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Abstract. A diagonal Latin square is a Latin square whose main diagonal and back
diagonal are both transversals. It is proved in this paper that there are three pairwise
orthogonal diagonal Latin squares of order nfor all n > 7 with 28 possible exceptions,
in which 118 is the greatest one.

1. Introduction.

A diagonal Latin square of order nis a Latin square each of whose main diagonal
(the cells {(4,1): 1 < i < n}) and back diagonal (the cells {(i{,n+ 1 —1):1 <
i < n}) is a transversal. t pairwise orthogonal diagonal Latin squares of order
n, denoted briefly by tPODLS(n), are ¢ pairwise orthogonal Latin squares each
of which is a diagonal Latin square of order n.

Fort = 1, it has been shown (see Lindner [9], Hilton [6] and Gergely [3]) that
diagonal Latin squares exist for all positive integer n greater than 3. Fort = 2, it
has been shown (see Heinrich and Hilton [S], Wallis and Zhu [12, 13, 16] that a
pair of orthogonal diagonal Latin squares of order n exists for all n > 7 with one
possible exception of n = 10. For t > 3, less work has been done. Gergely has
proved in [4] that

a(n) -3 ifnisodd,
D > 1.1
(m) 2 { aln) -2 ifniseven, .
where D(7n) denotes the maximum number of PODLS(n), n = pi'p3? ...p2" is
the prime factorization of n and a(n) = min¢;<.{p{*}. He has also pointed out

that e
n—3 ifnisodd(n> 3),

b(m < { n—2 ifniseven.

From (1.1) and (1.2), he has given the result that for any prime power order n,
D(n)={ n—3 !fnfsodd(nZS), 1.3)
n—2 ifniseven.
Some bounds have been obtained by using PBD’s in [14), that is D(n) > 3 for
n>447,D(n) > 4 forn > 511, D(n) > 5 forn > 2724 ,and D(n) > 6 for
n > 6278. Asymptotically, it has been proved in (7] that D(n) — coasn — oo.
In this paper it is proved, by using an entirely different method from PBD’s,
that there are three pairwise orthogonal diagonal Latin squares of order = for all
n > 7 with 28 possible exceptions, in which 118 is the greatest one.

(1.2)

1This paper, which appeared in Chinese in Applied Mathematics, A Journal of Chinese Universities,
No. 1, Vol. 1 (Scpt.) 1986, has been translated as a courtesy to our anglophone readers.
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2. Preliminaries.

Let N(n) (I(n)) be the maximum number of pairwise orthogonal (idempotent)
Latin squares of order n. It is obvious that

D(n) < I(n), and 2.1
N(n) -1 < I(n) £ N(n). 22)

Let IA¢(v, k) denote ¢ pairwise orthogonal Latin squares of order v (briefly ¢
POLS(v)) with t sub-POLS( k) missing. Usually we leave the size k hole in the
lower right comner. In fact, it is not necessary for such orthogonal subsquares of
order k really to exist. For example, Brouwer [1] has obtained an IA44(10,2)
although there do not exist 4POLS(2).

Further denote by I A} (v, k) an I A;(v, k) in which the first v— k elements in the
main diagonal of every square are distinct and different from the missing elements.
It is easy to see that the existence of an IA;.1(v, k) implies the existence of an
I1Aj(v,k), and that TA}(v, 1) exists if I(v) > t. From Brouwer’s IA4(10,2)
and Seiden and Wu’s result on 3POLS(v) of sum composition [11], we have
Example 2.1: An IA%(10,2) exists.

Example22 There are TA3(13 + 3,3), IA3(16 + 3,3), IA3(16 + 5,5),
A3(37+3,3),and 143 (37+9 9).

From Example 2.11 in [15] we actually have
Example 2.3: An JA$(7 + 2,2) exists.

Lemma 2.4. AnIAj(n,7) existsifn> 29 except possibly forn € {30,31,32,
34,37,38,39,41 44 ,45,46,47,48,52,53}.

