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Abstract

A weighing matrix A = A(n, k) of order n and weight k is a square
matrix of order n, with entries 0,+1 which satisfies AAT = kI,,.

H.C.Chan, C.A.Rodger and J.Seberry “On inequivalent weighing ma-
trices, Ars Combinatoria, (1986), 21-A, 299-333” showed that there were
exactly 5 inequivalent weighing matrices of order 12 and weight 4 and ex-
actly 2 inequivalent matrices of weight 5. They showed the weighing ma-
trices of order 12 and weights 2,3 and 11 were unique. Q.M.Husain, “On
the totality of the solutions for the symmetric block designs: A =2,k =5
or 6, Sankya 7 (1945), 204-208” had shown that the Hadamard matrix of
order 12 (the weighing matrix of weight 12) is unique.

In this paper, we complete the classification of weighing matrices of
order 12 by showing there are seven inequivalent matrices of weight 6,
three of weight 7, six of weight 8, four of weight 9 and four of weight 10.

These results have considerable implications to inequivalence results
for orders greater than 12.

1 Introduction

A weighing matrix A = A(n, k) of order n and weight k is an orthogonal (n x n)
matrix with entries 0,-1 and 1 and k non-zero entries in each row and each
column.

Two weighing matrices A and B, both of order n and weight &, are said to
be equivalent if and only if one can be transformed into the other by using the
following operations:

(i) multiply any row or column by -1, and

(ii) interchange two rows or two columns.

The intersection pattern conditions (IPC) [1] are useful to classify the weigh-
ing matrices. We shall restate the IPC for convenience’ sake. Given any row,
say row j, of a specific weighing matrix, A(n, k), we say that py; rows of A(n, k)

1This research was carried out while on study leave at University College, UNSW, ADFA,
Canberra and The Universii;’ of Sydney
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intersect row j in 2i places if there are ps; rows, each of which has exactly 2i
non-zero elements occuring in the columns containing non-zero elements in row
j- Then the IPC satisfies:

1. 3 i—gP2j =n—1;and
2 5o dpri = (k= 1)/2.

Let r;,r;j,rx and r, be row vectors of a matrix, then a generalized inner
product of these vectors is defined as |} 6imajmGkmaim|, where

T = (@igy -1 Gimy-- )y o T2 = (Beay -0, em,y - 2)-

A generalized inner product is invariant under equivalence operations, so it
may be used to check whether two weighing matrices are equivalent or not. We
shall use the term G-Table to tabulate the results of applying the generalized
inner product.

H.C.Chan, C.A.Rodger and Jennifer Seberry (1] classified the inequivalent
weighing matrices of any order with weight less than 6. In this paper, we classify
the weighing matrices of order 12 and weight k, where 6 < £ < 10. We shall
construct weighing matrices step by step. We shall use the following notations.

I,: Identity matrix of order n

O¢xm, O¢, On: Zero matrices or zero row vector

GT: Transpose of a matrix G.

K~L: K and L are equivalent matrices.

7(4,j,...,k): Row signed permutation of a matrix as follows: Move the ith
row to the first row, the j*» row to the second but by multiplying -1, ..., the
k*® row to the last row.

p(id, ..., k): Column signed permutation.

a,b,...,r,s8: Row or Column vectors.

a-b: Hadamard (element by element) product.

|a]: Number of non-zero elements of a.

|ay - ag - ... a.: Intersection number of a;,a,,...,a,.

2 Classifications of weighing matrices

of order 12 and weight 10

Let A = (ai;) be a weighing matrix of order 12 and weight 10. The IPC are
Ps +p1o = 11 and 4pg + 5py0 = 45, so we have the unique solutions ps = 10 and

p1o = 1. So, without loss of generality, we may assume that r, = (1,...,1,0,0)
and r, = (1,...,1,—,...,0,0) as the first and second rows of A respectively,
and ¢f, = (0,0,1,...,1,—,...,-) and c¢], = (0,0,1,...,1) where ¢;; and c;2

are eleventh and twelth columns of A, respectively. Let A(€) be a submatrix of
A, where 1 < ¢ <4 and
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A(l) = (a;'_,-),(i=3,...,7,j=l,...,5),

A(2) (aij),(i=8,...,12,j =1,...,5),
A(3) (a.-,j),(i=3,...,7,j=6,...,10),
A(4) = (ai;),(i=8,...,12,j=8,...,10)

Lemma 1 Each column and row of A(£) has to contain one 0, two I3 and twe

-1s where 1 < £ < 4. Moreover it may be assumed, without loss of generality,
that

42 = 0 (1£i<10), a;i43=0 (3<i<7) and
Giymi = 0 (1<i<5).

Proof: Let a = (aj,...,a10,7,1) and b =(8y,...,50,6,1) be vectors which
are orthogonal to r; and r; and with weight 10, where a;,8; € {0,1,-1} and

Let z) and 2o be the numbers of 1s and 0s in the set {a;,...,as}, respec-
tively, and y; and yo be the numbers of 1s and 0s in the set {as,...,a10},
respectively. Then we have the following equations from the orthogonality of a
and r; and a and r;:

s+ =0B-z1—20)+(5— 1 —y) and

21+ 5~y —yo)=(5—2z1—z0) + u1.

So we have the unique solutions z; = y; = 2, £y = yo = 1. Therefore, each
row of A(¢) has to contain one 0, two 1s and two -1s. It is similar for each
column of A(¢).

Next, let v = 6, then it is impossible that a and b are orthogonal and
Ja-b|=10. So if a and b are orthogonal and |a-b| = 10, then v # 6.

So we have the last half by suitable row and column permutations.

Lemma 2 It may be assumed, without loss of generality, that a32 = a33 =1,
a3q =azs =—1andazy=1.
Proof: Ifas; = -1, operate with 7(2,1,3) and p(1, 2, 3,4, 5,6, 7,8, 9, 10, 11,
12) on the matrix [r],r7,r7)7 where r = (0, a3, 03, a4, @5, 0, =1, s, @9, @10, 1, 1)
is the third row of A. The other assertations of the statement of the lemma can
easily be shown by operating with suitable row and column permutations on
the matrix [r], 7, cT)7.

Let X be a (j x 12) matrix such that XXT = 10]; and its entries are 0, 1
and -1, where 3 < j < 12. Then X may be called normal of level j if it is a
matrix of the following form:

11 1111 111100
1 1 111 - - - - -0
X=|0 1 1 = = 0 1 * * = 1 1|i3<j<7
0 0 11
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and

[1 1 1 1 1 1 1 1 1 1 0 07
1 1 1 1 - —= — — =00
0 1 1 - - 0 1 * * x 1 1
X= o if8<j<12
0 0 1 1
0 0 -1
i 0 0 - 1]

(-1 is denoted here and on all vectors and matrices with -)
If j =12, X may be called a normal weighing matriz.
Lemma 3 There are two normal matrices of level 3, up lo equivalence.

Proof: There are three vectors, say r3(1),r3(2) and r3(3), which satisfy the
conditions for the third row of a normal matrix of level 3:

() = (011 — =011 - -11),
r2) = (011 - - 01-1-11)and
3 = (011 - —01 - =111). .

Then it is easy to check that

r r Ty r i
[rz ]~[r2 ]and[rz :lf{rz .
r3(2) r3(3) r3(1) r3(2) |

© [ ry
In the following, we shall consider two cases [ T2 ] and rs ] sep-
r3(1) | r3(2)

arately, (say Case I and II, respectively).

Case I

Lemma 4 There are three normal maltrices of level 4, up o equivalence, such
that the first three rows of each matriz equals those of the matriz [rT 3, r3(1)7]7.
Proof: There are only seven vectors, say rq(i), (1 < ¢ < 7), such that the
matrices X; are normal matrices of level 4, where XT = [rT,r7,r7, ry(i)7)7
and
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1) = (10 -1 -10-1 —11),
ra(2) = (1 0 -1 - 10 - - 111),
s3) = (-0 - 11 -011 -11),
s4) = (- 01 — 1 -0 -1111),
s(3) = (- 0 - 1 1 — 01 — 1 1 1),
r6) = (1 0 - — 1 1 0 - 1 11 ) and
() = (1 0 - - 110--1-11)

But it is easy to check that X; ~ X5, X2 ~ X7 and X3 ~ Xs.
Moreover X3 ~ X4, because we can obtain X4 by operating with o(6, 7, 8,
10,9, 1, 2, 3, 5, 4, 11, 12) and =(1, 2, 3, 4) on Xj3.

Lemma 5 It is impossible 1o eztend X3 to a normal weighing matriz.

Proof: Let a=(a,...,a;0,1,1,) be a vector such that XgaT = 0 and ay =
ag = 0, where o; € {1,—1} (i # 4,9). From Lemma 1, we have a3 = —1 and
as = 1. Also, we have the equations as + a7 +ag = ayp and ajp = a; +as+as
from the orthogonality of a and r3(1) and a and r4(3) respectively. From Lemma
1 again, we may consider twocasesa; = 1, a2 = ~lora; = —1, a; = 1. But it
is impossible to obtain solutions which satisfy Lemma 1. This means we can’t
construct a normal matrix of level 6 which contains X3 as a submatrix.

Lemma 6 There is a unique normal mairiz of level 7, say X,, which may be
constructed from X, and such that the first four rows of X, equal the first four
rows of X;.

Proof: Let X; be a (7 x 12) matrix as follows:

11111111 100
11111 - - - - 00
) 01 1 - =011 =11
Xi=|10 -1 -10-1-11
1 -0 - 11 -0 - 111
-1 -01-1=-0111
|- - 110 - =11 01 1]

Then X, is a normal matrix of level 7 and it is easy to prove the uniqueness.

Lemma 7 There are three normal matrices of level 8, up to equivalence, such
that the first seven rows of each matriz equal those of X,. Moreover, for each
matriz, it is possible to construct two normal weighing matrices.

