On [a, b]-Covered Graphs

Guizhen Liu

Department of Mathematics
Shandong University
Jinan, Shandong
The People's Republic of China

Abstract. A graph G is [a, b]-covered if each edge of G belongs to an [a, b]-factor. Here a necessary and sufficient condition for a graph to be [a, b]-covered is given and it is shown that an [m, n]-graph is [a, b]-covered if $bm - na \ge 2(n - b)$ and $0 \le a < b \le n$

1. Introduction

By a graph we mean a finite, undirected graph with no loops. Let G be a graph with vertex set V(G) and edge set E(G). A vertex set $S \subseteq V(G)$ is independent if there are no edges in G whose two end-vertices in S. For a vertex x of G, the degree of x in G is denoted by $d_G(x)$. Let b and a be integers such that $b \ge a \ge 0$. We say that G is an [a,b]-graph if $a \le d_G(x) \le b$ for all $x \in V(G)$. An [r,r]-graph is also called an r-regular graph. Similarly, an [r,r]-factor is called an r-factor.

Let G be a graph, and g and f be two integer-valued functions defined on V(G) such that $g(x) \leq f(x)$ for every $x \in V(G)$. Then a (g, f)-factor of G is a spanning subgraph F of G satisfying $g(x) \leq d_F(x) \leq f(x)$ for all $x \in V(G)$. For a subset S of V(G), we write G-S for the subgraph of G obtained by deleting the vertices in S together with their incident edges. If S and T are disjoint subsets of V(G), then e(S,T) denotes the number of edges of G joining S and T. We shall need the (g,f)-factor theorem due to Lovász [6] for which Tutte [7] has given a short proof.

Theorem 1.1. [6,7] Let G be a graph and g and f be integer-valued functions defined on V(G) such that $g(x) \leq f(x)$ for all $x \in V(G)$. Then G has a (g, f)-factor if and only if

$$\delta(S,T) = \sum_{x \in T} \{d_G(x) - g(x)\} + \sum_{x \in S} f(x) - e(S,T) - h(S,T) \ge 0$$

for all disjoint subsets S and T of V(G), where h(S,T) denotes the number of components, C, of $G - (S \cup T)$ such that g(x) = f(x) for all $x \in V(C)$ and $e(T, V(C)) + \sum_{x \in V(C)} f(x) \equiv 1 \pmod{2}$.

Kano and Saito [4] discussed some sufficient conditions for a graph to have an [a, b]-factor. Heinrich and others [3] characterized graphs which have an [a, b]-factor. Little [5] introduced the concept of a factor-covered graph, which is a graph

This paper was written while the author was visiting Simon Fraser University, Burnaby, B.C., Canada.

such that for every edge e there exists a 1-factor containing e. Here we generalize this idea as follows. A graph G is [a, b]-factor-covered, or simply [a, b]-covered, if for each edge e of G there is an [a, b]-factor containing e. Thus, a [1,1]-covered graph is a factor-covered graph. In 1974, Little proved the following result.

Theorem 1.2. [5] Let G be a graph of even order. Then G is factor-covered if and only if

- (1) o(G-S) < |S| for all $S \subset V(G)$ and
- (2) o(G S) = |S| implies that S is independent

where o(G - S) is the number of odd components of G - S.

The above mentioned results can be found in a survey article [1].

In this paper we shall characterize [a, b]-covered graphs and show that an [m, n]-graph is [a, b]-covered if $bm - na \ge 2(n - b)$ and $0 \le a < b \le n$.

2. The characterization of [a, b]-covered graphs

If a = 0 and a < b, every graph is [a, b]-covered. In this section we deduce a characterization of [a, b]-covered graphs where $b > a \ge 1$. When a = b, the problem is more complicated and will be dealt with in another paper.

Let G be a graph and $S,T \subseteq V(G)$. Then the number of vertices of degree j in G-S is denoted by $p_j(G-S)$ and the number of vertices in T having degree j in G-S by $p_j(G-S|T)$.

Theorem 2.1. Let $b > a \ge 1$ be integers. Then a graph G is [a,b]-covered if and only if for all $S \subseteq V(G)$

$$\sum_{j=0}^{a-1} (a-j) p_j(G-S) \le b|S| - \varepsilon(S)$$

where $\varepsilon(S)=2$ if S is not independent, $\varepsilon(S)=1$ if S is independent and there is at least one edge xy such that $x\in S$, $y\in V(G)\backslash S$ and $d_{G-S}(y)\geq a$, and $\varepsilon(S)=0$ otherwise.