Proof: From Theorem 1.5 in [15] we need only prove the existence of I A% 3(n,7)
forn=29,33,40,42,43,60, and 74. Since

29 = 74+1,

33 = 7.4+5,

40 = 5.7+(2+2+1),

42 = 5.74+(2+2+2+1),
43 = 574(2+2+2+2),
60 = 7.7+(2.5+1),

74 = 9.7+(2.5+1),

the conclusion comes from Lemma 2.6 in [15]. ]

Lemma 2.5. AnIA3(n,8) exists ifn> 32 andn# 46.

Proof: From Theorem 1.6 in [15] we need only prove the existence of 1 43 (35,8).
Since 35 = 8.4 + 3, the conclusion follows from Lemma 2.3 in [15]. |
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Lemma 2.6. In I(n) > 3 ifn ¢ {2,3,4,6,10,14,18,20,22,24, 26,28,
30, 34,38}.

Proof: Since N(n) > 4 implies I(n) > 3, from the list in [1] we need only prove
I(n) >3 forn=33,42,44, and 52. Orders 33 and 42 come from Lemma 2.4.
Orders 44 and 52 come from Lemma 2.6 in [15] and the following expressions,

44=9.4+8,
52=114+8. 1§

We also need the following lemma (see the list in [1]).
Lemma2.7. N(n) >3 ifn¢ {2,3,6,10,14}.

From Gergely [4] we have
Lemma 2.8. If D(m) >t and D(n) > t, then D(mn) > t.

3. Some constructions. .
The following lemma is essentially the Construction 2 in [8].

Lemma 3.1. Suppose q is odd and there is an IA}(m + k, k). Thenmin{D(qg),
D(m+ k), I(m)} >t implies D(gm + k) > t.

Corollary 3.2. D(n) > 3 ifn€ 8 = {50,51,78,85,93,94, 106,122, 134,
145,146, 162,166, 172,177,190, 205, 210, 218, 219, 250, 254 , 273, 302, 346 ,
354}.

Proof: The existence of A5(7+ 2,2) and IA3(13+ 3, 3) comes from Example
2.3 and Example 2.2. From [2] and [10] we have N(12) > 5 and N(15) > 4,
and then I(12) > 3 and I(15) > 3. Now the conclusion follows from Lemma
3.1 and the following expressions.

50 = 7.7+1, 172 = 13.1343,
51 = 7.7+2, 177 = 11.16+1,
78 = 11.7+1, 190 = 27.7+1,
8 = 7.12+1, 205 = 29.7+2,
93 = 13.7+2, 210 = 19.11+1,
94 = 7.13+3, 218 = 31.7+1,
106 = 7.15+1, 219 = 31742,
122 = 111141, 250 = 19.1343,
134 = 19.7+], 254 = 23.11+1,
145 = 9.16+1, 273 = 17.16+1,
146 = 11.13+3, 302 = 43.7+1,
162 = 23.7+1, 346 = 23.15+1,
166 = 11.15+1, 354 = 27.13+3. [ |
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Denote by I A}*(v, k) an I A¥(v, k) in which the elements in the cells (1,v —
k),(2,v—k-1),...,(v—k, 1) of every square are distinct and different from
the missing elements. It is clear that an I A*(v, 0) exists if D(v) > t and that an
TAY*(v,1) exists if v is odd and D(v) > t. We now give a construction which
is akind of variation of Lemma 2.6 in [15] and generalizes some constructions in

[8].

Lemma 3.3. Suppose therearet+1 POLS(q) such that t of them aretPODLS(q).
Suppose 2 [qgmk, D(k) >t and that IA}(m + £,8) existfor0 <1< q—1,
where k = £y + £y + ...+ £,_y. Further suppose an IA*(m + £,4y) exists if
2 fq. thenD(gm + k) > t.

Proof: Since tPODLS(g) have an extra orthogonal mate, they have ¢ disjoint
common transversals each of which is determined by an element in the extra
square. Label these transversals as Ty, T1,... ,Ty—1, provided that Tp contains
the central cell if 2 [q.