Proof: Let a = (aj,a2,...,a10,—1,1) be a vector such that the matrix

¢ T, aT]T is a normal matrix of level 8. So, a; = ag = 0. We may assume that
aj = 1, because if a3 = —1, we may multiply the kth row (8 < k£ < 12) by -1
and exchange the 11th for the 12th columns. Also, it is easily shown that there
are three vectors, say rs(1), rs(2) and rs(3), satisfying the conditions, where

rs(1) = (011 — —0 — — 11— 1),
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r3(2) = (01 - 1 - 0 -1 -1 - 1)and
ﬂwﬁwv = AO 1 - -10 -11 - - u.v.
Put X Mc = — M_S (i=1,2,3). Then we can construct two normal weighing
matrices, say A¢i-1)x241 and Agi_1)x2+2, from each ch i=1,2,3, where
11 1 1 1 1 1 1 1 1 ]
1 1 1 1 1 = = - — =
1 1 - - 1 1 - — 11
1 -1 -1 -1 - 11
1 - -1 1 - -1 11
-1 - 1 - 1 - 1 1 1
A=l - - 11 11|
11 - - - - 11 -1
1 -1 - - 1 - 1 - 1
1 - -1 -1 1 - -1
-1 - 1 1 - 1 - -1
- - 11 1 1 - - -1
(1 1 1 1 1 111 11 T
1 1 1 1 1 « - -« - <
11 - - 11 - - 11
1 -1 -1 -1 - 11
1 - -1 1 - -1 11
-1 - 1 - 1 - 1 11
=1 _ g - - 11 11|
11 - - - -11 -1
1 - -1 - 1 1 - -
1 - 1 - - 1 -1 -1
- -1 1 1 1 - - =1
-1 - 1 1 - 1 - - 1]
(1 1 1 1 1 1 11 11 |
1 11 1 1 = = = - =
1 1 - - 1 1 - - 11
1 -1 -1 -1 - 11
1 - -1 1 - -1 11
- 1 - 1 -1 - 1 1 1
A= L1 - - 11 11|
1 - 1 - -1 - 1 -1
1 1 - - - -1 1 -1
- 1 - 1 1 - 1 - -1
1 - - 1 - 1 1 - =1
- -1 1 11 - - - 1]
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1 1 1 1 1 1 1 1 11
11111 =« — — - =
11 - - 11 - - 11
1 -1 - -1 - 11
1 - -1 1 - -1 11
-1 - 1 - 1 - 1 11
Ay = - - 11 - - 11 11|
1 — 1 - -1 -1 -1
1 - -1 - 1 1 - -1
- - 1 1 1 - - -1
1 - 1 - -1 - 1 - 1
| -1 1 - 1 - - 1 - 1]
"1 1 1 1 1 1 1 1 1 1 ]
1 1 1 1 1 = = = - =
1 1 - - 11 - - 11
1 -1 - 1 -1 - 11
1 - -1 1 - -1 11
-1 - 1 - 1 - 1 11
4 = | _ _ 1 - -1 1 p 1 | and
1 - - 1 -1 1 - -1
1 1 - - - -1 1 -1
-1 1 - 1 - -1 -1
- -1 111 = - -1
|1 - -1 -1 1 - - 1]
1 1 1 1 1 1 1 1 1 1 A
1 1 11 1 = = = — =
11 - - 1 1 — = 11
1 -1 - 1 -1 - 11
1 - -1 1 - -1 11
-1 - 1 - 1 - 1 11
A4 = | - _ 11 - -1 1 11
1 - — 1 -1 1 - =1
1 -1 - - 1 — 1 -1
- - 1 1 1 1 - - -1
- 1 1 -1 - - 1 -1
1 - 1 - -1 -1 - 1]

(all unspecified positions are 0 here and in all matrices)

Lemma 8 There are two normal matrices of level 5, up to equivalence, such
that the first four rows of each mairiz equal those of X».

Proof: There are three vectors, say rs(i), i = 1,2,3, such that the matrices
X = [XT,rs(i)T|T are normal matrices of level 5, where
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1

rs(1)
r5(2)
r5(3)

)
) and
)

(= N =]
—
bt b

( 0 1
(- 10 -1 - -
( 0 1

— e

But it is easy to check that ng) ~ ng) by operating with p(6, 7, 8, 10, 9, 1, 2,
3,5, 4, 11, 12) and 7(1, 2, 3, 4, 5) on X$2.

Lemma 9 It is impossible to eziend X%z) to a normal weighing matriz.

Proof: We can prove it similarly to Lemma 6.

Lemma 10 There are two normal matrices of level 7 such that the first five rows
of each matriz equal those of Xgl). Moreover, for each matriz, it is uniquely
possible to construct a normal weighing matriz.

Proof: It is easily checked that there are two vectors, say re(1) and re(2),
such that the matrices (X{"7, re(1)T]" and X{V7, r(2)7]T are normal of level

6, where
rs(l)
r6(2)

(=1 =01 - =10111)and
(- - 101 -1-0111)

But each matrix is extended uniquely to a matrix of level 7, say X :(,” and Xél) ,
where

- -

11 11 1111 11
1 1 11 1 - - — - -

. 1 1 - - 1 1 - - 11

xP = |1 -1 -1 ~ - 11 1] and
1 - -1 1 - 1 - 11
-1 - 1 - - 1 111
- - 11 -1 -1 11 |
(1 1 1 1 1 1 1 1 1 1 ]
1 1 1 1 1 - - — — -

. 11 - - 1 1 — - 11

xM = | -1 - 1 - - 111
1 - -1 1 - 1 - 11
- -1 1 - 1 - 111
-1 - - -1 1 11 |

Also, we can construct, uniquely, normal weighing matrices, say Ay and Ajg,
from Xgl) and X._(,l), where
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1 1 1 1 1 1 1 1 11
11 1 1 1 = = = — =
11 - - 1 1 - — 11
1 -1 - 1 - 1 1 1
1 - -1 1 = 1 - 11
-1 - 1 - — 1 1 1 1
Aar =\ _ 1 -1 - 1 p oq | 2nd
1 1 - - - -1 1 =1
1 -1 - - 1 1 - =1
1 - -1 -1 -1 -1
-1 - 1 11 - - -1
- - 11 1 - 1 - - 1]
1 1 1 1 1 1 1 1 1 ]
11111 - — = — — i
1 1 - - 1 1 — = 11
1 -1 - 1 - -1 11
1 - -1 1 - 1 - 11
- -1 1 - 1 - 1 1 1
A4s = | _ 1 _ - - 11 1 1
1 1 - - - - 11 -1
1 - - 1 - 1 - 1 - L}
1 - 1 - - 1 1 — - 1!
-1 - 1 1 1 - - -1
| - - 11 1 - 1 - - 1]

Remark 1. Operate with p( 2, 1, 4,5, 3, 7, 6, 9, 10, 8 11; 12).and (' 1,
2, 4, 3) on X;. Then we obtain a matrix X, which belongs to Case II, where
X2 = [rT’rg’:r3(2)Tar(X2)T]T and

f(X:)=(10 - — 110 - — 111)

Remark 2. Operate with p( 2, 1, 3, 5, 4 1, 6, 8, 10, 9, 11, 12),and =( 1,

2, 4, 3) on X4. Then we obtain a matrix X4 which belongs to Case II, where
X4 = [r'{.)rg‘l r3(2)Tir(X4)T]T and

f(X)=(- 0 — 11 —0 —1111)

Case II

Lemma 11 There are three normal matrices of level 4, up to equivalence, such
that the first three rows of each matriz equal those of the matriz [r] ,r7,r3(2)T)T.

Proof: There are only seven vectors, say s4(i) (1 < i < 7), such that the
matrices Y; are normal matrices of level 4, where YT = [r], ], r3(2)7,s4(i)TIT
and

169



s4(1)
84(2)
54(3)
s4(4)
84(5)
s4(6)
$4(7)

But it is easily shown that ¥; ~ Ys by operating with p( 2, 1, 4, 5, 3, 7, 6, 9,
10, 8, 11, 12) and 7(1, 2, 4, 3) on Y} and Y3 ~ Ys by operating with p( 6, 7, 9,
8,10, 12, 4, 3, 5, 11, 12) and #( 1, 2, 3, 4) on Y.

Moreover, Y; ~ X, from Remark 1 and Y7 ~ X, from Remark 2.

|
| vt bt
|
| = = | =

1 1
1 1
1 1
1 1
- -1 - and
- 1

1 -
1 1

L | T | | I T
[ R |
|

COoOO0COoOOoOOoOC
|
COO0OO0OOCOO
et N e N
e e N e N
N N vt vt vt et et

1
- =1
1
1

Lemma 12 ForeachY;, there is a unique normal matriz, say Y;, of level 7 such
that the first four rows of Y; equal the first four rows of Y;, where i = 1,2, 3.

Proof: It is obvious that Y; is normal of level 7, where i = 1,2,3 and

1 1 11 1 11 1 1 1
1 11 1 1 = = — — -
1 1 - - 1 — 1 - 11
Y, = |1 -1 - 1 - - 11 1],
1 - -1 - - 1 1 1 1
-1 - 11 - 1 - 11
- - 11 -1 1 - 11 |
1 1 1 1 1 1 1 1 1 1 )
1 1 11 1 — — — - -
1 1 - - 1 — 1 - 1 1
Y. = |1 -1 -1 1 — - 1 1] and
1 - -1 -1 - 1 11
-1 - 1 1 - = 1 11
|- - 11 - -1 1 11 |
1 1 1 1 1 1 1 1 1 1 1
1 1111 — - — — -
1 1 - - 1 - 1 — 11
Ys = | - 1 1 - - 1 — 1 1 1
1 - -1 - - 1 1 11
-1 - 1 1 - 1 - 11
[ 1 - -1 1 1 - - 1 1]

And it is easy to check the uniqueness for each matrix Y;.
Remark 3: Operate with n( 2, 1, 6,3,5,4,7) and p( 9, 6, 8, 7,10, 4, 1, 3, 2,

5, 11, 12) on Y;. Then we obtain X(l)
Operate with 7( 1,2, 7, 3, 4, 5, 6)andp( 10,6,7,8,9,5,1,2,3 4,11, 12)

on Y;. Then we obtain X(l). —
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Operate with 7(2, 1, 6, 7, 4, 3, 5) and p( 4,5,2,1,3,9,10, 7,6, 8,11, 12)

on Y3. Then we obtain X.f,l).

Theorem 1 There are four weighing matrices, up to equivalence, of order 12
and weight 10.

Proof: By the above lemmas and remarks, it is sufficient to check whether the
eight matrices A; (1 < i < 8) are equivalent or not. It is easy to check 44 ~ Aa,
Agq ~ A3, Ag ~ Ag, As ~ Ag, AT ~ A4, AT ~ A3 and AT ~ A,. We shall list

an equivalence table in the following:

Old x-operations p-operations New
Ay [510361478112912(691225141171038 ] A2
Ay 1611357418101292|881071213521149 | Ay
Ay 1493715681221011]110123965118427| Ae
As |38471659122111012]10124875119316 | A¢
AT |161223451187910|154672109111283 | 4,
AT |161223451178910(145672910111283 | 4s
Ay Identity 121112345678910 | Sym

(where Sym: symmetrical matrix)

In the above equivalence table, it means that, for example, we obtain A by
operating with (5103614781129 12) and p( 691225 141171038)
on Ay.

