v)

v=lor3modulo6,v>1
v=0,2,or 5 modulo6,v>2

v=4modulo6,v>4

v =1 or 3 modulo 6,v # 1, 7, 141, 283, 501, 789, 1501, 2365

M@G3,3,v)Sv-2
M@3,3,v)sv-4
M@3,3,v)Sv-6

M@3,3,v)=v-2

v=2or6modulo 12, v/2 = 1,7, 141, 283, 501, 789, 1501, 2365 M(3,3,v)=v -4
v=4or 12 modulo 24, v/ 4 # 7, 141, 283, 501, 789, 1501, 2365 ' M(3,3,v)2v -8

v =5 modulo 30, v/ 5 = 7, 141, 283, 501, 789, 1501, 2365
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5. Some bounds on M@, 4, v)

Shamir's construction for threshold schemes [12] gives lower bounds on M(t, w, v) whenever
p=v/wis a prime and p > w. In this scheme, the key can be any k € GF(p) (so m = p).
The set of shadows X = {(x, y) € GF(p)x GF(p), 1 < x < w} (so v = pw). Now, for every
polynomial h(x) € GF(p)[x] having degree at most t — 1, we construct a block B(h) as follows.
The shadows in B(h) are (u, h(u)), 1 S u € w, and the key for B(h) is h(0). Hence, the number
of blocks b = pt.

It is not difficult to see that the scheme is perfect (see, for example, [14]). Hence, we obtain the
following lower bound on M(t, w, v).

Theorem 5.1 Suppose p=v/w is prime, p>w,and t £ w. Then M(t, w, v) 2 v/w.

For t = w = 3, the bounds of Section 4 are superior. However, for most other values of t and w,
this result provides the best known lower bounds on M(t, w, v). In the remainder of this
section, we present some lower bounds on M(4, 4, v).

From our general results, we know that M(4, 4, v) < v - 3, with equality occurring if and only if
there is a Steiner system S(4, 4, v) which can be partitioned into v — 3 Steiner systems
$(3,4, v). This is of course equivalent to finding a set of v — 3 disjoint S(3, 4, v) (on the
same set of points). Aside from the trivial case v = 4, no example is known. The best result in
this direction is a construction due to Lindner [6].

Theorem 5.2 [6] For all v = 8 or 16 modulo 24, there exist at least 3v / 4 disjoint S(3, 4, v);
hence M(4, 4, v) 2 3v/ 4 for these values of v.

Note that this is a considerable improvement over the lower bound of v / 4 given by Theorem
5.1

The lower bound of v/ 4 for M(4, 4, v) can also be improved when v = 0 or 6 modulo 12, by

means of a result of Teirlinck [15]. The result concerns designs with A > 1; for our purposes it
is sufficient to define an §,(3, 4, v) to be a 4-uniform hypergraph on v points such that every

three points occur in exactly A blocks. Teirlinck proved the following.

Theorem 5.3 (15] If v =0 or 6 modulo 12, then there exist v / 3 disjoint simple S, (3, 4, v);
hence M(4, 4, v) 2 v/ 3 for these values of v.

We summarize our bounds on M(4, 4, v) in Table 3.
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Table 3
Bounds on M(4, 4, v)

v bounds on M(4, 4, v)
allv M@4,4,v)Sv-3
v = 8 or 16 modulo 24 M@4,4,v)23v/4
v =0 or 6 modulo 12 M(@4,4,v)2v/3
v = 4 or 20 modulo 24, v/ 4 a prime power M@4,4,v)2v/4

6. Summary

A very interesting open problem is to improve the lower bounds on M(t, t, v) when t 2 4,
Theorem 5.1 tells us that M(t, t, v) 2 v / t under certain circumstances. On the other hand, the
upper bound provided by Theorem 2.2 is M(t, t, v) S v — t + 1. Hence, there is room for an
improvement by a factor of almost t. One approach to take would be to attempt to decompose
S(t, 1, v) (the set of all t-subsets of a v-set) into Sp(t - 1, t, v); then M(t, t, v) 2 (v -t + )/
Teirlinck's remarkable results on the existence of t-designs for all t [16, 17] provide such
decompositions; however, the values of the resulting A's are too large. In order to improve upon
the bound of Theorem 5.1, we would require that A <t — 1 in such a decomposition. This is
undoubtedly a difficult problem!

A much more tractable open problem would be to finish the determination of the numbers
M(3, 3, v). Can the upper bounds given in Table 2 always be attained, perhaps with finitely
many exceptions?
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