Proof: The condition is necessary. Let G have an [a,b]-factor F, and let $S \subseteq V(G)$. If $d_{G-S}(x) = j$, $0 \le j \le a-1$, then in F, the vertex x is incident with at least a-j edges, xx_i , where $x_i \in S$. But $d_F(x) \le b$ for every $x \in V(G)$. Thus,

$$\sum_{j=0}^{a-1} (a-j)p_j(G-S) \leq b|S|,$$

since there exist at most b|S| edges of F joining S to G-S. Now if S is not independent, the induced subgraph G[S] contains at least one edge e. Consider

an [a, b]-factor F containing e. We have

$$\sum_{j=0}^{a-1} (a-j)p_j(G-S) \leq b|S|-2.$$

If S is independent and there is an edge xy such that $x \in S$, $y \in V(G) \setminus S$ and $d_{G-S}(y) \ge a$, consider an [a, b]-factor F containing xy. We have

$$\sum_{j=0}^{a-1} (a-j) p_j(G-S) \le b|S|-1.$$

The condition is sufficient. Let e = uv be any edge of G. Define f and g on V(G) by f(u) = f(v) = b - 1, f(x) = b when $x \neq u, v$, g(u) = g(v) = a - 1 and g(x) = a when $x \neq u, v$. Clearly, there exists an [a, b]-factor of G containing e if there exists a (g, f)-factor of G' = G - e, by Theorem 1.1 if for any $S, T \subseteq V(G')$ with $S \cap T = \phi$,

$$\delta(S,T) = \sum_{x \in T} \{d_{G'}(x) - g(x)\} + \sum_{x \in S} f(x) - e(S,T) - h(S,T) \ge 0.$$

Since $g(x) \neq f(x)$ for any $x \in V(G')$, h(S,T) = o. Thus, we have

$$\delta(S,T) = \sum_{x \in T} d_{G'-S}(x) - \sum_{x \in T} g(x) + \sum_{x \in S} f(x).$$

We distinguish three cases.

Case 1. $u, v \in S$. In this case we have

$$\delta(S,T) = \sum_{x \in T} d_{G'-S}(x) - a|T| + b|S| - 2$$

and

$$p_j(G-S)=p_j(G'-S).$$

Clearly,

$$\sum_{x \in T} d_{G'-S}(x) \ge a|T| - \sum_{j=0}^{a-1} (a-j)p_j(G'-S|T)$$

$$\ge a|T| - \sum_{j=0}^{a-1} (a-j)p_j(G'-S) = a|T| - \sum_{j=0}^{a-1} (a-j)p_j(G-S).$$

By hypothesis,

$$\sum_{j=0}^{a-1} (a-j)p_j(G-S) \le b|S|-2,$$

since S is not independent. It follows that

$$\sum_{x \in T} d_{G'-S}(x) \ge a|T| - b|S| + 2,$$

namely, $\delta(S,T) \geq 0$.

Case 2. $u \in S$ and $v \in V(G) \setminus S$. In this case we have

$$p_j(G'-S)=p_j(G-S).$$

Case 2.1. $v \in T$. We have

$$\begin{split} \delta(S,T) &= \sum_{x \in T} d_{G'-S}(x) - (a|T|-1) + b|S|-1 \\ &= \sum_{x \in T} d_{G'-S}(x) - a|T| + b|S|. \end{split}$$

By hypothesis,

$$\sum_{j=0}^{a-1} (a-j)p_j(G-S) \leq b|S|.$$

Thus.

$$\sum_{x \in T} d_{G'-S}(x) \ge a|T| - \sum_{j=0}^{a-1} (a-j)p_j(G'-S|T)$$

$$\ge a|T| - \sum_{j=0}^{a-1} (a-j)p_j(G'-S)$$

$$= a|T| - \sum_{j=0}^{a-1} (a-j)p_j(G-S) \ge a|T| - b|S|.$$

It follows that $\delta(S,T) \geq 0$.

Case 2.2. $v \notin T$. We have

$$\delta(S,T) = \sum_{x \in T} d_{G'-S}(x) - a|T| + b|S| - 1.$$

If $d_{G-S}(v) \geq a$, by hypothesis,

$$\sum_{j=0}^{a-1} (a-j) p_j(G-S) \le b|S|-1.$$

Thus,

$$\sum_{x \in T} d_{G'-S}(x) \ge a|T| - \sum_{j=0}^{a-1} (a-j)p_j(G'-S|T)$$

$$\ge a|T| - \sum_{j=0}^{a-1} (a-j)p_j(G'-S)$$

$$= a|T| - \sum_{j=0}^{a-1} (a-j)p_j(G-S) \ge a|T| - b|S| + 1.$$

So $\delta(S,T) \geq 0$.

