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Abstract. Let G(n, m) denote the class of simple graphs on n vertices and m edges
and let G € G(n,m). For suitably restricted values of m, G will necessarily contain
certain prescribed subgraphs such as cycles of given lengths and complete graphs. For
example, if m > n? then G contains cycles of all lengths upto | $(n+ 3)]. Recently
we have established a number of results concerning the existence of certain subgraphs
(cliques and cycles) in the subgraph of G induced by the vertices of G having some
prescribed minimum degree. In this paper, we present some further resulis of this type.
In panticular, we prove that every G € G(n, m) contains a pair of adjacent vertices each
having degree (in G) atlcast f(n, m) and determine the best possible value of f(n, m).
Form > }n’ we find that G contains a triangle with a pair of ventices satisfying this
same degree restriction. Some open problems are discussed.

1. Introduction.

All graphs considered in this paper are finite, loopless and have no multiple edges.
For the most part, our notation and terminology follows that of Bondy and Murty
[2]. Thus, a graph G has vertex set V(G), edge set E(G), v(G) vertices, e(G)
edges, maximum degree A (G) and minimum degree §( G). K, denotes the com-
plete graph on = vertices and Cj a cycle of length 2. G + H denotes the disjoint
union of the graphs G and H. The join G V H of disjoint graphs G and H is the
graph obtained from G + H by joining each vertex of G to each vertex of H.
Let G(n,m) denote the class of graphs on n vertices and m edges, and let
G € G(n,m). For suitably restricted values of m, G will necessarily contain
certain prescribed subgraphs such as cycles of given lengths, complete graphs,
ctc. Indeed, given any graph H on n or fewer vertices, then for sufficiently large
m all graphs in G(n, m) will contain a subgraph isomorphic to H. The problem
of determining the maximum m such that G(=n, m) contains at least one graph G
which has no subgraph isomorphic to H is a fundamental problem in extremal
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graph theory. This maximum m is known for certain H. For example, Turan’s
theorem gives the maximum m when H = K;,,. We refer the reader to the book
of Bollob4s [1] for an excellent presentation of results of this type.

Recently, we ([3 - 6]) have established a number of results concerning the
existence of certain subgraphs (mostly cliques and cycles) in the subgraph of
G € G(n,m) induced by the vertices of G having some prescribed minimum
degree d. We obtained the best possible results when the subgraph H in question
was a Ki.1, k > 2, a C; or a path of specified length.

In this paper, we present some further results of this type. In particular, we
prove that every G € G(n, m) contains a pair of adjacent vertices each having
degree (in G) at least f(a)n, where o = & and

@ { 1(1-Vi—4a), fag?
o) =
2V2a -1, otherwise.
Moreover, we establish that this result is best possible. For a > L, we prove that

a pair of adjacent vertices each having degree at least f(a)n is contained in a
triangle of G. We conclude the paper with a discussion on some open problems.

2. Main results.
Our first result establishes the existence of a K, in the subgraph of G € G(n, m)
induced by the vertices of degree at least d for sufficiently small d.

Theorem 1. LetG € G(n,m) andleta = F. ThenG contains a pair of adjacent
vertices each having degree at least f( ) n, where

f(a)={-'2-(l—\/l—4a), ifas%-
2V2a -1, otherwise.
Moreover, this result is best possible.

Proof: For a graph G € G(n, an?), let d(G) be the smallest value such that the
subgraph G of G induced by the vertices of degree at least d(G) has no edges.
Let

min ) {d(G)}=d(G*) =d,

GeG(man?
and |[V(GY)| = m. We will show thatd > f(a)-n.
By simple counting we have
2 (n—n)(d-1), ifmg >d—1
n <g(n)= 1
an” < g(m) { F(n—m)(m +d—1), otherwise. @
Form > d— 1, g(m) is clearly monotonically decreasing in n; and hence
Joax, {g9(m)}=g(d-1). )
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Form <d—1,
1
g(m + 1) —g(m) = i‘(ﬂ—2ﬂ1 —d)

which is non-negative only when n; < %(n — d). Hence,

g(d—1), ifd—1< §(n=1)

n,nglf}fl {o(m)} = { g(3(n—d+1)) otherwise.

3
From (1), (2) and (3) we conclude that

an” <

., {(n—d+1)(d—l), ifd—1< §(n-1)
“ | §n+d-1?, otherwise.

Hence,
o(a) = 2(1-V1-4a), ifd—1< §(n-1)

b(a) = n(2v2Za - 1), otherwise.
> min{a(a), b(a)}.

d-1

v

We note that a(@) = b(a) when o = % and a(a) — b( o) is an increasing function

in . Hence . 2
de1 >{ a(a), fa<lf
= | /@), otherwise.
Thus
d—12 f(a)-n
as required.

That the result is best possible follows from the following constructions. For
a < %, the graph Ky with u = [f(a)n] has at least an® edges and each
edge has one end with degree [f(a)n]. A graph G € G(m,an®) having the
required degree property can be obtained from K, -, by deleting, if necessary, a

few edges. For o > %, let
u= ln\/2a_|.