Next, in order to check whether A;, A4, A7 and Ag are equivalent or not, we
count the numbers of generalized inner products when fixing each row of each
matrix. We list these in a table called the G-table in the following:

Matrices | Mult. 6 1 2 3 4 5 6 7 8 9 10
Ay 12 80 0 40 0 40 0 0 O 5 0 O
A4 12 100 0 24 0 24 0 16 0 1 0 O
Az 12 8 0 40 0 40 0 O0 O 5 0 O
Az 12 80 0 32 0 32 0 8 0 1 0 O

When fixing a row of a weighing matrix of order 12 and weight 10, there
are 1,C3 generalized inner products, each of which is one of 0, 1, ..., 10. In
the above G-table, it means that, for example, there are 12 rows of A;, each of
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which has eighty Os, forty 2s, forty 4s and five 8s.
Clearly, A) # A4 and Ag, Ay # A7 and Ag, and A7 £ As. But A; £ Az,
because 4; ~ AT but A7 £ AT. This completes our proof.

3 Classifications of weighing matrices

oforder 12 and weight 9

Let A= (a;;) be a weighing matrix of order 12 and weight 9. The IPC are
ps +ps = 11 and 3ps + 4ps = 36, so we have the unique solutions ps = 8 and ps
=3. So, without loss of generality, we may assume that r; = (1,1,1,1,1,1,

1,1,1,00,0)andr,=(1,1,1,1,-,-,-,-,0,1,0, 0) as the first and second
tows of A, respectively, and ¢f; =(0,0,1,0,1,1,1,1,-,-,-,-) and T, = (0,

0,0,1,1,1,1,1,1,1,1, 1), where ¢;; and ¢;5 are the 11th and 12th columns
of A respectively.

Let a = (y,...,a3,7,8,£,1) be a vector of weight 9 which is orthogonal to
ry and ry,.where a;,7,6,§,n € {0,-1,1} and 1 < i < 8. Let z,,zy and z—
be the numbers.¢f.1,:0 and -1 in the set {ay,...,a4} and y;, yo and y_ be the
numbers of 1, 0-and-<1 in the set {as,...,as}, respectively. Then we obtain the
equations 4z) = 8 — 2z9 — v — § and 4y, = 8 — 2yp — v + & by the orthogonality
of a and r, and a and ry, respectively. Note that ¥ + § is even. So, we obtain
a set of solutions as described in Table 2.

By the IPC, there are two other rows, say r3 and ry4, in A4 such that each
row has the common weight 8 with V;. So, r3 and r4 have to belong to one of
(1), (4), (7) and (13) in Table 2. If r3 and ry do not belong to (1), then |r3| > 10
and [r4| > 10 because of the.choice of ¢1; and c;2. So, we may assume, up to
equivalence, r3.= ( 1, 1, -,~-,11, 1,-, -, 0, 0, 1, 0). But for r4, there are two
‘cases, say ry(1) and:xj(2) where

ré(lv) = (1)1)_x_v—v-’l)ly0|010al) a-nd
r4(2) (1’—1 11—111_11’-,0|0)01 l)-

In the following, we shall consider two cases such that the first four rows of
the weighing matrix are

111 1 1 1 1 1 1

1 1 1 1 - - = =1

11 - -1 1 - - 1

11 - - - - 1 1 1
and

1 1.1 1 1 1 1 11

1 1 1 1 - - - - 1

11 - - 1 1 - - 1 !

1 -1 -1 - 1 - 1

(say Case I and Case II, respectively) separately.
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Case I

2y [zoJz_ I [wy-]v 6]le-a]
a |2]o0}2]2|0|2]|0 o 8
(2) » 1l2]1 » é
@ |1]2]1}2]0]2 » 6
4 [1]1]2]2|ofl2]1 1] 8
(5) » 121 » 6
@6 |o]|3]1]2]0]2 » 8
m lz2lr1l1]2f{o}2]1 2| 8
(8) » 1|21 » 6
@ |1]|3|0o]|2]|0]2 » 6
@)l z2lo|l2|1}rf2]1 2| 8
(11) » 0|31 » 6
ay| 1|21 {1]1]2 » 6
a3yl 2o 22|11 {1 1| 8
(14) » 1|3]o » 6
sy | 1|21 ]2]1]1 » 6
Table 2

Let A be a weighing matrix for Case I. Let a = (&, ..., a9,7,6,&,7) be a vector
of weight 9 which is orthogonal to ry, ra, ra, and r4(1). Let wy and wo, 1 and
zo, y1 and yp and z; and zp be the numbers of 1s and Os in the sets {a, a2},
{as,as}, {as, a6} and {az, as}, respectively. Then we have the equations:

8w1
8z,
8y
8z

8 — 4wy — (v + 8+ £ +1),
8—dzg—{(ry+6—-£-n),
8—4yo—(y—6+&—n)and
8—4z0—(y—-6—-&+n).
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by the orthogonalities of a and ry, a and r3, a and r3 and a and ry(1).
Note that y+8+£+vy=0 (mod 4).
So, without loss of generality, we may assume that

A= [ A(1) A(2) ,where A(2) = I,

A(3) A(4)

11 1 1 1 1 1 1]

1111 - - - =
A(l) = 11__ll__zmd

(11 - - - - 1 1 ]

[1 1 - — - — 1 1]
r _ |11 - - 11 - -
AT = 11101 - - - -

111 1 1 1 1 1]

Let X = [ );8; §8; ] be a (j x 12) matrix such that its entries are 0, -1
and 1 and XXT = 9I;, where X(1), X(2), X(3) and X(4) are (4 x 8), (4 x 4),
((7 — 4) x 8) and ((j — 4) x 4)submatrices of X, respectively.

Then X is called normal of type I and level j if [X (1), X(2)] = [A(1), A(2)]
and X (4) = A(4), where A(4) is the first ((j — 4) x 4) submatrix of A(4).

Lemma 13 There are two normal matrices of type I and level 5, up to equiv-
alence.

Proof: Let a = (aj,...,as,1,1,1,1) be a vector which is the fifth row of a
normal matrix of type I and level 5. Then |r;-a] = 6. So, a belongs to either (5)
or (6) in Table 2. If a belongs to (5), we may assume, without loss of generality,
a =rs(1), where rs(1) =(0,-,1,-,1,-,0,0, 1, 1, 1, 1) and if a belongs to (6),
we may assume a = rs(2), where r5(2)=(-,0,0,0,1,-,1,-, 1,1, 1, 1).

1 1 1 1 1 1 1 11
11 1 1 - - - = 1
PutX; = |1 1 - - 1 1 - = 1
1 1 - - - - 1 1 1
-1 -1 - 111 1]
1 1 1 1 1 1 1 1 1 ]
111 1 - - - - 1
and X, = 1 1 - - 1 1 - = 1
11 - — - = 1 1 1
| - 1 — 1 - 111 1]

Clearly, X; # X,.

Lemma 14 For X,, it is uniquely possible, up to equivalence, to construct an
weighting mairiz such that the first five rows equal those of X, .
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Proof: It is easy to show that there is the unique vector, say rg, such that a
matrix [XT,rf]T is normal of type I and level 6, where r¢ = (-, 0,-,1,-,1,0,
0,1,1,1,1).

Moreover, there are four normal matrices, up to equivalence, of type I and
level 8 such that the first six rows equal those of [XT,r2]7, i.e.

X1
Sy |- -1 -1 1 111
Xi7 o= 1 - 1 1 - - — 11|
- 1 1 -1 - -1 1]
- X, 3
(2) - - 1 =1 1 1 1
Xi - - 1 1 1 - - —-— 11}
1 - 1 -1 - - 1 1]
- X, 1
3) - -1 -1 1 1 11
X1 1 - 1 -1 S
[ -1 11 - - -1 1]
- X, z
4 _ - -1 -1 1 1. 11
X - - 1 1 1 - - - 11
1 - -1 - -1 1]

But clearly, we can’t extend X 53) and X 54) to a weighing matrix of weight 9.
Moreover X&l) ~ X§2), because we obtain X§1) by operating with #( 1, 2, 3,
4,7,8,56)and p(431287659101112) on X{?. From X{!, we can

construct uniquely a weighing matrix, say A, where

1 1 1 1 1 1 1 1 1 i
1 111 - — — = 1
11 - =1 1 - = 1
1 1 - — - — 1 1 1
-1 - 1 - 1 1 1 1
- -1 - 1 1 1 1 1
Av= 1 1 = — - 1 1
-1 1 -1 = = 11
1 - 1 - 1 - 1 -1
-1 1 1 - — 1 -1
1 - - 1 -1 - -1
i -1 1 - - 1 - - 1]

Lemma 15 For X3, it is uniquely possible, up to equivalence, to construct a
weighing matriz such that the first five rows equal those of X3.

Proof: We can construct such a weighing matrix, say A,, by step by step,
moreover uniquely, where
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(1 1 1 1 1 1 1 1 ]
1 1 1 1 - - - < 1
1 1 - -1 1 -« = 1
1 1 - - - —- 1 1 1
- 1 -1 - 1 1 11
_ - -1 - 111 11
As = 1 1 — —1 - - 11
1 -1 - - =11
1 - - 1 1 -1 -1
-1 1 - 1 -1 -1
-1 -1 - 1 - - 1
[ 1 - 1 - -1 - - 1]
Case II
Let A be an weighing matrix for Case II. Then we can assume, without loss of
generality, that
_[46) 4@) _ -
A= [ AT A | where Ag = I,
[1 1 1 1 1 1 1 17
11 1 1 — — — -
A(5) = 11 — — 1 1 - - and
1 -1 -1 — 1 —
[1 - 1 — 1 — 1 =]
r _ |11 - — 1 1 - —
A(B) - 1 1 1 1 = — - -
(11 1 11 1 1 1]

Let Y = [ 585 )}:8; ] be a (j x 12) matrix such that its entries are 0,
-1 and 1 and YY7 = 91;, where 4 < j < 12 and Y(1),Y(2),Y(3) and Y(4) are
(4 x12), (4 x 4), ((j — 4) x 8) and ((7 — 4) x 4) submatrices of Y, respectively.
Then Y is called normal of type II and level j if [Y(1),Y(2)] = [A(5), Is] and
Y(4) = A(8), where A(8) is the first ((j — 4) x 4) submatrix of A(8).