If $d_{G-S}(v) < a$, we have

$$\sum_{x \in T} d_{G'-S}(x) \ge a|T| - \sum_{j=0}^{a-1} (a-j)p_j(G'-S|T)$$

$$\ge a|T| - \sum_{j=0}^{a-1} (a-j)p_j(G'-S) + 1$$

$$= a|T| - \sum_{j=0}^{a-1} (a-j)p_j(G-S) + 1 \ge a|T| - b|S| + 1.$$

Therefore $\delta(S,T) \geq 0$.

Case 3. $u, v \in V(G) \setminus S$.

Case 3.1. $u, v \notin T$. In this case

$$\delta(S,T) = \sum_{x \in T} d_{G'-S}(x) - a|T| + b|S|$$

and

$$p_j(G'-S|T)=p_j(G-S|T).$$

By hypothesis,

$$\sum_{j=0}^{a-1} (a-j)p_j(G-S) \leq b|S|.$$

Thus,

$$\sum_{x \in T} d_{G'-S}(x) \ge a|T| - \sum_{j=0}^{a-1} (a-j)p_j(G'-S|T)$$

$$= a|T| - \sum_{j=0}^{a-1} (a-j)p_j(G-S|T)$$

$$\ge a|T| - \sum_{j=0}^{a-1} (a-j)p_j(G-S) \ge a|T| - b|S|.$$

So $\delta(S,T) \geq 0$.

Case 3.2. $u \in T$ and $v \notin T$. In this case

$$\delta(S,T) = \sum_{x \in T} d_{G'-S}(x) - (a|T|-1) + b|S|.$$

If $d_{G-S}(u) > a$, we have $p_j(G'-S|T) = p_j(G-S|T)$ for $0 \le j \le a-1$. If $d_{G-S}(u) = a$, we have $p_{a-1}(G'-S|T) = p_{a-1}(G-S|T) + 1$. So

$$\sum_{j=0}^{a-1} (a-j)p_j(G'-S|T) = \sum_{j=0}^{a-1} (a-j)p_j(G-S|T) + 1.$$

If $d_{G-S}(u) = j_0 < a$, then $p_{j_0}(G' - S|T) = p_{j_0}(G - S|T) - 1$ and $p_{j_0-1}(G' - S|T) = p_{j_0-1}(G - S|T) + 1$. It is easy to verify that

$$\sum_{j=0}^{a-1} (a-j)p_j(G'-S|T) = \sum_{j=0}^{a-1} (a-j)p_j(G-S|T) + 1.$$

Thus, in all cases we have

$$\sum_{j=0}^{a-1} (a-j)p_j(G'-S|T) \le \sum_{j=0}^{a-1} (a-j)p_j(G-S|T) + 1.$$

Therefore

$$\sum_{x \in T} d_{G'-S}(x) \ge a|T| - \sum_{j=0}^{a-1} (a-j) p_j (G'-S|T)$$

$$\ge a|T| - \sum_{j=0}^{a-1} (a-j) p_j (G-S|T) - 1$$

$$\ge a|T| - \sum_{j=0}^{a-1} (a-j) p_j (G-S) - 1 \ge a|T| - b|S| - 1.$$

Hence, $\delta(S,T) \geq 0$.

Case 3.3. $u, v \in T$. In this case

$$\delta(S,T) = \sum_{x \in T} d_{G'-S}(x) - (a|T|-2) + b|S|.$$

By an argument similar to that used in Case 3.2, it is not difficult to verify that

$$\sum_{j=0}^{a-1} (a-j)p_j(G'-S|T) \leq \sum_{j=0}^{a-1} (a-j)p_j(G-S|T) + 2.$$

As in Case 3.2, we can prove that

$$\sum_{x\in T} d_{G'-S}(x) \geq a|T|-b|S|-2.$$

So $\delta(S,T)>0$.

3. [a, b]-covered graphs

In [2, Chapter 8, Theorem 13] Berge proved that if G is a graph of even order which is regular of degree r > 1 and if G is (r - 1)-edge-connected, then G is factor-covered. Here we present a similar result about [a, b]-covered graphs. In particular, we have the following general result.

Theorem 3.1. Let G be an [m, n]-graph. If a and b are integers such that $bm - na \ge 2(n - b)$ and $0 \le a < b \le n$, then G is [a, b]-covered.

Proof: When a = 0, the theorem is trivial. Otherwise, by Theorem 2.1 it is sufficient to prove that for all $S \subseteq V(G)$,

$$\sum_{j=0}^{a-1} (a-j)p_j(G-S) \le b|S| - \varepsilon(S) \tag{1}$$

where $\varepsilon(S)$ is defined as in Theorem 2.1. For all $S \subseteq V(G)$, if $p_j(G-S) = 0$ for all $j = 0, 1, \ldots, a-1$, clearly, inequality (1) is true. In the following we assume that $p_j(G-S) \neq 0$ for some j and some $S \subseteq V(G)$. We consider the following three cases.

