COMPUTATIONAL CONSIDERATIONS FOR EXCLUSIVE (M, N)-TRANSITIVE AUGMENTATIONS Kenneth Williams, Alfred Boals Department of Computer Science Western Michigan University Kalamazoo, MI 49008 U.S.A. Abstract. Digraph D is defined to be exclusive (M, N)-transitive if, for each pair of vertices x and y, for each xy-path P_1 of length M there is an xy-path P_2 of length N such that $P_1 \cap P_2 = \{x, y\}$. It is proved that computation of a minimal edge augmentation to make K exclusive (M, N)-transitive is NP-hard for $M > N \ge 2$, even if D is acyclic. The corresponding decision problems are NP-complete. For N = 1 and D = (V, E) with |V| = n, an $O(n^{M+3})$ algorithm to compute the exclusive (M, 1)-transitive closure of an arbitrary digraph is provided. ### 1. Introduction and terminology. Digraph D is said to be exclusive (M, N)-transitive if, for each pair of vertices x and y, for each xy-path, (that is, simple path), P_1 of length M there is an xy-path P_2 of length N such that $P_1 \cap P_2 = \{x, y\}$. D is (M, N)-transitive if for each path of length M from vertex x to vertex y there is a subset of the vertices on the path which are the vertices of a path of length N from x to y. D is free (M, N)-transitive if for each path of length M from vertex x to vertex y there is a path (unspecified as to what vertices may be used) from x to y of length N. Exclusive (2, 1)-transitivity, (2, 1)-transitivity and free (2, 1)-transitivity are all equivalent to "normal" transitivity. For all positive integers M, exclusive (M, 1)-transitivity, (M, 1)-transitivity and free (M, 1)-transitivity are equivalent. (M, N)-transitivity has recently been examined in [1], [2] and [7]. Free (M, N)-transitivity is investigated in [2]. An exclusive (M, N)-transitive closure, D_T , of a digraph D, is a new digraph formed by augmenting D with a minimal set of new edges so that D_T is exclusive (M, N)-transitive. It is easy to show that the exclusive (M, 1)-transitive closure of any digraph must be unique. Further notation used is generally consistent with [3] and [5]. For a digraph D = (V, E), the vertex set and ordered edge set are denoted by V and E respectively. A path of D is formed by a sequence of distinct vertices $P = (x_0, x_1, \ldots, x_j)$, such that $\forall i \in \{1, 2, \ldots, j\}$ $(x_{i-1}, x_i) \in E$. We refer to P as an x_0x_j -path of length j. A cycle is an x_0x_j -path together with the edge (x_j, x_0) . A digraph which contains no cycles is said to be acyclic. ### 2. Exclusive (M, N)-transitivity is NP-hard. Let $M > N \ge 2$ be positive integers. We consider the following decision problem: Exclusive (M, N)-transitive closure. Instance: A digraph (V, A) and a positive integer $k \le |V|^2 - |V|$. Question: Does there exist a set of edges A' with $|A'| \le k$ such that $(V, A \cup A')$ is exclusive (M, N)-transitive? **Theorem 1.** The exclusive (3,2)-transitive closure problem is NP-complete. Proof: Clearly the problem is in NP since exclusive (M, N)-transitivity can be checked in polynomial time. To establish the theorem we show a transformation from SATISFIABILITY (SAT) (see [4] and [6]) to EXCLUSIVE (3,2)-TRANSITIVE CLOSURE. Let $U = \{u_1, u_2, \dots, u_p\}$ be the set of variables and $C = \{c_1, \dots, c_q\}$ be the set of clauses making up an instance of SAT. Define an instance of EXCLUSIVE (3,2)-TRANSITIVE CLOSURE as follows: The vertices, V, consist of the union of the following sets: Figure 1 $$\{s_0\} \cup \{u_i, r_i, s_i, v_{ti}, v_{fi} \mid i = 1, \ldots, p\} \cup \{c_j \mid j = 1, \ldots, q\}.$$ For each variable i, A includes the edges: $$\{(s_0, u_i), (u_i, r_i), (r_i, s_i), (v_{bi}, s_i) \mid i = 1, \ldots, p, b = t, f\}.$$ Thus, each variable provides a subdigraph as in Figure 1. The complete digraph is formed so that the vertex s_0 is connected to each vertex u_i and if variable u_i is contained in the clause c_j then either v_{ti} or v_{fi} , depending on the sign of u_i in clause c_j , is connected to vertex c_j . r_i is also connected to vertex c_j . This means that A also includes the edges: ``` \{(v_{ti}, c_j) \mid u_i \text{ is a literal in the clause } c_j\} \{(v_{fi}, c_j) \mid \neg u_i \text{ is a literal in the clause } c_j\} \{(r_i, c_j) \mid u_i \text{ or } \neg u_i \text{ is a literal in the clause } c_j\}. ``` Figure 2 Figure 2 provides an example with three variables and two clauses: $$(\neg u_1 \lor u_2 \lor u_3) \land (\neg u_2 \lor \neg u_3).