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Abstract. Let v, k and ) be positive integers. A perfect Mendelsohn design with
parameters v, k and A, denoted by (v, k, X)-PMD, is a decomposition of the complete
directed multigraph A K’} on v vertices into k-circuits such that forany r,1 < r < k-1,
and for any two distinct vertices x and y there are exactly ) circuits along which the
(directed) distance from z to y is r. In this survey paper, we describe various known
constructions, new results and some further guestions on PMDs.

1. Introduction

A set of k distinct elements {ay,a2,... ,ax} is said to be cyclically ordered by
a1 < a3 < ... < ag < a; and two elements q;, a;,¢ are said to be t-apart in a
cyclic k-tuple (a1,a3,... ,ax) where 1 + ¢ is taken modulo k.

Let v, k and ) be positive integers. A (v, k, \)-Mendelsohn design (briefly
(v, k, \)-MD) s a pair (X, B) where X is a v-set (of points) and B is a collection
of cyclically ordered k-subsets of X (called blocks ) such that every ordered pair of
points of X appears consecutively in exactly X\ blocks of B. The (v, k, »)-MD is
called r-fold perfect if each ordered pair of points of X appears t-apart in exactly
X blocks forallt = 1,2,...,r. A (k — 1)-fold perfect (v, &, ))-MD is called
perfect and is denoted briefly by (v, k, A)-PMD.

In graph notation, a (v, k, \)-MD is equivalent to the decomposition of the
complete directed multigraph A K* on v vertices into k-circuits. A (v, k, A)-PMD
is equivalent to the decomposition of A K} into k-circuits such that forany r, 1 <
r < k — 1, and for any two distinct vertices z and y there are exactly X circuits
along which the (directed) distance from z to y is 7.

If we ignore the cyclic order of the elements in blocks, a (v, k, A)-PMD be-
comes a (v, k, \(k — 1))-BIBD. Therefore, we can consider perfect Mendelsohn
designs as a generalization of balanced incomplete block designs. It was N.S.
Mendelsohn who first introduced the cyclic order of the elements into blocks and
discussed the existence question of a (v, k, \)-PMD (see, [16, 18]), which was
originally called perfect cyclic design.

Since the complete directed multigraph ) K} contains Av(v — 1) arcs and each
block as a circuit contains k arcs, it is easy to see that the number of blocks in a
(v,k,))-PMD s

(v —1)/k.

This leads to an obvious necessary condition for the existence of a (v, k, A)-PMD,
that is,
Aw(v=1) =0 (mod k). (1.1)
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This condition is not always sufficient, for example, an exhaustive enumeration
shows [16] that no (6, 3, 1)-PMD can exist.

In this paper, we shall survey the recent results (an earlier survey can be found
in [3]) for the existence of (v, k, \)-PMD, some old and new constructions, and
some further questions,

2. Further necessary conditions from orthogonal array

An orthogonal array OA(k,v?) is a v2 x k array whose entries come from a
v-set X, and such that for any pair of columns every ordered pair of elements of
X (not necessarily distinct) appear in the same row exactly once.

The connection between (v, k, 1)-PMD and QOA(k, v2) is described in [6].

Theorem 2.1. Ifa(v,k, 1) -PMD exists, then also an-OA(k,v?) exists.

Proof: Suppose the PMD is based on the symbols 1,2, ... ,v. Form the array
with k columns as follows. Take the first v rows to be

111...1
222..2
v U ..o

The array is completed by taking each k-cyclic block and use it to fill k rows of
the array by writing down all its cyclic permutations. It is readily verified that the
v? x.k.array is.an.OA(k, v?). 1

It is well known (see, for example, [12]) that the existence of an OA(k, v?) is
equivalent to the existence of k — 2 mutually orthogonal Latin squares (MOLS)
of order v. We then have the following,

Corollary 2.2. If there exists a (v, k, 1) -PMD, then there exist k — 2 MOLS of
orderv.

The non-existence of two MOLS of order six has been known for a long time
(see [22]), a short proof can be found in {20]. We then have

Corollary 2.3. There does not exist a{6,5,1)-PMD, nora (6,6, 1) -PMD.

3. Constructions using finite fields and groups

The following two theorems were found by N.S. Mendelsohn in [18] under the
language of quasigroups. We give the direct proof here.

Theorem 3.1. Letp be an odd prime. Then there exists a (p, p, 1) -PMD.