Begin with the tPODLS(g) and replace each of its cells with an m x m array
labelled by the elements in the cell, the array is the upper left part of I A} ( m+£4;, ;)
if the cell is contained in T3, 0 < i < ¢ — 1. Butif the cell is in the back
diagonal of the tPODLS(q), it will be filled with a modified I Af(m + £;,£;), that
is, by permuting the first m columns the main diagonal of the upper left part in
the TA}(m + £, £;) becomes its back diagonal. Furthermore, the central cell will
be filled with the upper left part of an JAf*(m + £, %) if 2 [g. Suppose every
TA}(m+ 2;,£;) is based on certain m elements and £; new elements, and the new
elements remain unchanged when labelling. Then we obtain the upper left part of
an IAy*(gm + k, k) whose right part consists of the columns Co, Cy, ... ,Cy-1
where C; comes from the right part of the JA}(m + £, £;) in T, and the lower
part is obtained in a similar fashion, see Figure 1.

Now fill the size k hole in the lower right comner of the JAM*(gm + k, k) with
the given tPODLS( k). Since 2 |gmk, 2|gm or 2 |k. So we can divide the upper
left part of the T Af*(gm + k, k) or the tPODLS( k) into four parts and put them
in the four comners of some tPODLS(gm + k) by permuting the corresponding
rows and columns. The remaining verification is a routine matter and the proof is
complete. [ ]

We remark that the Constructions 1, 3, and 4 in [8] are essentially the particular
cases of Lemma 3.3 with only one £; # 0 when 2|g, 2|m and 2 |n, respectively.

Corollary 3.4. D(n) > 3 ifn € 8, = {40,60,80,92,100, 120, 123,124,
168, 188,220,231,236, 237,252,265, 266, 280,282, 284 , 285,305, 312,
315,316).
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Figure 1 tPODLS(k)

Proof: From [13] we have D(12) > 4. In Lemma 3.3, it is easy to check from
(1.3) with the following expressions that D(q) > 4. Other conditions are also
satisfied from Example 2.1 along with the known fact that D(50) > 4 in [8] and
that 1(21) > 3 and 1(39) > 3 in Lemma 2.6. The following are the expressions.

40 = 8448,
60 = 124+12,
80 = 9.84+48,
92 = 12748,
100 = 127+16,
120 = 16.748,
123 = 13.8+19, 19 = 2.9+1,
124 = 16.7+12,
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168 = 8.2048,

188 = 16.11+12,

220 = 13.16+12,

231 = 327947,

236 = 32.7+12,

237 = 19.1249,

252 = 16.15+12,

265 = 16.1649,

266 = 27.8+50, 50 = 2.24+1+1,
280 = 17.16+48,

282 = 29.8450, 50 = 2.24+1+1,
284 = 23,1248,

285 = 17.16+13,

305 = 8.3749,

312 = 8.3848,

315 = 19.16+11,

316 = 25.12+16. |

Corollary 3.5. D(n) >3 ifn€ S5 = {183,314}.

Proof: We intend to use Lemma 3.3 for 183 = 8.22 + 7. The only trouble is the
lack of 1A3(22 + 0,0). Notice that the six PODLS(8), Ly = £&; + &, €
GF(8)\{0, 1}, have the orthogonal mate L, = §; + §; which is symmetric.
Then we can permute rows and columns simultaneously to make the orthogo-
nal mate having constant in either main diagonal or back diagonal, so that the
six PODLS(8) have two common transversals in both main and back diagonals
and other six disjoint common transversals elsewhere. It is easy to see that only
TA3(m + £;,£;), instead of IA5(m + £;,£;), is needed for these six common
transversals. From Lemma 2.7 we know N(22) > 3, thus from Lemma 3.3 we
have D(183) > 3.

From [2] we know that 4PODLS(12) have the same property as six PODLS(8)
mentioned above. Write 314 = 12.22+ 50,50 = 7.7+ 1. Since an I A$(22+7,7)
exists from Lemma 2.4 and N(22) > 3, then D(314) > 3. |

Lemma 3.6. D(n) > 3 forn€ Ss = {238,262}.

Proof: Write 238 = 7.33 + 7 and 262 = 7.37 + 3. Since D(40) > 3 from
Corollary 3.4 and there are IA5(33+ 7,7) and IA3(37 + 3,3) from Lemma 2.4
and Example 2.2, then the conclusion follows from Lemma 3.1. [ |

We also have some PODLS analoques to the POLS constructions of Lemma 2.3
and Lemma 2.4 in [15] like Lemma 3.3 to the Lemma 2.6 in [15].