Lemma 16 There are three normal matrices of type II and level 5, up lo equiv-
alence.

Proof: Let a be a vector which is the fifth row of a normal matrix of type II
and level 5. So, a has to belong to either (5).or (8) in Table 2. If a belongs to
(6), we may assume, up to equivalence,

a=a = (—,0, 0: 0, lt_i_l ls l! 17 l\ 1)'
If a belongs to (5), there are eleven cases, say a,, (2 < £ < 12), where

ag = (- 10 -0 -011111),
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a3 (1 —= =0 -0011111),
ag = (- 01 — = 100111 1),
as = (- 0 — 1100111 1),
s = (- 10 - —010111 1),
a7 = (- — 0110 —-01111),
ag = (- 1 —00 -=101111),
ag = (- - 1001 —01111),
ag = (- 01 — 00 - 1111 1),
ay = (-0 - 1001 — 111 1),
a3 = (- — 01010 — 111 1)

Let Y; = [x7,r%,r],r4(2)7,aT)7,i=1,2,...,12. Then we obtain an equiv-
alence table as follows:

Old | w-operations p-operations New
Y 21345 123487651091112 | Ys

Y4 ” » Yl o
Ys » ” Yl 1
Y7 » ” Yl 2

Yy 13245 125634789111012 | Ys
Y,y 12435 |132457689101211 ) Ys
Y,y 14235 135724689121011 (| Yg

Ys 12435 132457689101211 | Ys

Ys 12435 132457689101211 | Yo

Clearly, Y, £ Y2,Y3 and Yz £ Ys.

Lemma 17 ForY), there are two normal matrices of type II and level 5, wp to
equivalenice, such that the firsl five rows equal those of Y,. Moreover, for each
matriz, il is uniquely possible to construct a weighing matriz.

Proof: A vector to be added to Y has to belong to (14) or (15) in Table 2.
There is not such a vector which belongs to (14). But there are three vectors,
say re(1), re(2) and rg(3), which belong to (15), where

r(l) = (- 001011 - - 111),

177



re(2)
r5(3)

[
~—~
—
!

00 — 101 -111)and
1 - 111)

[
—~~
—
o
|
o
|
(=]
—

Put Yl(‘) = [Y7,rs(0)7)7, (i = 1,2,3). But Yl(z) ~ Yl(s) because operating
with 7( 1, 2,4, 3, 5,6) and p( 1,3, 2,4,5,7 6, 8,9, 10, 12, 11) on Y® gives
Yl(s). Next, it is easily shown that we can uniquely construct a weighing matrix,
say Aj4z2, from each }’1(‘), (i =1,2), where

1 1 11 1 1 111
1 111 — - - - 1
1 1 — -1 1 - = 1
1 — 1 -1 - 1 - 1
- 1 - 1 1 1 11
- 1 1 1 - — 1 11
A3 = | - - 1 - 1] - 1 1| 2d
1 1 - - 1 - - 11
1 - - - 1 1 1 - 1
1 - 1 -1 - 1 -1
- 1 1 - - 1 - — 1
| 1 -1 1 - - - - 1]
1 1 1 1 1 1 1 1 1 ]
1 1 11 = = - = 1
1 1 - -1 1 - - 1
1 — 1 - 1 - 1 = 1
- 1 — - 1 1 1 1 1
- -1 1 - 1 1 1
A = | _ 1 -1 -1 - 11
1 - 1 -1 - - 1 1
1 - - - 1 1 1 - 1
- 1 1 1 - -1 =1
1 - - 1 - 1 - - 1
U -1 - - = 1]

Lemma 18 ForYa, there are three normal matrices of type II and level 6 such
that the first five rows equal those of Ya. Moreover, for each matriz, it is uniguely
possible to construct a weighing matriz.

Proof: Let a be a vector to be added to Y. Then a has to be chosen from
(14) or (15) in Table 2. If a belongs to (14), put a = F¢(1), where £4(1) = ( 1,
--1,0,0,0,- 1,1, 1). If a belongs to (15), there are two vectors, say #s(2)
and £4(3), satisfying the conditions, where

l-'6(2) = (—,0,0,1,0,1, 1’—I—llll|l) &nd
i's(a) (11—10101_’1v011:-v l)lll)‘
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Put Y.‘.(i) = [¥F,8()7)7, (i = 1,2,3). Then, from each Y"), we can
uniquely construct a weighing matrix, say A;44, where { = 1,2,3 and

r -

1 1111111 1
11 1 1 - - - = 1
11 - -1 1 - - 1
1 - 1 - 1 - 1 = 1
-1 - - 1 1 1 11
1 - - 1 1 — 1 1 1
45 = -1 - 1 -1 1}
- 1 1 - — — 11
- - 11 =11 -1
- 1 1 1 - -1 -1
-1 1 - - 1 - -1
11 - - 1 = — — 1|
1 1 1 1 1 1 1 1 1 i
1 11 1 — - —- = 1
1 1 - - 1 1 - = 1
1 - 1 -1 - 1 - 1
-1 - - 1 1 1 11
- 1 1 1 — — 1 11
As = -1 -1 - 1 — 1 1|2
1 -1 - 1 — — 11
- - 11 - 1 1 -1
1 - -1 1 — 1 -1
1 - - 1 - 1 - -1
- 1 1 1 - - - = 1]
1 1 1 1 1 1 1 1 )
1 111 = - ~- = 1
1 1 - - 11 - = 1
1 - 1 - 1 - 1 - 1
- 1 - - 1 1 1 11
1 - -1 1 - 1 11
Ar = -1 - 1 - 1 - 11
- 1 11 - - - 11
- -1 1 = 1 1 -1
-1 1 1 - — 1 -1
1 - - 1 - 1 - -1
11 - - 1 = - — 1]

Lemma 19 For Y3, there are two normal matrices of type II and level 8 such
that the first five rows equal those of Ys. Moreover, it is uniquely possible to
construci a weighing matriz from each matriz of level 8.

Proof: There are five normal matrices, say Ya(") of type Il and level 8 such
that the first five rows equal those of Y3, where i < i < 5, and
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) _ A(G) L
Ys()"[z(ﬂ ,44(9)

1 —
W = | =1
z - -1
S
7 - -1
[1 -

(3) — -
z - -1
SR

z4 = -
| 1
1 -

z® = -
1

I o= ] =

A(9) =

1 -

- 1
11 1 -
1 -

1 1 - -

1 - 1 1

1 1 1
1 - -

1 1 - -
1 1 -
1 - 1
-1 -1
1 1 1
11 - -
1 - -

[ SN
-

and

Clearly, we can't construct a weighing matrix from Y“) But Ym ~ Y(‘) and

y(’)

~ Y(s) We shall give an equivalence table in the following:

Old | =-operations

p-operations

Ys’ 12435678

Y | 21345768

132457689101211

1234876510911 12

Next, we can uniquely construct a weighing matrix, say A;47, from each Y:,f'.)

(¢ = 1,2), where
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As

Ag

Theorem 2 There are four weighing matrices

11 1 1 1
11 1 1 =
1 1 - - 1
1 - 1 =1
1__ -_—
...11_
- 1
1 -

- 1 -
- 1 1
1 - -

11 -
1 1 1 1 1
1 1 1 1 -
1 1 - - 1
1 — 1 -1
1__. P,
- 1
- 1 1
1 1 - -
—_ 1 -
1 - 1
l_ —
1 - 1

and weight 9.

Proof: It is sufficient to check whether matrices Ay, (§ < i < 9) are equivalent

=1 =

[T

|l =1 =

1

1 1 1 ]
- - 1
- - 1
1 - 1
1 1 1 11
1 - 1 11
- 1 - 11
1 — — — 11
1 — 1 1 -1
- -1 -1
- 1 - -1
1 - - - 1|
1 1 1 1
- - 1
- - 1
- 1
1 1 1 11
1 — — 1 11
- 1 - 1 1
1 — — 11
- 1 1 -1
1 - 1 -1
1 - 1 - -1
- - - - 1]

up to eguivalence

or not. We give an equivalence table in the following:

and

of order 12

Old x-operations p-operations _F
Ay Identity 910111212345678 | Sym
A |231456111287910[218734651011912] A,
A3 [971281163511024123592114107188 | Ae
AI 2347861191051211121112849367105| A«
As {213468571012911 |876512341091112| A,
AT |146827113105129[158210364120711| A
A7 Identity 121110912345678 | Sym
As |129651071113824[122311891106745 | As
Ay Identity 121110912345678 | Sym
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But A, A3, A4 and Ay are not equivalent to each other, as we can see from
the following G-table:

Matrices [ Mult. | 0 1 2 3 4 5 6 7 8 9
Ay 12 48 32 64 0 20 0 0 0 1 O
Az 12 55 12 72 14 6 6 0 0 O O
Ay 12 55 16 72 8 6 8 0 0 O0 O
Ag 12 73 0 48 32 12 0 0 0 O O

This completes our proof.

4 Classifications of weighing matrices

of order 12 and weight 8

Let A be an weighing matrix of order 12 and weight 8. The IPC are py+pe+ps =
11 and 2p4 + 3ps + 4ps = 28. So we get four kinds of solutions:

I ps=3,pe=0,ps=8.
Hpe=2,p6=2,ps=17.
Il pg=1,ps =4, py =8.
IV pg =0, ps =6, pg = 5.

Lemma 20 There is no weighing matriz coniaining a row which has Case Il
for the IPC.

Proof: Let A be a weighing matrix for Case 11. Then we can assume, without
loss of generality,

11111 1 1 1

1
_[AQ) A@) _ 11
A—[A(3) A() ""h"‘“‘(‘)'[} Pyl o

A(2) = 03x4, and A(3) and A(4) are (9 x 8) and (9 x 4) submatrices of A.
But A(4)T A(4) = 81, and each column of A(4) has weight 8. So, there is a row,
say the igth row, in A(4) which is a zero vector. Then the ioth row of A(3) has
the weight 8. This contradicts to our Case II.

Lemma 21 Any weighing matriz conlaining a row which has Case IV for the
IPC is non-exisient or equivalent 1o the iranspose of an weighing matriz which
was constructed from Cases I or III.

Proof: Let A be a weighing matrix for Case IV. Put A = [4, B}, where the
first rows’ components of A and B are all ones and all zeros, respectively. Then
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we may assume that |b’ - b”| = 6, where b’ and b” are distinct column vectors
of B, because if there is a pair of column vectors, say b’ and b”, of B such
as |b’ - b”| = 8, then AT will be equivalent to an weighing matrix which was
constructed from Cases I or III.