$$ k is defined to be p, the number of variables. If there is an assignment of the variables $B: \{u_1, u_2, \ldots, u_p\} \rightarrow \{t, f\}$ which results in each of the clauses having the value true, then the digraph obtained by adding the p edges $\{(s_0, v_{gi}) \mid i = 1, \ldots, p \text{ and } g = B(u_i)\}$ is exclusive (3, 2)-transitive. Thus, the exclusive (3, 2)-transitive closure will not require more than k edges for k = p. Conversely, suppose that $(V, A \cup A')$ is the exclusive (3, 2)-transitive closure of (V, A) with $|A'| \leq p$. Since there exist at least p distinct paths of length 3 such that any two paths have only s_0 in common, at least p edges must be added to have the needed paths of length 2. Therefore |A'| = p. The exclusive (3,2)-transitive closure of a digraph as in Figure 1 must contain one of two extra edges for each $i: (s_0, v_{ti})$ or (s_0, v_{fi}) , so A' must contain one such edge for each i. Define an assignment of the variables u_1, u_2, \ldots, u_p , that is, $B: \{u_1, u_2, \ldots, u_p\} \rightarrow \{t, f\}$ by $$B(u_i) = \begin{cases} t; & \text{if } \langle s_0, v_{ti} \rangle \in A' \\ f; & \text{if } \langle s_0, v_{fi} \rangle \in A'. \end{cases}$$ Since $(V, A \cup A')$ is exclusive (3, 2)-transitive, each path of length 3 from s_0 to c_j , for $j = 1, \ldots, q$ requires a path of length 2 from s_0 to c_j . Thus, each clause in the instance of SAT will have the value true with the assignment B. Since the above transformation can be done in polynomial time the exclusive (3,2)-transitive closure problem is NP-complete. The above proof can be modified by inserting additional vertices on paths to obtain the following: Corollary 1. The EXCLUSIVE (M, N)-TRANSITIVE CLOSURE problem is NP-complete for all $M > N \ge 2$. **Corollary 2.** For $M > N \ge 2$, computation of the exclusive (M, N)-transitive closure of a general digraph is NP-hard. Note that Theorem 1 and Corollaries 1 and 2 are true even for acyclic digraphs, since the digraph constructed in the proof of Theorem 1 is acyclic. ## 3. Computing exclusive (M, 1)-transitive closures for arbitrary digraphs. When computing exclusive (M,1)-transitive closures on arbitrary (possibly cyclic) digraphs it becomes necessary to grow trees describing paths. For a given node, say x_0 , of digraph D=(V,E) with |V|=n, we may grow a tree, T, of depth M with x_0 as the root so that vertex k is a child of vertex j iff $(j,k) \in E$ and, furthermore, k is not an ancestor of j. This tree, which provides all paths of length M from x_0 , will be grown in a depth first, recursive manner. Each root-to-frontier path of length M in T, then represents a path $P=(x_0,x_1,\ldots,x_M)$ in the digraph which must be checked to see if there is a corresponding edge (x_0,x_M) in D. If not, edge (x_0,x_M) must be added to fulfill the exclusive (M,1)-requirements for P. This process of growing a tree with root x_0 and adding edges if necessary will be called GROW-TREE-AND-AUGMENT (x_0) . When growing the above tree on a digraph with n vertices there may be n-1 branches from the root, and n-2 branches from each vertex at depth 1, etc. In total, there may be $P = (n-1) \cdot (n-2) \cdot \ldots \cdot (n-M)$ vertices to place on the tree. P must be less than n^M so for a given root vertex, x_0 , the time complexity of GROW-TREE-AND-AUGMENT(x_0) is bounded by n^M . Of course, it is possible that the tree from each vertex will need to be reconstructed several times to reflect changes made by adding subsequent edges. Algorithm 1: Computes G_T , the exclusive (M, 1)-transitive closure for arbitrary digraph G with n vertices, for $M \ge 2$. begin $G_T \leftarrow G$ repeat Apply GROW-TREE-AND-AUGMENT(i) to each vertex i of G_T until no edges are added in loop end of algorithm. Theorem 2. Algorithm 1 computes the exclusive (M, 1)-transitive closure for any digraph. Proof: Upon completion of Algorithm 1 G_T must be exclusive (M, 1)-transitive or the algorithm would not have halted. Suppose G_T is not the exclusive (M, 1)-transitive closure of G. Thus, \exists edge set $E' = \{e_i = (a_i, b_i) \mid \text{for } i = 1, \ldots, k\}$ in $E(G_T) - E(G)$ such that the digraph G_T^* obtained by removing E' from G_T is exclusive (M, 1)-transitive. Let e_j be the first such edge added to G_T by the algorithm. Let G_T' be the version of G_T just prior to adding e_j . Note that G_T' is a subdigraph of G_T^* . Thus, G_T^* contains a path of length M from a_j to b_j but does not contain $e_j = (a_j, b_j)$, which contradicts the exclusive (M, 1)-transitivity of G_T^* . ## 4. Summary. This paper has defined the exclusive (M, N)-transitive property for directed graphs. It has established that, for $M > N \ge 2$, computation of an exclusive (M, N)-transitive closure of a digraph is NP-hard and the related decision problem is NP-complete. An algorithm has been presented which computes the exclusive (M, 1)-transitive closure of an arbitrary digraph D = (V, E) in $O(n^{M+3})$ time, where |V| = n. #### References - 1. A. J. Boals, K. L. Williams, Optimizing subcase solutions for (M, N)-transitivity, Mathematical Computer Modeling 11 (1988), 914-919. - 2. A.J. Boals, K.L. Williams, Z. Mo, Notes on (M, N, R_1, R_2) -transitive directed graphs, Congressus Numerantium (1989) (to appear). - 3. R.G. Busacker, T.L. Saaty, "Finite Graphs and Networks", McGraw-Hill, 1965. - 4. S.A. Cook, *The complexity of theorem-proving procedures*, Proc. 3rd Annual ACM Symposium on Theory of Computing, ACM (1971), New York, NY. - 5. G. Chartrand, L. Lesniak, "Graphs and Digraphs", Wadsworth & Brooks/Cole, Monterey CA, 1986. - M.R. Garey, D.S. Johnson, Computers and intractability, in "A Guide to the Theory of NP-Completeness", W.H. Freeman and Company, San Francisco, 1979. - 7. A. Gyarfas, M.S. Jacobson, L.F. Kinch, On a generalization of transitivity for digraphs, Discrete Mathematics 70 (1988).