Proof: LetX = GF(p) = {0,1,2,...,p~1}. LetB = {(0,/,2/,...,
(p—1)j) |7 € GF(p)\{0}}. Then, (X, B) is the required (p,p, 1)-PMD. In
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fact, for any two elements z,y € X andz # y,and forany 1 < ¢t < p— 1, the
equations

T =1j,
y=(i+1)],
have the unique solution, j = (y — z) /t and i = zt/(y — ). |

Theorem 3.2. Letv = p” be any prime power and k > 2 be such that k is a
divisor of v — 1, then there exists a (v, k, 1) -PMD.

Proof: Let X = GF(v). Forany )\, u,z € GF(v) satisfying v # 2, A # 1 and
Ak = 1, form ablock (u, Au+ (1 = Az, XN2u+ (1 = 2A2)z,... M-lu+ (1 -
M=1)2). For any element v’ in this block, the triple u’, z, A will determine the
same (cyclic) block. It is easy to see that the elements in the block are indeed
distinct, therefore, for fixed z and X, we can obtain (v — 1)/k blocks. And for
fixed X, we can obtain v(v — 1) /k blocks, which we denote by B. Then, (X, B)
is the required (v, k, 1)-PMD. In fact, for any two distinct elements z and y, and
forany 1 < t < k — 1, the equations

T=u,
y=Mu+(1-=2Yz,

have the unique solution « = z and z = (y — A'z) /(1 — At), which gives the
block containing z and y t-apart. 1

A direct construction using groups below is a variation of the method using
difference sets in the construction of BIBDs (see, for example, [12]). Instead of
listing all of the blocks of a design, it suffices 10 give the group G acting on a set
of base blocks. We shall adapt the following niotation: dev B= {B+g|B € B
and g € G}, where B is the collection of base blocks of the design.

The following results come from the recent work ([9], where the groups are the
additive groups of some finite fields.

Theorem 3.3. If v is a prime power and v > k, then there exists a (v,k,k) -
PMD.

Proof: Take X = GF(v) and B = {(0,£',€"!,... ¢*F2) |1 <igv -1},
where ¢ is a primitive element of GF(v). It is easy to check that (X, dev B) is
the required (v, k, k) -PMD. 1

Theorem 3.4. Ifq = kn+ 1 is a prime power, then there exists a(q+ 1,k, k) -
PMD.
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Proof: Suppose £ is a primitive element of GF(g). Let X = GF(q) U {oo}. Let
B consist of the following blocks:

(2, 26", 262", ..., 26Dy

2 € GR(Q\{0,1,€",... k=D,
(1,€7,62",... ,e%-Dmy - twice,
(00,2,28", ..., zgk=Dmy,

z e {1,&,... ,E("'l)"}.
It is checked that ( X, dev B) is the required (¢ + 1, k, k)-PMD. [ |

4. Constructions using pairwise balanced designs

Let K be a set of positive integers. A pairwise balanced design (PBD) of index
A B(K,X;v) isapair (X, B) where X is a v-set (of points) and B is a collection
of subsets of X (called blocks) with sizes from K such that every pair of distinct
points of X is contained in exactly X blocks of B. We shall denote by B( K, \)
the set of all integers v for which there exists a PBD B(K,\;v). A B(K,1)
will be denoted simply by B(K). A PBD B({k}, ; v) is essentially a balanced
incomplete block design (BIBD) with parameters v, k and ).

The following recursive construction is a general form of Theorem 2.9 in [18].

Theorem 4.1. Letv,k and )\, and ) be positive integers. Suppose there exists a
PBD B({ki,kz,... ,k.}, \1;v) and for each k; there exists a (k;, k,\2)-PMD,
then there exists a (v, k, \} \2) -PMD.

Proof: Let (X, .A) bethe PBD. Foranyblock A € A constructon Aa(|A|, k, \2)-
PMD (A, B,). Then (X, Uses Ba) is the required (v, k, A\, X2)-PMD. ]

Since for any prime p and any integer » > 1 there exists a PBD B({p}, 1;p")
which is indeed an affine space, we then apply Theorem 4.1 with the (p, p, 1)-
PMD from Theorem 3.1 to obtain a (p", p, 1)-PMD. Therefore, Theorem 3.1 can
be strengthened as follows.

Theorem 4.2. Letp be an odd prime andr > 1 be an integer. Then there exists
a(p",p, 1)-PMD.