So, we may assume without loss of generality, that

0 1| BT IB(2)" B(3)7'|b

5 0 1 1

BT = 0 1|1 1 = = =Jo o1 110 , where b € {1,-1}
0 1|11 11 1|1 1|o °|°

But B(2) and B(3) must be forms of matrices such as [ £ 0 ] or

0 =+1
[ 0 =1

+1 0 ] and there is one zero row vector in B(1). So, we may assume

1 0

that B(2) and B(3) are forms of matrices such as [ io +1

], by row permu-

tations of B.
Then it is easily shown that there are three matrices, say By, B,, and Bj,
satisfying the above conditions, where

0 0 0 O 0 0 0 O 0 0 0 O
1 1 11 1 1 11 1 1 11
0 0 1 1 -1 11 1 - 11
- = 11 1 - 11 - - 11
-1 =1 0 0 -1 0 0 -1
Rl I S S PR
01 01 0 - 01 0 1 01
1 0 0 1 - 0 0 1 - 0 0 1
0 - 1 0 0 - 10 01 10
- 0 1 0 - 0 10 - 0 1 0
- 1 0 0| |- 1 0 o] [ 1 1 0 o]

-—) &)

10, 11, 8, 9, 12) and p( 1, 2, 4, 3) on B,. B, ~ B;, because operating with
n( 1, 4, 2, 3,5,7,6,8,9,10, 11, 12) and p( 1, 2, 3, 4) on B; gives Bs. So,
we shall use By for B. Then we may assume without a loss of generality that

But B; ~ Bj, because we get B) by operating with m(1,6,5/7,4,3,2

A= [ i,( !‘i ], where [J7, KT)7T is a matrix which was obtained by operating

with 7( 1, 2, 4,5,6,7,3,8,9,10, 11, 12) on B;:
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and K =

et
| = | —m o

| = =0
| o= oo
=0 O -

[

et e s O
-0 | oo
O OO =

0

We want to find a matrix X such that [r-r’] # 8, where r and 1’ are any
two different row vectors of the matrix [X,J].

But we can obtain two such matrices, say X, and X, without loss of gener-
ality and up to equivalence, where

F1 1 1 1 1 1 1 1 T

1 1 - - 1 1 1 1

' - - 1 1 - - 11
X, = _ _ 1 l—l—land

tr 1 - - 1 - -1

1 1 - - - - 1 1]

(1 1 1 1 1 1 1 1 ]

11 — — 1 1 11

-1 1 -= = - 11

X2 = 11 - - -1 -1

— - 1 1 1 - =1

1 - 1 - - - - 1]

Leta = (ay,...,s,0,0,1,1) be a vector such that [X, J]aT = 0or [X,, J]aT =
0, where |a| = 8. But no vector a can exist such that 5_, |e;| = 6.
Lemma 22 For Case I, there are siz weighing matrices which could be inequiv-
alent.

Proof: Let A be a weighing matrix for Case I. We may assume, without loss of
generality, that A = [ jg; jgg;
loss of generality, the A(5) part is divided into two cases, say (i) and (ii), and
the A(8) part is divided into two cases, say (iii) and (iv), where

], where A(6) = O4x4. Moreover, without

11111 1 11 1 1 1 1]
(i),1111-——— 1 1 1 1
11 - -1 1 - - - - 11

11 - - — - 11 e | = = 11
1 1 1 1 1 1 11 -1 - 1
w1 1 1 1 — — — =
(ii) ) - =1
11 - — 1 1 - - 1 — - 1
1 -1 -1 - 1 - - -
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| -
| o= =

(iv)

=8 =1 =1 =
(BT |
|

[ Y L

l’—
L

We construct weighing matrices from three cases (i,iii), (i,iv), (ii,iv) only,
because matrices which are constructed from case (ii,iii) will be equivalent to
the transpose matrices which are constructed from case (i,iv).

For cases (i,iii) and (i,iv), we can assume that the first row vector of A(7) is
(1,-,1,-,0,0,0,0). On the other hand, for case (ii,iv), there are 24 possibilities
for the first row vector of A(7) as follows:

(1) (1--10000)] (7) (01-00-10)
(2 (1-00-100)f (8) (010--010)
(3) (1-0000-1)| (9) (010-0-01)
(4 (10-00-01)[(10) (001--100)
(5) (10-0-010)|(11) (001-00-1)
(6) (100--001)](12) (00001--1)
(n)*: Sign changed vector of (n), where n=1,2,...,12.

But we can easily show that all cases are equivalent to each other. So, for
case (ii,iv), we assume that the first row of vector A(7) is (1,-, -, 1,0, 0, 0, 0).

From case (i,iii), we can construct two weighing matrices, say A, and Az,
where

1 111 1 1 11

1 111 - - - -

11 - -1 1 - -

1 1 - - - - 11

1 - 1 - 1 1 1 1

R

-1 1 - - =11
1 -1 - -1 -1
-1 -1 -1 -1
1 - -1 1 - -1

i - 11 -1 - = 1]
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F1 1 1 1 1 1 1 1 A
111 1 - - - =
11 = — 1 1 - -
1 1 - — — - 11
1 - 1 - 1 1 1 1
-1 -1 1 1 1 1
A = 1 - 1 — — — 11|
- 1 - 1 - = 11
1 - - 1 -1 -1
-1 1 - -1 -1
1 - -1 1 - -1
i - 11 -1 - - 1|

From case (i,iv), we can construct three weighing matrices, say A3, A4 and

As, and from case (ii,iv) an weighing matrices, say Ag, where

1 1 111 1 11 ]
1 111 - - - =
1 1 = - 1 1 - =
1 1 - - - - 11
1 - 1 - 1 1 1 1
-1 1 - - 1 1 1
45 = -1 - 11 - 11}
-1 1 = = = 11
-1 1 - 1 1 - 1
-1 - 1 = 1 -1
-1 1 - 1 - -1
|1 - 1 - - - - 1]
1 1 1 1 1 1 1 1 ]
1 1 11 - - - =
1 1 - - 1 1 - -
1 1 - - — — 1 1
1 - 1 - 1 1 1 1
- 1 1 - -1 11
Ay = -1 - 11 -1 1]
- 1 1 = - = 11
- 1 - 1 1 1 -1
1 - - 1 -1 -1
1 - 1 - 1 - — 1
i 1 - -1 - - - 1]
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1 1.1 1 1 1 11 ]
11 11 — — — —
11 - — 1 1 = -
1 1 — — — = 11
1 - 1 - 1 1 11
-1 - -1 11
e I -1 1 -1 1|
1 — - 1 - - 11
-1 1 - 1 1 -1
-1 -1 -1 -1
1 - -1 1 - =1
| 1 - 1 - — = — 1]
1 1 1 1 1 1 1 ]
1 1 1 1 - = = =
11 = -1 1 - =
1 - 1 -1 - 1 =
1 - -1 1 1 1 1t
_ | -1 1 - - 1 11
As = 1 - - 1 1 - 11
1 - — 1 = - 1 1
- 1 1 - 1 1 -1
1 - - 1 - 1 -1
1 - -1 1 - -1
| - 1 1 - - - = 1]

Lemma 23 For Case III, there are siz weighing malirices which could be in-
equivalent.

Proof: Let A be a weighing matrix for Case II1. We may assume, without loss
of generality, that A = r

A(9) A(10
AEl)l) A(lzg ]’Whe'e

(11111 1 1 1]

1111 = — — =

A@9) = ,

E

L ]
0000 11
0000 11
A(10) = i}gg and A(12) = F :i,
00 11 -1

0 0 g h -1
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also where le| = 6 (e is any row vector of E), |r| = 4 (r is any row vector of
A(ll))) and eaf,g’h € {lv—l}'

Then, up to equivalence, there are four cases for the matrix E, say E; (1 <
i < 4), and for each case e = f = g = h = 1, where

=

1 - 00 1 1 — -
- 100 1 - 1 =
BE=1lo01-1- -1}
001 - — 1 1 —|
1 - 0 0 1 1 - =1
_|-1001 -1 -
B = | _ 1 1201 - 0|
|1 -1 -0 -1 0|
[1 - 0 0 1 1 - =]
_ 1 -00 - -1 1
Bs = 1001 -1 -1 - |
(0001 - - 1 - 1]
1 - 0 0 1 1 - =
1 - 0 0 - = 1 1
Es = 11 1 221 -0 0
| - - 111 -00

Similarly, up to equivalence, there are two cases for the matrix F, say Fi
and F,, where

11 - -
- - -1
F=|2 1]amdR=]|] ]
1 - -1
1 - 1 -

For each pattern (E;, F;), we shall find the A(11)—parts in order to construct
weighing matrices, where 1 < i < 4,1 < j < 2. But it is easy to check that we
can uniquely construct weighing matrices from each pattern (E;, F1), say Aiys,
and two weighing matrices from (Ej, F3), say Ay and Aj2, where 1 <1 < 4.
We list the matrices A;, where 7 < ¢ < 12,

1 1 1 11 1 11 1
1 11 1 = = = =
1 - 1 1 - = 1 1
-1 1 - 1 — 1 1
1 — 1 = =1 11
1 — - 1 1 - 11
Ar = -1 - 1 1 1 1 1
- 1 1 - - - 11
-1 1 - -1 -1
1 - -1 -1 -1
1 1 - - 1 - — 1
| - - 1 1 1 - - 1]
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Ay

Theorem 3 There are siz weighing matrices of order 12 and weight 8, up to

equivalence.

Proof:

| == = e

-
[

1

[ ==

1

N

i < 12. We list an equivalence table:

—
—

[ R
- |
|

o=

Pt

1
1
1

(I |
P T e

It is sufficient to check whether A; are equivalent or not, where 1 <

Old w-operations p-operations New
Ay 123456789101211 Identity Sym
Az 123456910781112(123456789111012| A,
Ay 1234567812111091123456789101211 | Aj
(Ag)T 121011912563478|569107811124231| As
(A7)7 | 129106758111243 |111212391048756 | Ar
A7 561287431291011(341211856712910( A2
(As)T [123476581191012(653412109781112| Ay,
(As)T [567814101191223 |123456910812117 | A
(Ae)T |567814321011129|123456109871211 | As
Ao 109121114326785|783410912111256 [ As

Next, we shall check by the G-table whether A,, Az, A¢, A7 and Ag are equiv-
alent. We list the G-table:
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Matrices | Mult [ 0 1 2 3 4 5 6 7 8
A, 12 (144 0 0 0 20 0 0 0 1
A 4 |108 0 48 0 8 0 0 0 1

8 114 0 40 0 9 0 2 0 O
AT 4 [111 0o 40 0 14 0 0 0 O
3 g8 123 0 28 0 12 0 2 0 O
A 4 |8 32 0 012 0 0 0 O

8 |72 48 36 0 5 4 0 0 O
4 4 [102 0 56 0 5 0 2 0 O
7 8 103 0 53 0 8 0 1 0 O
As 12 [104 0 5 0 11 0 0 0 O

So, A1, A3, Ag, A7, Ag and Ay are inequivalent to each other.
This completes our proof.