Lemma 3.7, Suppose 2 [ q and there aret + k POLS(q) such that t of them are
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tPODLS(q). Suppose there are IA}(m + £;,%),1 < i k& +...+4=W.
Thenmin{I(m), D(m + w)} > t implies D(gm + w) > t.

Proof: The central element in cach of the & extra order g orthogonal mates deter-
mines a common transversal in the tPODLS( g). For each of such k transversals
intersecting in the central cell, fill its cells with an TA}(m+4;,8),1 <i<k,
but leave the central cell empty. Fill other cells with I(m). Notice that the cells
in the back diagonal of tPODLS( q) are filled with some modified J Ar(m+24;,8)
or I(m) whose back diagonal of the order m subarray is occupied by differ-
ent elements. Label the elements and get the right and lower parts as we did in
Lemma 3.3. Then we get an JA*(gm + w, m + w) shown in Figure 2. To get
the tPODLS(gm + w) we make a size m + w hole in the center by permuting
rows and columns and fill the hole with the given tPODLS(m + w). The proof is

complete. |
m o “
q 7 Z
w { : I////)/l "
Figure 2

Corollary 3.8. D(n) > 3 forn € Ss = {39,48,54,55,82,126, 138, 155,
180,214,215,235}.

Proof: The conclusion comes from Lemma 3.7 and the following expressions,

39 = 9443, 138 = 19.7+5,
48 = 11444, 155 = 19.8+43,
54 = 7.74(2+2+1), 180 = 25.7+45,
55 = 13443, 214 = 19.1145,
82 = 11.745, 215 = 53443,
126 = 11.11+5, 235 = 29.8+3.
where we have some trouble with m = 4, In this case, let GF(q) = {0,% a,+b,
... } and label the rows and columns with the order o, b, ... ,0,...,=b—a,we

getg—1POLS(q) as follows: Ly = M+, ), &,1 € GF(q) and A # 0. Then L,
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and L_; as two extra orthogonal squares will determine two common transversals
down the back and main diagonals. So instead of the condition I(4) > 3 we
need only N(4) > 3 for the other common transversals, thus the Lemma 3.7 still
works for the case m = 4. This completes the proof. |

Lemma 3.9. Suppose 2 [ q and there aret+ w+ 1 POLS(q) such that t of them
aretPODLS(q) . Suppose there exist IAf(m + hi, h;) and IA}(m+ 1+ h;, hy),
1<i<q—1,hi+ ...+ hy_y = h. Thenmin{I(m), D(m + w), D(h)} >t
implies D(gm + w + h) > t, provided2 | m+ wor 2 | h.

Proof: First do the construction as in Lemma 3.7 with 4; = 1, 1 < i < w. After
getting the Figure 2 do the Construction 3.3 again with ho = 0. For the cells which
are filled with I A¥(m+ 1, 1) in the first step, we should use IA}(m+ 1+ h;, hy),
then we get an array shown in Figure 3. Since 2 | m+wor2 | h we can get some
tPODLS(gm + w + h)from the array in Figure 3. |

s
7 7
m 7 7/
o o ) 4/4
W vz
h
N
Figure 3 tPODLS(h)

Corollary 3.10. D(n) > 3 forn € S = {58,62,86,87,90,98,130,142,
150,154,158,170,174,178,182,186,194, 198,202,206 ,222, 226, 230,234,
310,318, 334,358,366 ,374,382,422,430 }.

Proof: Since IA3(7+ 2,2) and IAj(7 + 1+ 2,2) exist from Examples 2.3 and
2.1, the conclusion comes from Lemma 3.9 and the following expressions.

