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1. Introduction.

A 4-cycle system (FCS) is a pair ( K, C), where K, is the complete undirected
graphon n vertices and C is an cdge disjoint collection of 4-cycles which partition
K. The number nis called the order of the FCS ( K, C) and it is well-known
that the spectrum (= set of all orders for which a FCS exists) is precisely the set
ofalln =1 (mod 8). If (K,,C) isa FCS then |C| = n(n— 1)/8. In what

follows we will denote the 4-cycle ti by any cyclic shift of (a, b, ¢, d) or
(b,a,d,0). :
[

Example 1.1: (FCS of order 9). Let Ky be based on Zy and define C = {4,
14+4,5+414,2+1) | i€ Zy}. Then (Ky,C) is a FCS of order 9.

A partial FCS is a pair (K,, P), where P is an edge disjoint collection of
4-cycles of K,,.

Example 1.2: (Partial FCS of order 6). Let K¢ be based on {1,2,3,4,5,6}and
P={(1,2,3,4), (1,3,5,6), (2,6,4,5}.

Now given a partial FCS ( K, P;) there is the obvious problem of completion.
That is, docs there exist a FCS (K, P>) such that P, C P,? In general, the
answer to this question is no. For example, the partial FCS ( K, P) in Example
1.2 cannot be completed to a FCS (since among other reasons 6 Z 1 (mod 8)).
The (partial) FCS ( K,,, Py) is said to be embedded in the FCS (K, P2) provided
thatm > n and P, C P,. Sincea partial FCS cannot gencrally be completed to a
FCS the problem of whether or not a partial FCS can always be embedded in some
FCS is immediate. In 1974 Richard Wilson [3] showed that this is always possible.

Actually, Wilson proved a much broadcr result on the embedding of partial graph
designs in general, not just for 4-cycle systems. Nevertheless, the embedding

guaranteed in [3] is exponentially large. Recently a much smaller embedding was
obtained. In [1] it is shown that a partial FCS of order n can always be embedded
in a FCS of order m for every admissable m > 8n+ 1. The object of this note
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is to very much improve this bound to approximately 2n+ +/n. In particular, we
prove that a partial FCS of order n can be embedded in a FCS of order m for every
admissable m > 2(5) + z = z?, where z is the smallest odd integer such that

G) >n.

2. The main constructions.

We begin with a theorem due to Dominique Sotteau which is the main ingredient
in our construction.

Theorem 2.1. (D. Sotteau [2]). The complete bipartite graph K, can be de-
composed into cycles of length2 k if and only ifz > k, y > k, 2k divides zy,
and = and y are even.

Since we are dealing with 4-cycle systems only, Sotteau’s Theorem reduces to
the single requirement that = and y arc even. That is to say, K, can be decom-
posed into 4-cycles if and only if z and y are even.

A modification of the following construction will give us our main embedding
result.

The 2 (5) + z construction. Let X be a set of size |X| = z, where z is odd. Let
Sbeasetof size |S| = (3),set M = (S x {1,2}) U X, and define a collection
C of 4-cycles of M as follows:

(1) For each 2-element subset {a, b} of S, place the 4-cycle ((a,1),(b, 1),
(a,2),(b,2)) inC.

(2) Denote by T(X) the set of (;) 2-element subsets of X and let « be any
1 - 1 mapping of S onto T°(X). For each clement a € S place exactly
one of the two 4-cycles ({a,1),(a,2),c,d) or ((e,1),(a,2),d,c) inC,
where aa = {c, d}.

(3) For each element c € X denote by D(c) the setofall (a,3) € Sx {1,2}
such that the edge {(a,1),c} belongs to a 4-cycle of type (2). Since c
belongs to z—1 2-element subsets of T'( X)), | D(c¢)| = z— 1. Furthermore,
and this is important, the collection 7 = {D(c) | ¢ € X} is a partition
of § x {1,2}. By Sotteau’s Theorem K () x\(c} Can be partitioned into
4-cycles. Denote this collection of (z— 1) 2 /4 4-cycles by F(c) and place
these 4-cycles in C.