Let R, denote a graph on u vertices and [%utj edges having maximum degree
t. Consider the graph _
H=K n—u V Ru.t

witht = [nf(a)] — (n—u), where K, denotes the complement of K. The
graph If has at least an? cdges and each cdge has at least one end of degree at
most [ f(a)n]. A graph G € G(n, an?) having the required degree property can
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be obtained from H by deleting, if necessary, a few edges. This completes the
proof of the theorem. |

We note that for @ < 2

s =3 (1-y1-4)
>3(-o-3m) -2

m
f(oz)~n> ';{'

k!

N

and hence

Thus, every G € G(n,m), m < %-nz , contains a pair of adjacent vertices each
having degree greater than half the average degree. When m is 0(n) we can restate
Theorem 1 as:

Corollary. Let G € G(n,m) withm = O(n). ThenG contains a pair of adjacent
vertices each having degree (in G) at least |2 | + 1 and this bound is attained for
sufficiently largen.

A special case of aresult proved in [3] asserts thatevery G € G (n, [ n*] + 1)
contains a triangle each vertex of which has degree greater than 2 and that this
result is best possible. It is natural to ask whether anything can be said about the
degrees of two vertices in a triangle of G. We now show that for & > J there
is always a pair of adjacent vertices in G € G(n,an?) having degree at least
(2v2a — 1)n and contained in a triangle of G. Moreover, this result is best
possible.

Theorem 2. Let G € G(n,an?), a > . Then G contains a triangle two
vertices of which have degree at least (2 /2 a— 1) nand this result is best possible.

Proof: Let u be a vertex of G having maximum degree A. We denote by N(u)
and N(u) the set of neighbours and non-neighbours, respectively, of v in G. If
every vertex of N(u) has degree at most n — A, then

&(G) < A(n-4)

1
< Z‘nz.

Hence, at least one vertex of N(u) has degree greater than n — A and, thus, G
has a triangle with two of its vertices having degree greater than n— A . Thus, we

may suppose that
A >2n(1 —\/2a)+ 1.
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Now since
IN(u)|=n—A -1< (2V2a—1)n-2,

G contains a triangle with the required degree property if a vertex of N(u) ha
degree at least (2v/2 ¢ — 1)n. So suppose all the vertices of N(u) have degre
less than (2v/2a — 1)n. Then

Y dv) < f(A) = (n-8)A +A(2V2a~1)n.

veV(G)

For fixed n, f(A) attains its maximum value at A = nv/2a. But f(nv2a) =
2an? and hence

Q) < %f(A) < o,

This contradiction establishes the existence of a triangle in G, two vertices «
which have degree at least (2v2a — 1)n.
That the result is best possible follows from the following construction. Let

d= [(2\/2_a— 1)n| and t = |_m/2_a_|.

Let Ry g+~ be a graph on t vertices, | 3t(d + t — n)| edges having maximu
degree d + t — n. The graph

H= Rt.d+t—n V_Kn—t

has at least an? edges and every triangle contains at least two vertices in R g«
A graph G € G(n, an?) having the degree property can be obtained from H t
deleting, if necessary, a few edges. This completes the proof of the theorem.

3. Discussion.

We conclude this paper with an exposition of some open problems. Our fi
problem was noted in [3).

Problem 1. Let f(n, r) denote the largest integer such that every G contained
G (n, |+n?] +1) contains an r-cycle the sum of the degrees of its vertices bei
at least f(n,r). Determine f(n, 7).

Theorem 4 of [3] asserts that f(n,7) > &-for3 < r < || + 2. Erdosa
Laskar [7] proved that

(1+c)n< f(n,3) < (%—c)n,



where c is a positive constant. This result has recently been improved by Fan [8]
who proves that for every G € G(n, m)

im if 372 <m < 72 (10 — V32)/17
f(m3) 24 2n+dy/m(dm—n?) —m, ifn?(10 -32)/17 < m< in?
(3A —2n+4m)/A, otherwise.

Determining f(n, 3) exactly seems to be difficult.

Our next problem is suggested by the results of this paper.
Problem 2. LetG € G (n, | %] + 1) . A triple (a, b, ¢) of non-negative reals is
said to be feasible if every G contains a triangle z; z; z3 with

dg(z1) > an, dg(z2) > bn and dg(z3) > cn.

Characterize the set of feasible triples. -

Trivially (3,0,0) is feasible. We know ((3], Theorem 4) that (&, IE)is
feasible and is best possible. Theorem 2 asserts that (V2 — 1,v2 — 1,0) is
feasible; can we say anything about dg(z3)? Problem 2 can be generalized to
larger cycles, in particular odd cycles Ca,.,. The results of [3] - [6] yield some
feasible tuples. More generally, we can ask the same questions when m = qm? ,
a>0.
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