58 = 7.7+148, 198 = 27.7+1+8,
62 = 7.7+1+12, 202 = 23.7+1+40,
86 = 11.7+41+8, 206 = 27.7+1+16,
87 = 11.7+42+8, 222 = 27.7+1432,
90 = 11.7+1+12, 226 = 31.7+1+8,

34



98 = 11.7+5+16, 230 = 27.7+1+40,
130 = 11.11+1+8, 234 = 31.7+1+16,
142 = 19.7+148, 270 = 23.11+1+16,
150 = 19.7+1+16, 310 = 43.7+1+8,
154 = 19.7+5+16, 318 = 43.7+1+16,
158 = 19.749+16, 334 = 43.7+1+32,
170 = 23.7+148, 358 = 43.7+1+56,
174 = 11.15+1+8, 366 = 43.7+1+64,
178 = 23.7+1+16, 374 = 43.7+1+72,
182 = 23.745+16, 382 = 43.7+1+80,
186 = 23.749+16, 422 = 59.7+1+8,
194 = 23.7+1+32, 430 = 59.7+1+16. [ |

Corollary 3.11. D(n) >3 forne §7 = {246,278,390}.

Proof: Write 246 = 12.16 + 54,54 = 5.10+ 3.1 + 1. From Corollary 3.8,
D(54) > 3. From Example 2.2 there is an TA3(16+5,5) and an TA3(16+3,3).
Then we have from Lemma 3.3 that D(246) > 3. Since 278 = 32.7 + 54 and
54 =2.27, D(279) > 3 from Lemma 3.3. Write 390 = 41 8 + 62,62 =2.31.
From Corollary 3.10 D(62) > 3. From Example 2.1 there is an JA3(8 + 2,2).
Then we have from Lemma 3.3 that D(390) > 3. [ |

4. Existence of 3PODLS(n).

To give the existence of 4PODLS( n) we first consider the different residue classes
of nmodulo 8.

Lemmad.l. D(n) > 3 foralln=8m+ k, m 20andk = 1,7,8 except
possiblyn€ P = {15,24 33},

Proof: In Lemma 3.3,letg = 8, £ = 0 or 1. From Lemma 2.7 we know that
I(m) >3 ifm ¢ {2,3,4,6,10,14,18,20,22,24,26,28,30,34,38}. If
I(m) >3 and I(m + 1) > 3, then from Lemma 3.3 we have D(8m+ k) > 3.

Butform € {9,13,17, 19,23,25,27,29,37} wecan wrilc 8m + k as m8 + k
and use the same Lemma to show that D(8m + k) > 3. Now we need only
consider 20 remaining cases of m which are listed in Table 1, where “?” indicates
an unknown order, “x” indicates D(n) > 3 since = is usually a prime power,
“ex” indicates D(n) > 3 since n = ab with D(a) > 3 and D(b) > 3,“Si”
indicates that D(n) > 3 since n€ ;.
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Table 1

m 8m+1 8m+7 8m+8

0 % 1 * 7 * 8

1 * 9 ? 15 * 16

2 o+ 17 x 23 ? 24

3 x 25 *~ 31 * 32

4 7 33 Ss 39 S2 40

5 %« 41 * 47 S5 48

6 «x 49 S5 55 ** 56 =178
10 « 81 S6 87 +x 88 =118
14 % 113 > 119 = 717 82 120

18 S1 145 * 151 o 152 = 8.19
20 %% 161 = 723  « 167 S2 168
21 * 169 * 175 = 725 % 176 =16.11
22 S1 177 S3 183 *x 184 =238
24 x 193 * 199 % 200 =258
26 xx 209 =11.19 S5 215 o 216 =27.8
28 %% 225 = 925 S2 231 **x 232 =298
30 « 241 *x 247 =13.19 xx 248 =318
33 S2 265 * 271 *x 272 =16.17
34 S1 273 ** 279 = 931 S2 280
38 S§2 305 * 311 S2 312 [}

Lemmad.2. D(n) >3 foralln=8m+ k, m >0 andk = 11,12, 13, except
possiblyn € P, = {20,21,28,35,36,44,45,52}.