Case 1. S is not independent. Since $m \leq d_G(x) \leq n$ for every $x \in V(G)$, it follows that

$$\sum_{j=0}^{a-1} (m-j) p_j (G-S) \le n|S|-2.$$

Thus,

$$b|S| \geq \frac{b}{n} \left[\sum_{j=0}^{a-1} (m-j) p_j(G-S) + 2 \right].$$

Since $bm-na \ge 2(n-b)$, $(bm-na)p_j(G-S) \ge 2(n-b)$ when $p_j(G-S) \ne 0$. Also $n-b \ge 0$. Thus, we have

$$\frac{b}{n}\sum_{j=0}^{a-1}(m-j)p_{j}(G-S)+\frac{2b}{n}-\left[\sum_{j=0}^{a-1}(a-j)p_{j}(G-S)+2\right]$$

$$=\frac{1}{n}\sum_{j=0}^{a-1}\left[bm-na+(n-b)j\right]p_{j}(G-S)-\frac{2}{n}(n-b)\geq 0.$$

namely,

$$|b|S| \ge \sum_{j=0}^{a-1} (a-j)p_j(G-S) + 2.$$

Case 2. S is independent and there is an edge xy such that $x \in S$, $y \in V(G) \setminus S$ and $d_{G-S}(y) \ge a$. In this case

$$\sum_{j=0}^{a-1} (m-j) p_j(G-S) \le n|S|-1. \text{ Thus,}$$

$$b|S| \geq \frac{b}{n} \left[\sum_{j=0}^{a-1} (m-j) p_j(G-S) + 1 \right].$$

As in Case 1, we can prove that

$$\frac{b}{n} \left[\sum_{j=0}^{a-1} (m-j) p_j (G-S) + 1 \right] \ge \sum_{j=0}^{a-1} (a-j) p_j (G-S) + 1.$$

So

$$|b|S| \ge \sum_{j=0}^{a-1} (a-j)p_j(G-S) + 1.$$

Case 3. Case 1 and Case 2 are not true. In this case

$$\sum_{j=0}^{a-1} (m-j)p_j(G-S) \leq n|S|.$$

It follows that

$$b|S| \geq \frac{b}{n} \sum_{j=0}^{a-1} (m-j) p_j(G-S).$$

Since $bm - na \ge 2(n - b) \ge 0$, we have

$$\frac{b}{n}\sum_{j=0}^{a-1}(m-j)p_{j}(G-S) - \sum_{j=0}^{a-1}(a-j)p_{j}(G-S)$$

$$= \frac{1}{n}\sum_{j=0}^{a-1}[bm-na+(n-b)j]p_{j}(G-S) > 0.$$

Thus inequality (1) is satisfied and the proof is complete.

The next result follows immediately from Theorem 3.1.

Corollary 3.2. Let b, a and r be integers such that $r(b-a) \ge 2(r-b)$ and $0 \le a < b \le r$. Then if graph G is r-regular, G is [a,b]-covered.

From Corollary 3.2 we can easily obtain the following corollaries.

Corollary 3.3. Let a and b be non-negative integers and let G be an r-regular graph. Then G is [a, b]-covered if $b - a \ge 2$ and $b \le r$.

Corollary 3.4. Every r-regular graph is [k-1,k]-covered for every integer k such that $\frac{\tau}{2} \le k \le r$.

Acknowledgment

The author wishes to thank professor K. Heinrich for her helpful suggestions.

References

- 1. J. Akiyama and M. Kano, Factors and factorizations of graphs—a survey, J. Graph Theory 9 (1985), 1–42.
- 2. C. Berge, "Graphs and Hypergraphs", North-Holland, Amsterdam, 1973.
- 3. K. Heinrich, P. Hell, G. Liu and D.G. Kirkpatrick, A simple existence criterion for (g < f)-factors with applications to [a, b]-factors.
- 4. M. Kano and A. Saito, [a, b]-factors of graphs, Discrete Math. 47 (1983), 113-116.
- 5. C.H.C. Little, A theorem on connected graphs in which every edge belongs to a 1-factor, J. Austral. Math. Soc. 18 (1974), 450-452.
- L. Lovasz, Subgraphs with prescribed valencies, J. Combinatorial Theory 8 (1970), 391–416.
- 7. W.T. Tutte, Graph Factors, Combinatorica 1 (1981), 79–97.