5 Classifications of weighing matrices

of order 12 and weight 7

Let A be a weighing matrix of order 12 and weight 7. The IPC are p2+ps+ps =
11 and p; + 2ps + 3ps = 21. So, we can divide the solutions into two cases:

I ps > 1; and
II P6=0-

Lemma 24 There are two weighing matrices whick could be inequivalent, for
Case I.

Proof: Let A be a weighing matrix for Case 1. Without a loss of generality,
we may assume thatry =(1,1,1,1,1,1,1,0,0,0,0,0) and r, = (1, 1, 1, -,
.-, 0,1,0,0,0,0) as the first and second rows of A, respectively.

Let a = (ai,...,as,,7,6,€1,...,€4) be a vector which is orthogonal to r;
and r; and |a] = 7, where a;,7,8,§ € {0,1,—1}. Let z1,z0 and z_ be the
numbers of 1, 0 and -1 in the set {a1, @2, @3} and y1, yo and y-— be the numbers
of 1, 0 and -1 in the set {ay4,as, as}, respectively.

Then we obtain the equations

4z, =6 —2zg—v—6anddy1 =6—2yo— 7+ 9

by the orthogonality of a and r; and a and r3, respectively.

Note that 4 + 6 is even, so we obtain the set of solutions In Table 4.

Note that we can’t find a vector a such that |a| = 7 and which belongs to
one of (18), (19) and (20) in Table 4.

Now, p > 2, because p; = 1 + ps and ps > 1. So, we have to find at least
two vectors, each of which has the intersection number 2 with ry. Therefore,
they have to belong to one of (5), (9), (13) and (17) in the Table 4. We shall
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put vectors the third and fourth rows of A.
Then, up to equivalence, there are two cases, say Case (i) and Case (ii),
where

1 111 1 1 1 0 0 0 O O
Q) : 111 - - - 010000
‘1 00 0 0 o -1 1 1 1
0100 0 0 - -1 - - -
1111 1 1 1 0 00 0 O
(i) - 111 - - 010000
"l1 000 0 0 - -— 1111
(0000 01 - 111 - -
zyjzolz- |y |- 2] ] Ir-a]
ONBPEEEEE RS R 4
@ ||1]of2f1}1]1 1] 1 6
@) l1]o]l2fo|3]of 1]1 4
@jfol2f{1f1}11]1 1|1 4
GYlfol2]1foy3jof 1]1 2
@ {2101 f1}1}1i-1]1 6
M 2]o0of1fo}3|of-1]1 4
@flr2loflrf1f1]-1] 4
@ frl2(oflof3]of-1]1 2
111 frfjof2| 1|1 6
anffrfrf1ffof2}1 1]-1 4
a2 ffos3joflrf{ofz2 1]-1 4
() flof3jofloj2|1 1]-1 2
Q111 f2]of1f-1]1 6
@ayjfrfrfrffrfj210f-1]1 4
a)flol3]ofz2]of1f-1]1 4
anjfof{s3sfjoffr|2]o0ol-1]1 2
) ft1{r1]1ffo[3]offofo 2
() flofsjof1f{1f1fojo 2
(200l o 3]Joflof[3fofo]oO 0
Table 4.

But for both cases, we can’t find another vector which has the intersection
number 2 with r,.

This means that if there is a weighing matrix of order 12 and weight 7 which
has a row of Case I, then the solution of the IPC is unique: p; = 2, p; = 8 and
ps = 1.

For Case (i), without loss of generality, we may assume that the first three
column vectors of A are (1,1,1,0,1,1,1,1,0,0,0,07,(1,1,0,1,-,-,0,0,
1,1,0,07 and (1,1,0,0,0,0, -, -, -, -, 1, 0)T in order. So, we have to find
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eight row vectors, six of which belong to one of (10), (11), (14) and (15), one of
(8) and one of (16) in Table 4 respectively.

But we can’t find such a vector from (8).

For Case (ii), there are two cases for the first three column vectors of A:

1 110
1 100 and
1 100

11 1 T
110 .
110

But we can’t construct a weighing matrix from the latter, because we can’t
find the fifth row vector which belongs to (3) in Table 4.
So, by rearranging rows of the first, we may assume that

A=[Al) A2 ]'Whm

1 0 0 T
0 1 1

| © =

(=20 I
O | e
O - O

0
0
1

1 1
0

o o o
| ©+
| - o
| - o
(=2 = I < SR N —— |

1 0
0 1
0 -

AG) (4@

111 111100000
111 — — =0 1000 0
AM=|1 g 0| 4@D=[9 o o0 - _ 11 1 1 |2
000 00 1 - 111 — -

001 1 11 0 0
AT =]10 - - 0 0 1 1
0100 — — — —

So, we have a total of eight vectors: the 5th and 6th row vectors belong to
(8); the ith row vectors to either (11) or (15); and the 11th and 12th row vectors
to (1) in Table 4, where 7 < i < 10.

Now we can construct two weighing matrices, up to equivalence, say 4; and
As, where

(1 1 1 1 1 1 1 ]
11 1 - — — 1
1 - -1 1 1 1
1 - 1 1 1 - =
1 1 - - - - -
A = 1—1-—1-1_-—_1: and
1 - 1 - -1 -
1 - - 1 - -1
1 -1 - 1 - -
1 - - ) 1 -
1 - 1 -1 - IS
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[1 1 1 1 1 1 1 ]
11 1 -= - - 1

1 - - 11 1 1

1 - 1 1 1 - =
1 - - - -

1 - 1 - - - -

A = g L - 1 - -1
1 - 1 - 1 - -

1 - -1 -1 =

1 - 1 - -1 -
1 - - 1 - 1 -

S 1 -1 - 1]

Case 11

Let A be a weighing matrix for Case II. The IPC solutions are p» = 1, ps = 10
and ps = 0 for Case II. So, without loss of generality, we may assume that
rn=(11111100000),r,=(1-0000011,1,1,1),
f=(1,11111100,000)and el =(1,-,0,0,0,0,0,1,1,1,1,1),
where ry, ry, ¢; and c3 are the first and second row vectors and column vectors
of A respectively. Moreover we may assume thatr3=(1,0,1,-,-,0,0,1, -, -,
0, 0) where r3 is the third row vector of A.

Let X be an (i x 12)-matrix such that the entries are 0 and £1 and X X7 =
7I;, where 3 < i < 12. Then X is said normal of level i if the first three row
vectors of X equal ry, ro and r3 in order, and X; = C, where X = [X1, X2),
C = [c,c0) = [ g; ] and X, is the (¢ x 2)-submatrix of X.

Let A be a normal weighing matrix. Then, we may assume that |c; - ¢;| =
|ca -¢;| = 4, where c; is the ith column vector of A (3 < i < 12), because if there
is a column (say ipth) such that |c; - ¢;;| = 6 (s0 ez - €| = 2 or ey - ¢ = 2
(so |ez - ¢i,| = 6), then A will be equivalent to the transpose of a matrix which
was constructed from Case I.

Lemma 25 There are four normal matrices of level 4, up to equivalence.

Proof: Let a be a vector which is the fourth row of a normal matrix of level 4.
By the above paragraph, we may assume that the third component of a equals
-1. Then there are eight possibilities for it, say a;, where

a = (1,0,-,1,0,-,0,0,-,0,1,-),
a, = (1,0,-,-,0,1,0,-,0,0,1,-),
a; = (1,0,—-,-,0,1,0,0,1,0,—,-),
a, = (1,0,—,1,-,0,0,—,-,0,1,0),
a; = (1,0,-,1,-,0,0,0,1,—,-,0),
as = (1,0,-,0,0,1,—,—,—,0,1,0),
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a; = (1,0,-,0,0,1,-,0,1,—~,—,0) and
ag = (lvox—,-yO,1-0,—,1,—,0,0).

Put ¥; = [rT,x7,r7,aT]T, where 1 < i < 7. Then we can show easily that
Yo~ Y5, Ya~ Ve, Yo~ V5, Yo~ Vs
The next lemma is obvious.

Lemma 26 A weighing matriz which is constructed from Yy is equivaleni to
the transpose to a matriz which is consiructed from Case I.

Lemma 27 There are three weighing mairices for which the first four row vec-
tors equal those of Yy up o equivalence.

Proof: Let r be a row vector such that a matrix [YT, 7|7 is a normal matrix
of level 5. Then, without loss of generality, we may assume that the third

component of r equals -1. So, we have three poesibilities, say ry, r; and rs, for
r, where

n = (1)0)—’01110)—10,0'—!—)1)1
r3 = (1’0’-l0|_volll_loloy_‘l) and
r3 = (1,07-)0t0|11_1_101—v0|1)'

Put ¥; = [Y{,rT)7, where 1 < i < 3. Then we can uniquely construct a
normal weighing matrix, say A;,, for which the first five row vectors equal those
of ¥; (1 < i< 3), up to equivalence, namely:

1 1 1 1 1 1 1
1 - 1 1 1 1 1
1 1 - - 1 - -
1 -1 - - -
1 - 1 - - -1
1 - 1 - 1 -
As = 1 -1 - - 1 - |
1 1 - = - 1 1
1 - - 1 1 - 1
1 - -1 -1 1
1 1 - - 1 1 -
! -1 -1 1 - |




1 1 1 1
1] -
1 1 -
1 - 1
1 -_
A{:i
1 1
1] - -
1 -
1 1
bl -
11 1 1
1] -
1 1
1 -1
1 -
As:'i
1 1
1] - -
1 -
1 1
-1 -

Lemma 28 There are three weighing matrices for which the first four row vec-

1

tors equal those of Y up to equivalence.