Proof: The proof is similar to that in Lemma 4.1, but we have to consider the case
m = 9 separately. For these exceptional m we have the following table.
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Table 2

m 8m+ 11 8m+ 12 8m+ 13

0 * 11 * 12 * 13

1 +~ 19 ? 20 ? 21

2 % 27 ? 28 *x 29

3 ? 35 ? 36 * 37

4 x 43 ? 44 ? 45

5 S1 51 ? 52 * 53

6 x 59 S2 60 *x 61

9 x 83 x> 8 = 712 81 85

10 =+« 91 =713 S2 92 S1 93

14 S2 123 S2 124 * 125

18 S5 155 ** 156 =13.12 x 157
20 x 171 = 9.19 S1 172 * 173
21 * 179 S5 180 * 181
22 %% 187 =11.17 S2 188 189 = 7.27
24 4% 203 = 729 sx 204 =17.12 S1 205
26 S1 219 S2 220 o 221 =13.17
28 S5 235 S2 236 S2 237
30 x 251 S2 252 *x 253 =11.23
33 w275 =11.25 276 =12.23 *x 277
34 x 283 S2 284 S2 285

38 S2 315 S2 316 * 317 []

Lemma 4.3. D(n) > 3 foralln = 8m+ 50, m > 0, except possibly n €
P; = {66,74,114}.

Proof: In Lemma 3.3, let ¢ = 8. The proof of Corollary 3.5 shows that there are
4POLS(8) containing 3PODLS(8) which have two common transversals down the
main diagonal and back diagonal. For these diagonals we use JA3(m + 1,1),
while for the other six common transversals use only IAs;(m + 8,8). From
Lemma 2.5 an I A3(m + 8,8) exists if m > 24 and m # 38. From Lemma 2.6
I(m+1) > 3,thenan JAj(m+1,1) exists,ifm ¢ {1,2,3,5,9,13,17,19,21,
23,25,27,29,33,37}. So D(8m+50) > 3 forallm > 24 andm ¥ 25,27,29,
33,37, 38. For the remaining m we have the following table.
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Table 3

m 8m+50
0 S1 50 15 S6 170
1 S6 58 16 S6 178
2 7 66 17 S6 186
3 ? 74 18 S6 194
4 S5 82 19 S6 202
5 S6 90 20 S1 210
6 S6 98 21 S1 218
7 S1 106 22 S6 226
8 7 114 23 S6 234
9 S1 122 25 S1 250
10 S6 130 27 S2 266
11 S5 138 29 S2 282
12 S1 146 33 S3 314
13 S6 154 37 S1 346
14 S1 162 38 S1 354 1

Lemma4.4. D(n) >3 foralin=8m+62,m > 0, except possiblyn € P4 =
{70,102,110,118}.

Proof: InLemma3.3,letq = 8. As the above lemma we need 3PODLS(8) with 8
disjoint common transversals two of which are the main and back diagonals. We
use IA3(m + 7,7) for the diagonals and J As(m + 8,8) for other transversals.
Then from Lemma 2.4 and 2.5 we know that D(8m+62) > 3 forallm > 24 and
m # 24,25,27,30,31,32,34,37,38,39,40,41,45,46. For the remaining m
we have the following table.

Table 4
m 8m+62
0 S6 62 19 S5 214
1 ?7 70 20 S6 222
2 S1 78 21 S6 230
3 S6 86 22 S4 238
4 S1 94 23 S7 246
5 7 102 24 S1 254
6 ?7 110 25 S4 262
7 7 118 27 S7 278
8 S5 126 30 S1 302
9 S1 134 31 S6 310
10 S6 142 32 S6 318
i1 S6 150 34 S6 334
12 S6 158 37 S6 358
13 S1 166 38 S6 366
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14 S6 174 39 S6 374

15 S6 182 40 S6 382
16 S1 190 41 S7 390
17 S6 198 45 S6 422
18 S6 206 46 S6 430

From Lemma 4.1 - 4.4, we have considered all the positive integers except n =
2,3,4,5,6,10,14,18,22,26,30,34,38,42,46, 54 . From (1.3) there do not
exist 3PODLS(n) for n = 2,3,4 and 5. The nonexistence of 3PODLS(6) is
obvious since N(6) = 1. For the others the existence is unknown except that
54 € Ss. Summarizing all these results we have: 1

Theorem 4.5. There exist three pairwise orthogonal diagonal Latin squares of
every order n wheren > 118. Orders2,3,4,5 and 6 are impossible; the only
orders for which the existence is undecided are:

10, 14, 15, 18, 20, 21, 22, 24, 26, 28,
30, 33, 34, 35, 36, 38, 42, 44, 45, 46,
52, 66, 70, 74, 102, 110, 114, 118.
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