It is straightforward to see that ( K, C) isa4-cycle systemof order2 (5) +z =
z?, where |M| = m and K, is based on M.

The following construction is a lot simpler than the 2 (5) + z construction and
will be used to extend the main embedding result.

The n + 8 construction. Let (K, C) be a FCS of order » based on the set
{o0} U S and let X be a set of size |[X| = 8. Let M = {00} U SU X and define
a collection of 4-cycles C* as follows:

1) ccct.

(2) Let (K9,C(9)) be any FCS of order 9 (Example 1.1) based on {oo} U X
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and place the 4-cycles in C(9) in C*.
(3) Use Sotteau’s Theorem to decompose K g x into 4-cycles and place these
4-cycles in C*.
Then (K3 ,C*), based on M, is a FCS of order n+ 8 and contains the FCS
(K,,C) as asubsystem.

3. Embedding partial 4-cycle systems .

Before plunging into the main embedding theorem we will need one more idea.
Two partial FCSs ( K, P1) and (K,, P2) are mutually balanced provided they
cover exactly the same edges. That is to say, the edge {a, b} belongs to a 4-cycle
of P, if and only if it belongs to a 4-cycle of P;.

Example 3.1: Let E = {a, b, c,d} x {1,2} and define P, and P, as follows:

Py ={((e,1),(b,1),(a,2),(5,2)),((5,1),(¢,1),(b,2),(c,2)),
((¢,1),(d,1),(¢,2),(d,2)),((d, 1),(a,1),(d,2),(a,2))} and

Py ={((a,1),(b,1),(¢,1),(d,1)),((a,2),(b,2),(¢,2),(d,2)),
((e,1),(,2),(c,1),(d,2)},((a,2),(5,1),(c,2),(d, 1)) }.

If Kg is based on E, then ( K3, P;) and ( K3, P,) are a pair of mutually balanced
partial FCSs of order 8.

Theorem 3.2. A partial FCS of order n can be embedded in a FCS of order z*
where z is the smallest odd positive integer such that (3) > n.

Proof: Let ( K,, P) be a partial FCS of ordernbasedon N = {1,2,3,... ,n}.

Let 2 be the smallest odd positive integer such that (5) > n. Let X be a set
of size | X| = z and S a set of size |S| = (3) containing N. Let M = (S x
{1,2}) U X and let (K., C) be the FCS constructed on M using the 2(3) + =
construction. If P = {(al )bl )Clxdl)r(azabZ)CZ)d2)) see ,(Ot,bg,q,dg)} we
will denote the copies of ( K3, P) and ( K3, P,) basedon {a;, b;, c;, &} x{1,2}
by (Ks, P1;) and (K3, P,;). If i # 7, then Py; and Py ; contain no common edges.
As a consequence ( K, C* = (C\ UL, Pi;) U (UL, P;)) is a FCS system of
order m = 2(3) + z. Clearly C* contains two disjoint copies of ( K,, P). This
completes the proof. |

Corollary 3.3. A partial FCS of order n can be embedded in a FCS of order

m for every admissable m > z2, where x is the smallest odd integer such that
4
G) =n.
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Proof: Let ( K, P) be apartial FCS of order n. By Theorem 3.2 ( K,,, P) canbe
embedded in a FCS ( K,2, P*) of order z2, where z is the smallest odd positive
integer such that () > =. Iteration of Corollary 3.3 embeds ( Kz, P*), and
therefore ( K4, P), in a FCS ( K, C) for every m = 2 + 8k; that is, for every
admissable m > z2. ]

4. Concluding remarks.

Although the result in this note dramatically improves the known bound for em-
bedding partial FCSs, it is still not the best possible embedding. The best possible
bound is approximately n+ \/n. Couched in the vernacular of this note, approxi-
mately (3) + =, where  is the smallest positive integer such that (§) > n.
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