Using the theory of PBD closed set of R. M. Wilson, some asymptotic results
were established in [6, 18].

Theorem 4.3. A (v, k, 1) -PMD exists for all sufficiently largev withk > 3 and
v=1 (mod k).

Theorem 4.4. A (v, k,1)-PMD exists withv(v—1) = 0 (mod k) for the case
when k is an odd prime and v is sufficiently large.
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We remark that the term “sufficiently large” in Theorem 4.3 and Theorem 4.4
is unspecified and the problem of finding a concrete bound for v in both cases
remains to be solved.

5. Construction by filling in holes

We denote by K, .. n the complete multipartite directed graph with vertex
set X = Uigica X, where X; (1 < ¢ < h) are disjoint sets with | X;| = n;,
V=) e i and where two vertices x and y from different sets X; and X; are
joined by exactly two arcs (z,y) and (y, ).

If Ko m.. n canbe decomposed into k-circuits such that forany »,1 < r <
k — 1, and for any two vertices z and y from different sets X; and X, there is
exactly one circuit along which the (directed) distance from z to y is r, we call
(X, B) aholey perfect Mendelsohn design, where B is the collection of all circuits.
We denote the design by (v, k, 1)-HPMD. The set X; (1 < i < h) iscalled a hole
and the vector (n1,m,... ,ns) is called the type of the HPMD.

A (v,k,1)-HPMD of type (1,1,...,1,n) is called an incomplete perfect
Mendelsohn design, denoted by (v, n, k, 1) -IPMD. Itis easy to see thata (v, &, 1) -
PMD is indeed a (v, k, 1)-HPMD of type (1,1,...,1). We can construct PMD
from IPMD by filling in hole.

Theorem 5.1. If there exist both (v, n, k,1)-IPMD and (n, k, 1) -PMD, then
there exists a (v, k, 1) -PMD.

Proof: Let (X,Y,B) bethe (v, n, k, 1) -IPMD where Y is the hole of size n. Let
(Y, By) bethe (n, k, 1)-PMD. Then, (X, BUBp) is the required (v, k, 1)-PMD.

Example 5.2: Let G = Z)4 be the residue classes of integers modulo 14. Let X =
Z14 U {001,002,003,004} and B = {(0,1,4),(0,4,1),(0,5,7), (001,0,6),
(002,0,8),(003,0,9),(004,0,12)}. It is readily checked that (X, {oo1, 002,
003,004 }, dev B) isa (18,4,3,1)-IPMD. We also have a (4,3, 1)-PMD from
Theorem 3.2, Applying Theorem 5.1 we obtain a (18,3, 1)-PMD.

Theorem 5.3. If there exists a(v, k,1)-HPMD of type (m ,m2,... ,m) and an
(m;+m,m, k,1)-IPMD for2 < 1 < h, then there existsa(v+ m,n + m,k, 1) -
IPMD, Moreover, if there exists an(ny + m,m, k, 1) -IPMD, then there exists a
(v+ m,m,k,1)-IPMD.

Proof: Let (X, B) be the given HPMD. X is partitioned into X, X>,... , X},
Y|=mYnNnX=4¢. Let (X;UY,Y,B;) be the given IPMD for2 < i < h.
Then (X UY, X; UY, (Us<ich B;) U B) is the required (v + m,m + m,k, 1)-
IPMD. If we further have the IPMD (X; UY,Y,B;), then (X UY,Y, (Uicich
B)uB)isa(v+ m,m,k,1)-IPMD. ]
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6. Existence of (v, 3, \)-PMD

The existence question for (v, 3, \)-PMD has been solved in [1] and [16] by us-
ing quasigroup composition techniques and some direct constructions. Since PBD
construction plays an important role in uniformly solving the existence questions
for various kinds of combinatorial designs, we would like to give an alternative
proof here for the existence of (v,3,))-PMD by using PBD constructions. De-
note

Hi={v>3|v=0 orl (mod 3)},
Hi = {v >3 |v isaninteger }.

It is proved in [13] that
Hy = B({3,4,6}). 6.1)

By a similar proof (6.1) can be strengthened to

P

B({3,4,}) D H3\{6,18}. 6.2)

From [12] we have
H} = B({3,4,5,6,8}). 6.3)

We are now in a position to prove the following.