Proof:

and

1 1 11
1 -
1 1 -
1 -— -
1 _
Ag = i 1
1 1 -
1 -
1 -
1 1
- 1 -
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We can construct three weighing matrices, say Aiys, for which the
first four row vectors equal those of Y2, similarly to Lemma 27, where 1 <1 < 3,




111 11 11 ]
1 - 1 1i1 1 1
1 1 - - 1 - -
1 - - 1 - 1 -
1 - 1 - - =1
A1=; l__l_ll_—a.nd
1 1 - - - 1 1
1 - -1 1 1
1 - -1 - 1 1
1 | Q- - 1 - 1
| 1 -1 - 11 - ]
(1 1 1 1 1 1 1 1
1 - 1 1 1 1 1
1 1 - - 1 - -
1 - - 1 - 1 -
1 - -1 1 - -
1 1 - 1 - -
4 = | 1 - - - - 1
1 1 - - -1 1
1 - 1 -1 -1
1 - - 1 -1 1
1 -1 - 1 1 -
! - 1 - 1 - 1|

Lemma 29 It is uniquely possible {o construct a weighing matriz from Y3, up
10 equivalence.

Proof: It is obvious. We form the matrix Ag, where

11 1 1 1 1 1 ]
1 - 11 1 1 1
1 1 - - 1 - -

1 - - 1 1 - -
1 - -1 - -1
1 1 - - - -1

ds=1 1 - - -1 -
1 1 - - -1 1
1 - 1 -1 - 1
1 - - 1 - 1 1
1 1 - - 11 -
|1 - -1 1 - 1]

Theorem 4 There are three weighing matrices of order 12 and weight 7, up 1o
equivalence.

Proof: It is sufficient to check whether A; are equivalent or not, where 1 <
i < 9. We list an equivalence table:
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Old x-operations p-operations New
AT [617881052431211 |179108243121158 A
Az 213465109871112|132456871211109| A,
Az Identity Identity Sym
Ay |103195847116212[310726121114598 | As
Ag 125736412119108|125736412119108 | Aa
Asg 879342121051611 924126511101 | As
Ay |782493121151016[871119652121043 [ A
Ag 123196114107582|497261112531108 | A
(Ag)T |312161148710952[4105138968721211) A

Next, we shall check by the G-table whether A;, A3 and Ag are equivalent
or not.

We list the G-table in the following

Matrices | Mult. | 0 1 2 3 4 5 6 7
Ay 12 |77 64 22 0 2 0 0 O
Az 12 |45 100 20 0 0 0 0 O
Ag 12 45 100 20 0 0 O O O

But A3z % Az, because let 8; be the ith row vector of As. Then there are six
pairs of row vectors such that the intersection number of pairs vectors equal 2,
i.e. (81,82), (83,812), (84,810), (85,811), (85,83) and (87,89).

For each pair, we shall permutate Az to be normal. But for each case we
can’t obtain Az by doing so. This means A3 # As. This completes our proof.

6 Classifications of weighing matrices

of order 12 and weight 6

Let A be a weighing matrix of order 12 and weight 6. The IPC are pg + p3 +
pa + pe = 11 and pz + 2p4 + 2ps = 15. Clearly ps < 1 and py < 2. Thus we
obtain six kinds of solutions:
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661

((a'q) °dAL)

[0 1 1 1 0 - 001 -0 0 ]
101 0 - 1 01 0 0 0 —
I11T0 -1 0 100 0 - 0
- 01 01 1 00 - — 00
o1 — 1071 o -0 o0 0 -
I - 0 110 - 00 0 - 0

=y
0 0 - 001 01T 1T -0 1
0 - 0 01 0 101 o1 -
- 00 10O 110 1 - 0
100 100 1t 0o - 01 1
001 001 0o - 1 I 01
| o1 0 otTo -10 110 |
((a'g) 2dA1)
01l - =-1T1 =100 000 |
1ro1 - -1 0-0 00 0
- 10 1T -1 o060 - 000
- -1 011 000 -0 0
I - - 101 000 0 - 0
I 1 1 I 10 000 0 0 -
=ly
100 000 01 - - 11
01 0 000 ro1 - -1
00 I 000 - 10 1 - 1
000 100 - -1 01 1
00 0 01 0 I - - 101
ﬁooo 00T T 1 1 110 |

"a){eS 20USIUSAUOD 10] SIDWIRUX 9591} 38I] S\ 'H pue D ‘J ‘F
sadA3 a1y} Jo auo 03 sBuofaq YdYA Jo goed ‘(3 S 1 S 1) v Aes ‘soouryewr SuryBom
Inoj pajonIsuod A3y ‘0s[e PUY ‘A 38R WOI P3JONIISUOD Sem IIGa XiIjew
® 0} jus[eainbs sem | 958D WOI) P3IONIJSUOD Sem YOIYM XWJeW € jey) pamoys
pue ‘zapio w1 ( pue 4 ‘H ‘O ‘4 ‘q sedA) seses x1s asay) pajre? Laqy ‘(1) ug

1=9d ‘¢e=%W ‘g=2% ‘t=0 A
pue o=9d ‘p=% ‘L= ‘g=0d A
‘1=9d ‘g=% ‘g=td ‘g=0d AJ
1=9d ‘p=¥ ‘p=i ‘z=0 I
‘0o=9d ‘g=% ‘g=iW ‘t=0
‘0=9 ‘'9=% ‘g=td ‘g=0d I



01 - 011
1 - 0 1 01
- 0 1 110
0 - — 0 1 -
0 - 1 - 0
- 0 - 0 1
Az =
- 00 -0 0
0 — 0 0 - 0
0 0 0 0
- 00 100
0 - 0 10
| 0 0 - 0 0 1
1 11 1 11
111 - - -
1 -0 1 - 0
1 - 0 - 10
1 0 - 0 00
1 0 - 0 00
A=

01 - 00 0
01 - 0 0 O
0 0 0 1 0 -
0 00 1 0 -
0 00 01 -
| 000 01 -

(Type (G,G))

0
0
1

(Type (H,E))

(Type (H, E) means that A3 belongs to type H and A7 belongs to type E)

We shall consider in order from our Case I.

Case I

Lemma 30 There is no weighing matriz with a row which has Case I for the

IPC.

Proof: Let A be a weighing matrix for Case I. Let r;, ro and r3 be the first

—

o = O

(=X =]

OO O _ o - (=) [=3

—

| oo

oo

[

—

(==

| oo

oo

o oo

three rows of A. Then without loss of generality, we may assume that
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r = (1,1,1,141;1;010)0)010)0)
r2 (0,0,0,0,0,0,1;1) l!lll)l)
rg = (0,0,0,0,010:11111)-)—’-)

Let A, B,C be sets of row vectors, each of which is orthogonal to ry,r; and
r3, where

A = {a=(ap...,as a7, a3,09,0,0,0)|
a; € {0,1, -1}, ar-# as # as, |a] = 6}

B = {b=(f,...,5:0,0,0,B10,511,52) |
B; € {0,1,-1}, 510 # P11 # B12, |bl = 6}

C = {c= (‘Yl,----76»77.‘78'79:‘710:‘711:712)|
T € {01 1»_1}v77 ¢ T8 # Y9, Mo # 24! # 73, Icl = 6}

By our assumptions, we have to find six-vectors from .AUB and three vectors
from C, and further calculation shows in-fact three vectors must come from-each

of A and B.
Let A be the (12 x 6) matrix which is the last six columns of A. Then, from

the above paragraph, we may assume that
T
RT

PT | 03

N Elitiand

b
Il

sT

i

0 | QT

Ll s LN

where-each,row of P,Q, R and S contains exactly, one-0, one 1 and one -1.
Now;, we can easily show that in P and Q exactly one zero must lie in each row
and: column. As a consequence, without loss of generality, we may assume that

1 - 0
P=]1 0 - |=Q=R
0 - 1

But we can’t find any S which satisfies our conditions.

Case 11

Let A be a weighing matrix for our Case II. Then without loss of generality, we
may assume that
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where each E(i) is a (6 x 6) matrix, and the first rows of E(1) and E(4) and
the first column of E(1) have all 1 entries, and also the first row of E(2) and
column of E(3) have all 0 entries.

Moreover, we can assume that there is at least a row vector with weight 2 in
E(1), because if all row vectors except the first row in E(1) have weight 4, we
may exchange E(1) for E(4). So, we may assume that the second row vector of
E(1)is (1,-,0, 0,0, 0).

Lemma 31 There are four weighing matrices whick are constructed from Case
II, up to equivalence.

Proof: There are 16 possibilities for E(1) which could be inequivalent, say E;
(1 € i< 16). We list these matrices:

1 1.1 1 1

—
—
—
—
—

— et bt b e b
I
|
[ R R
|

1
—
-
—
(=
—
]
]
-
—
—
—
—
J

e b b
|
. e
b
1
|

el
| d
—
—
—
1 od
—
—
—
—

b bkt b Bt et
| -
- |
|
|
e )
—
|
|

Pt
|
|
I = =
[
|

—
!
|

— e S
|
—
|

— et et et

E; Eg

[5]
S
o




11 1 1 1 1 1 111 1 1

1 - 1 -

11 - - 1 1 - -

1 - 1 - 1 -

1 1 - - 1 -

|1 -1 -] 11 1 - -]
E, Eyo

F1 1 1 1 1 T 111 1 1 1]

1 - 1 -

1 1 - - 11 - =

1 - 1 - 1 - 1 -

1 - 1 - - 1

[ 1 - o - -]
En Ey2

11 1 1 1 17 (111 1 1 1]

1 - 1 -

1 1 - - 1 1 = -

1 - 1 - 1 1 - -

1 1 - - 1 -

RO T I .
Eys Era
11 1 1 1 17 [1 11 1 1 1]

1 - 1 -

11 - - 1 1 - -

11 - - 1 1 - -

1 - 1 - 1 - 1 -

Ll——l i L1—— 1 i
Eis Es

But Eg ~ E7 (we obtain E7 by operating with 7( 12546 3)and p( 126 4
3 5) on Eg) and Eg ~ Ey; (similarly 7( 1653 24) and p( 13562 4) on Eg).

It is easily shown that we can’t construct weighing matrices from Ej3, Eyg, Ey2
and E;s, because we can’t decide the E(2) parts of A for them.