Theorem 6.1. A necessary and sufficient condition for the existence ofa(v, 3, )) -
PMD is Av(v — 1) =0 (mod 3), except for the non-existing design (6,3,1) -
PMD.

Proof: (i) Thecase A = 1. A (3,3, 1)-PMDexists from Theorem 3.1. A (4,3, 1)-
PMD exists from Theorem 3.2. Applying Theorem 4.1 with (6.2) we ob-
taina(v,3,1)-PMDforanyv € H3\{6,18}. A(18,3,1)-PMDisgiven
in Example 5.2. The non-existence of a (6,3, 1)-PMD is mentioned in
Section 1.

(ii) The case A = 2. Applying Theorem 4.1 with (6.1) we need only to prove
the existence of (v,3,2)-PMD forv € {3,4,6}. v = 3 and 4 can be
done by taking repeated blocks in (3,3, 1)-PMD and (4,3, 1)-PMD. A
(6,3,2)-PMD is given as (X, dev B) where

G= Zs,X=ZsU{Oo},
B={(0,1,2),(0,2,1),(0,0,2),(c0,0,3)}.

(iii) The case A = 3. Applying Theorem 4.1 with (6.3) we need only to
prove the existence of (v,3,3)-PMD forv € {3,4,5,6,8}. The case
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v=3,4,5,8 can be done by applying Theorem 3.3. A (6,3,3)-PMDis
given as (X, dev B) where

G=2s, X ={0,1,2,3,4,5),
B= {(0! 1,2),(0,2,4),(0,3,1),(00,0,2),((”,0,4),(00,0,4)}.

(iv) The case A > 3. If ) is even, we can use (ii) by taking repeated blocks.
Otherwise, we take the blocks in a (v, 3,2)-PMD () — 3)/2 times each,
and together with the blocks ina (v, 3, 3)-PMD. This completes the proof.

7. Constructions by weighting

In constructions of group divisible designs (GDDs), or PBDs, techniques of giving
weight are frequently used (see [23]). It needs a master GDD to start with and
also some small GDDs as input designs in order to end up with a new GDD. To
generalize this method to end up with an HPMD, we can either start with an HPMD
and use some GDD:s as input designs, or start with a GDD and use some HPMD
as input designs. For construction of the first type, [7] gives the following,

Theorem 7.1. Suppose there exists aT D[ k; m). Then

(1) there exists a (mn, k, 1}-HPMD of type (mn,, mn,... ,mny) if there
exists an(n, k, 1) -HPMD of type (m,m, ... ,m4); and

(2) there exists a(mn, k, 1) -HPMD of type(m,m, ... ,m) if there exists an
(n,k,1)-PMD.

For the second type of construction we have

Theorem 7.2.  Suppose thereisaGDD{ K, 1, M; v] withgroupsG,Ga,... ,Gy,
where |G;| = m;,1 < & < h. If for any block size u € K there is a(mu,k,1)-
HPMD of type (m,m, ... ,m), then there exists a (mv, k, 1) -HPMD of type
(mn,mna,...,mn).

Proof: Let(X,G,.A) be the given GDD. I, = {1,2,... ,m}. Let A € Abeany
block with size |A| = u. Construct on A x I, a (mu, k,1)-HPMD with holes
{z} x In(z € A) andblocks B4. Then (X X Im,UaeaBa) is the required HPMD
with holes G; x I, (1 < i < h). |

8. Constructions using k-difference sequence
Let k be an odd integer. Let § = (so,s81,...,8k-1), 8; € Z;. If forany r €

Zi\{0},
{8,’4., — 8 I 1€ Zk} = Zy,

where the sum 1 + 7 is calculated in Zy, we call S a k-difference sequence.

49



We also need the concept of MOLS with holes (see, for example, [21]). Let
P = {X;,X3,...,X;)} be a partition of an n-set X. A holey Latin square,
having partition P, is an n x n array L, indexed by X, satisfying the following
properties:

(1) acell of L either contains an element of X or is empty;

(2) the subarray indexed by X; x X; are empty, for 1 < 1 < h (these subarrays
are called holes);

(3) the elements occurring in row (or column) z € X; of L are precisely those
in X\ Xi. The type of L is the vector (ny,m,... ,m) Where n; = | X;|.

Suppose L, L2, ... , L are holey Latin squares having partition P. If for any
1 € i < j < t the superposition of L; and L; yields every ordered pair in
X%\ Uigich X2, we call them ¢ holey mutually orthogonal Latin squares of order
nwith type (m,m2, ... ,m), denoted by ¢t HMOLS(n).

The following construction is proved in [7].

Theorem 8.1. Let k be an odd prime. Suppose that there existk—2 HMOLS(n)
of type (my,ma,... ,m). Then there exists an (kn, k, 1) -HPMD of type (kny,
knp, ... kny).

From Theorem 5.3 and Theorem 8.1 the following corollary is also obtained in
(71.

Corollary 8.2. Letk be anodd prime. Suppose that there existk—2 HMOLS(n)
oftype(m,m,... ,m). Then we have the following constructions.
(i) The kn-construction : A (kn, k, 1) -PMD exists ifa(kn;, k, 1) -PMD ex-
ists foralli,1 <1< h;and
(ii) The kn+1-construction : A (kn+1,k,1)-PMDexistsifa(kni+1,k,1)-
PMD exists foralli, 1 <1< h.

9. Construction from Steiner pentagon systems

A Steiner pentagon sysiem (SPS) is a pair ( K,, P) where K, is the complete
undirected graph (based on the set V'), P is a collection of pentagons in K, such
that each edge of K, belongs to exactly one pentagon of P, and each pair of
distinct elements of V are joined by a path of length 2 in exactly one pentagon of
P. The number = is called the order of the SPS ( K, P) and, of course, |P| =
(n—1)/10.

An observation in [7] shows that the existence of an SPS of order n implies
the existence of an (n, 5, 1)-PMD. By assigning to each pentagon (a, b, ¢, d, €) of
the SPS of order n, the two directed cycles (a, b, ¢, d, e) and (a, e,d, c, b), these
directed cycles form not only a partition of arcs for the complete directed graph,
but also a perfect Mendelsohn design. It is proved in [15] that a SPS (K, P)
existsifandonlyifn=1o0r5S (mod 10),n+# 15. This implies the following.
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Theorem 9.1. A (v,5,1)-PMD exists for any integerv > 5, andv = 1 or 5
(mod 10), except possibly v = 15.

The connections between SPS and (v, 5, 1)-PMD suggest that the existence
question for Steiner n-gon system would be of interest not only by itself but also
in solving the existence question of (v, k, 1)-PMD where k is an odd integer.

10. Some recent results

N. S. Mendelsohn started in [17] the investigation of the existence of (v, 4, 1)-
PMD noticing that a (v, 4, 1)-PMD is equivalent to a quasigroup of order v sat-
isfying certain identities. A partial solution for v = 1 (mod 4) was obtained in
Bennett [2]. Zhang [24] discussed the remaining case v = 0 (mod 4). A non-
existence of a (8,4, 1) -PMD was pointed out by K. Heinrich through an exhaus-
tive computer search, which is further confirmed by an independent investigation
in [10]). The general case for A\ > 1 is also discussed in [10]. Apart from the
non-existence of a (8,4, 1)-PMD, the non-existence of a (4,4, \)-PMD for X
odd is also obtained. Combining all these we have an almost complete solution in
the following form, leaving only one case of (12,4, 1)-PMD unsettled.

Theorem 10.1. The nebessa:y condition for the existence of a (v,4,)\)-PMD,
namely, \v(v — 1) =0 (mod 4), is also sufficient, except forv = 4 and )\ odd,
v =28 and ) = 1, and possibly exceptingv = 12 and ) = 1,

The most recent work on (v, 5, \)-PMD [7, 9] involves the constructions by
filling in holes, by weighting and by k-difference sequence. As we mentioned in
Corollary 2.3, there does notexista (6,5, 1)-PMD. An almost complete solution
for (v, 5, 1)-PMD leaves 21 possible exceptions of v. And for (v, 5, \)-PMD we
have 7 unknown cases left all for A = 5. The following results are obtained in [7,
9].

Theorem 10.2. The necessary condition for the existence of a (v,5,)\) -PMD,
namely, \v(v — 1) = 0 (mod 5) is also sufficient, except forv= 6 and) = 1,
and the possible exceptions of (v, \) where A = 1 andv € {10,15,20,26,30,
36, 46,50,56,66,86,90,110, 126,130,140, 146, 186,206, 246,286 }, and
A=35andv e {14,18,22,24,28,34,39}.