We can uniquely and up to equivalence, construct a weighing matrix, say
E;, from E;, where i=1, 2, 4,5,7,9, 11, 13, 14 and 16. We list these matrices:

f1 1 1 1 1 1 T
1 - 1 1 - -

1 - 1 - 1 -
1 - - 1 - 1
1 - - -1 1
1 - -1 1 -

1 11 1 11

- -1 1 - 1

-1 1 - - 1

1 - — 1 - 1

1 1 - - - 1

i 1 - - 1 - 1]
EY



|
| -
=
—
[y
P -
| —
—
e e

| =

I | - —

l - | —

| —

| -
- [
(I -
- |
- i

]

(=

ol |

(=

.




cot

i

118
-




90T

Pt b b pb b et

| R )

el

I =1 =
[ | -
| | -
[ —

| -

i —

i —

ol 1
— |
] —




Next, we list an equivalence table for these matrices.

.Old wm-operations p-operations New
E; [37210981154612]1 711154389101226 E

E; 1123456981110127 Identity Sym

E; |111461235281097[4210

r-—
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536127 | E;

E; |118110695123472(612210785341119 | E;
+ | 638791110514212[121510971134268 | E;
< [621112879541310(|101511348972612| E;

s |511122107968143 [953812101112647 | E;

E; 1124635111089127|124635121097811 | (E})T

Case III

Let A be a weighing matrix for our Case III. Then, similarly to Lemma 31, we
can assume, without loss of generality, that

e

where
1 111 11 [0 0 0 0 0 O
1 — 00 0 O 1 - 01 -0
111 - - = 00 00 0 O
G)=1, , G(2) = )
1 * *
1 =
00 0O0O0O 111 1 1 1
0 00O0O0UO 111 - — -
c(s)=8 and G(4) = )
0 *
0 e

Lemma 32 There are three weighing matrices, up to equivalence, which are
consiructed from Case III.
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Proof:
equivalence, We list them:
[ 1
1
1
1
1
|1
[ 1
1
1
1
1
1

But we can’t find the G(3)-part of A for G;. On the other hand, we can

1

1

—

1

1

—

1

Gs

—

e b b b et

P b et b et b

[y

—

—
|

—
|

G4

—

There are four possibilities for G(1), say G; (1 < i < 4), up to

-

*

uniquely and up to equivalence, construct weighing matrices from G;, say G7,

where i = 2,3,4.
We list them:

1

Pt pd b i b

e e ]

1

1

1

1

—

1

1

1

et gt b

[ |

e

1

ot

b=

1




f1 1 1 1 1 1 ]

1 - 1 - 1 -

11 1 - - —

1 - -1 -1

1 - 1 - 1 -

1 - -1 -1
11 1 1 1 1
11 1 = - =

1 - - 1 -1

1 - - 1 -1

1 - 1 - - 1
| -1 -1 - 1 |
Gy

Case IV

Let A be a weighing matrix for our Case IV. Then we can assume, without loss

of generality, that
A= H(1) | H(2
T HQ3)|H@4) |’

where
1 111 1 1
1 - 0 0 0 O
N B
1 *
1
0 00 O0O0TO 0
111100 0 -
HQ) =% 000000 anE= g \
* 0
0

Lemma 33 There is a unique weighing matriz, up to equivalence, which is
constructed from Case IV.

Proof: There are three possibilities for H(1), say Hy,H, and Ha, up to
equivalence. We list them:

b b b
| =1 =

—

|

|

|
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"1 1 1 1 1 1]
1_
11 1 - - -
1_

1 -1 -
1 - -
Hy
(1 1 1 1 1 1]

1] -

11 1 — - =

1 -—

1 - 1 -

-1 --1-
Hs

_ For Hj, we can’t find the H(3)-part. For Hj, the H(3)-part is unique, say
H,, up to equivalence, where

(= == == I I = Y )
QOO O - =
cooco |

OO M = OO

. But this case is reduced to the case of H; by operating with 7( 1234785
6910 11 12) and p( 21 3 4 5 6) on the matrix [HT, HT]T.

We can uniquely construct the weighing matrix, say H;, from H; up to
equivalence, where

1 1 1 1 1 1
1 - 1 1 1 1
11 1 - - -
1 - 1 - - -
1 - -1 - 1
" 1 - - -1 -
Hy = 1 - 1 - 1 1
1 - - 1 1 -
1 - 1 - - -
1 - - 1 1 -
1 - 1 - 1 1
| 1 - -1 - 1]
Case V

Let A be a weighing matrix for our Case V. Then, without loss of generality,
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we can assume that

4= [Fotre

where
11 1111
1 - 000 O
_11
1 *
1
00 0 0 0O 0
111100 0
F(2) = and F(3) = g .
* 0
0

Lemma 34 All weighing matrices which are constructed from Case V are equiv-
alent 1o matrices which we have constructed previously.

Proof: There are twelve possibilities for F(1) which could be inequivalent,
say F; (1 < i < 12). We list these matrices:

[1 1 1 1 1 17 11 1 1 1 17

1 - 1 -

1 - 1 -

1 1 - - 1 1 - -

1 - 1 -1 -

[ 1 - ] L1 - - 1
F1 F2

11 1 1 1 17 11 111 1]

1 - 1 -

1 1 - - 1 1 - -

1 -1 - 1 -1 -

1 - -1 1 -

-1 _l-d -l - -
Fa F4
(111111‘ [1 1 1 1 1 1]

1 - 1 -
1 1 - - 11 - -
1 - 1 - 1 - 1 -
1 - 1 -
1 -1 -] |1 1 - -]
F5 FS
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11 1 1 1 1] 11111 1]

1 - 1 -

11 - - 11 - -

1 - 1 - 1 - 1 -

1 - 1 - -1

| 1 - ] 1 1 - -
F'[ F8

1 1 1 1 1 1Y 11 1 11 1]

1 - 1 -

11 - - 1 1 - -

1 - 1 - 1 1 - -

1 1 - - 1 -

.l _1—.1.1_ -

_ Fy - Fo .

1 1 1 1 1 1 11 1 111

1 - 1 -

1 1 - - 11 - -

1 1 - = 1 1 - -

1 - 1 - 1 - 1 -

|1 - - 1 J L - -
Fu FIZ

It is easily shown that we can’t construct weighing matrices from Fy, F, Fy
and Fy, because we can’t find the F(2)-parts for them. And also, we can’t
construct weighing matrices from Fy and Fy, because we can’t find the F(4)-
parts for them.

If there exist weighing matrices which are constructed from Fyg, F11 and Fio,
then they are equivalent to the transpose of matrices which are constructed from
Cases III and IV. For F; and F3, we can uniquely find the F(2)-parts, say F,
and F3, up to equivalence. Namely,

[
—

—_0
-0

0 0 0 0 O c 0
1 1 1

1

e
1
| == O

1 and F= | ~ _

| -0 O
OO OO OO

But matrices which are constructed from the matrix [Fa,fh] are equivalent
to the transpose of matrices which are constructed from Case II.

Also, matrices'which are constructed from the matrix [Fa, F,] are equivalent
to matrices which are constructed from Cases III or IV.

For F, up to equivalence, there are three possibilities for the F(2)-part, say
X1, X, and X3, where
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0 0 00 0 0 0 000 00
1 1110 0 111100
|1 - =01 0 11 - 2010
X1i=10 00 - -0l %=|0 00 - - o
-1 -0 0 1 - 001 -0
-~ 100 - - 10 - 10

0 0 00 0 0

1 1110 0

1 — =01 0

adXs=|_ 43 o o 0 1

-1 -0 0 -

0 — 1 - - o

But matrices which are constructed from the matrices [F, X1] or [F, X2)
must be equivalent to matrices which are constructed from cases III or IV,
because the fifth and sixth row vectors of these matrices have the intersection
number 6. Also, it is easily shown that we can’t find the F(4)-part for the
matrix B X

X g‘ * |’

For F7, up to equivalence, there are two possibilities for the F'(2)-part, say

Y, and Y5, where

00 0 0 00 0 0 0 0 0 O
1 1 11 0 0 1 11100
1 — 0 0 0 0 0 0 0 0 1 1
i=l g o - Z o o 2Y2=|_ _ ¢ 0 0 o
- 01 — 10 1 — — 0 -0
-0 -1 -0 - 10 - 0 -

But similarly to the above paragraph, we can’t find a new weighing matrix
from the matrices [F7,Y;] and [F7,Y2).

Theorem 5 There are seven weighing matrices of order 12 and weight 6, up to
equivalence.

Proof: 1t is sufficient to check whether E}, E3, E3, E},, G3,G3,G; and H}
are equivalent or not. We list an equivalence table:

Old 7m-operations p-operations New
(E3) 1516324891271110[148101211857239 3

(Ep)T |132456789101112 (1342658010127 | &7

(G3)T 1711081123512964 (2671281114103

en

9| G3

(GT |142365128101197]136254121091178 e

to
—
)



Next, we shall check by the G-table whether E}, E3, Eg, Ef, and G} are
equivalent or not. We list the G-table in the following:

Matrices | Mult. | 0 1 2 3 45 6
E} 12 115 40 10 0 0 0 O
B 4 |125 30 8 2 0 0 O
2 8 |124 33 5 3 0 0 0
E2\T 4 |117 38 8 2 0 0 0
(B3) 8 [112 47 5 1 0 0 0
E} 12 [115 40 10 0 0 0 O
E3, 12 |148 0 16 0 1 0 O
(B3 )T | 12 |112 48 4 0 1 0 ©
- 4 |125 32 6 0 2 0 0
2 8 |122 36 6 01 0 0

In order to check whether ET and Eg are equivalent or not, we count the
distributions (when fixing each row) of the intersection numbers of three row
vectors for E} and E5. We list them.

[ [Mult.JO_ 1 _2 3 4 5 6
Ei| 12 |15 30 0 10 0 0 0
Ej| 12 |19 18 12 6 0 0 0

So, E},E3,(E3)7, E3, E}4,(E1y)T and G are inequivalent to each other.
This completes our proof.
Remark: We check relations between {E}, E3, (E£3)7, E3, Ef4, (Ef,)T,G3)
and {A}, A3, A3, A7}. We shall show them by an equivalence table.

Old ____m-operations p-operations New

A} |27]11129)10836451[8156349121011721{ E;

A |256118371012941[147510328126119 | G

A} |164129271011853|621037541281911 | G}

A; |152678341091211|3124567931011128 | Hy
H} ~ (Ef,)T

7 Summary

We summarize the equivalence results for weighing matrices of weight k and

order 12.




k | number of

inequivalent Reference

matrices
1 unique obvious
2 unique Chan, Rodger, Seberry
3 unique ” " i
4 five ” ” ”
5 two 7 ? ?
6 seven Theorem 5
7 three Theorem 4
8 six Theorem 3
9 four Theorem 2
10 four Theorem 1
11 unique Chan, Rodger, Seberry
12 unique Husain
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