For v = 7, it is also pointed out in [7, Theorem 6.2] that for any integer v >

539 where v =0 or1 (mod 7), there exists an (v,7, 1)-PMD. Some work on
(v,7,1)-PMD by using PBDs is also done in [5].

11. Some further questions

(1) PMD. As we mentioned above the existence of (v, k,)\)-PMD has been
solved completely for £ = 3. An almost complete solution is also obtained for
k = 4 and 5. For block size four the existence of a (12,4, 1)-PMD is the only
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one in doubt. For block size five, there are 21 possible exceptions when l = 1 and
7 possible exceptions when A = 5. It would be nice to solve these cases before
working on larger block sizes.

The case when k = 6 is more interesting. In this case, the necessary condition
for the existence of a (v, 6, 1)-PMD, thatis, v(v — 1) =0 (mod 6), gives four
residue classesv = 0,1,3,4 (mod 6). For the last tworesidue classes, we don’t
have even one single example so far. Therefore, the existence of (v,6,)-PMD
seems more challenging.

(2) RPMD. A (v, k, \)-PMD is called resolvable, denoted by (v, k, \) -RPMD,
if the block set can be divided into some subsets such that (i) each subset of blocks
forms a partition of the v-set whenv =0 (mod k), or (ii) each subset of blocks
forms a partition of the v-set with one point put aside whenv = 1 (mod k). The
following result is contained in (6, 8, 11].

Theorem 11.1. A (v,3,1)-RPMD exists if and only ifv = 0 or1 (mod 3),
vFE6,
For k = 4, there is a partial result (see [2]) as follows.

Theorem 11.2. A (v,4,1)-RPMD exists for every positive integer v = 1
(mod 4) with the possible exception of v = 33,57,93 and 133.

Although the existence of a (v,4,1)-PMD is almost completely solved, the
existence of a (v,4,1)-RPMD is still open. We don’t know any example of
(v,4,1)-RPMD when v = 0 (mod 4). Compared with (v, £, A)-PMD, the ex-
istence question for (v, £, \) -RPMD seems much more open.

(3) IPMD. The idea of using IPMD to construct PMD was developed in a seminar
at Suzhou University, during which Zhang [24] found the first example of using a
(16,5,4,1)-IPMDtoconstructa (16,4, 1)-PMD, which is in the classof v = 0
(mod 4). This started the progress made in the recent couple of years on the ex-
istence of (v, k, \)-PMDs. But, IPMD itself is also an interesting question. One
special case of IPMD is a PMD with subdesign deleted. The subdesign problem
often appears as an embedding problem. For example, Hoffman and Lindner ob-
lained in [14] the following.

Theorem 11.3. Any(u, 3, 1)-PMD canalways be embeddedina(v,3,1)-PMD
as a subdesign foreveryv > 2u+ 1 andv =0 or1 (mod 3).

However, the necessary condition for the existence of (v, u, 3, 1)-IPMDis (v—
u)(v—2u—-1)=0 (mod 3) and v > 2u + 1 (from [4]), which contains more
cases than the subdesign problem does. For example, a (8,2,3,1)-IPMD (X,
dev B) can be easily found by taking

G=2¢, X =2 U{ool,ooz},
B = {(0) 1'3)1(00\)014))(00210)5)}'
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In fact, acomplete solution for the existence of a (v, u, 3, 1)-IPMD has been found
recently in [4].

The existence of a (v, u,4, 1)-IPMD is still widely open. Notice that there is
a recent result on the existence of incomplete (BIB) designs of block size four
having one hole by Rees and Stinson [19]. If we had a (4,4, 1)-PMD it would
then be possible to use their result to discuss the existence of a (v, u, 4, 1)-IPMD.
Unfortunately, a (4,4, 1) -PMD does not exist. This makes the existence question
of (v, u,4,1)-TPMD more difficult,

(4) HPMD. The concept of HPMD has played an important role in solving the
existence question for (v, 5,1)-PMD in [7]. It seems interesting to look at the
existence for HPMD itself, say a (v, k£, 1)-HPMD of type (m, m, ... ,m). Ifv =
mu, we write briefly m* for the type. One necessary condition for the existence
of a (v, k, 1)-HPMD of type m* is

w(u—Dm? =0 (mod k). 111

For block size k = 3, it is likely that (11.1) is also a sufficient condition. However,
we are still unable to construct a (v, 3, 1)-HPMD of type either 5%, or 7¢. The
existence question of (v, k, \)-HPMD is very much open indeed.
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