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Abstract, Digraph D is defined to be exclusive ( M, N) -transitive if, for each pair of
vertices z and y, for each zy-path P; of length M there is an zy-path B of length N
such that P, N P, = {z,y}. ltis proved that computation of a minimal edge augmen-
tation to make K exclusive (M, N)-transitive is NP-hard for M > N > 2, even if
D is acyclic. The corresponding decision problems are N P-complete. For N = 1 and
D = (V, E) with |[V| = n, an O(n™*3) algorithm to compute the exclusive (M, 1)-
transitive closure of an arbitrary digraph is provided.

1. Introduction and terminology.

Digraph D is said to be exclusive (M, N)-transitive if, for each pair of vertices
z and y, for each zy-path, (that is, simple path), P, of length M there is an zy-
path P; of length N such that P, N P, = {z,y}. D is (M, N)-transitive if for
each path of length M from vertex z to veriex y there is a subset of the vertices
on the path which are the vertices of a path of length N from z to y. D is free
(M, N)-transitive if (or cach path of length M from vertex z to vertex y there is
a path (unspecified as to what vertices may be used) from z to y of length N.

Exclusive (2, 1)-transitivity, (2, 1) -transitivity and free (2, 1) -transitivity are
all equivalent to “normal” transitivity . For all positive integers M, exclusive
(M, 1)-transitivity, ( M, 1)-transitivity and free (M, 1)-transitivity are equiva-
lent. (M, N)-transitivity has recently been examined in [1], [2] and [7]. Free
(M, N)-transitivity is investigated in [2].

An exclusive (M, N)-transitive closure, Dy, of a digraph D, is a new digraph
formed by augmenting D with a minimal set of new edges so that Dy is exclusive
(M, N)-transitive. It is easy to show that the exclusive ( M, 1)-transitive closure
of any digraph must be unique.

Further notation used is generally consistent with [3] and [5). Foradigraph D =
(V, E), the vertex set and ordered edge set are denoted by V and E respectively.
A path of D is formed by a scquence of distinct vertices P = (zo,21,...,%;),
such thatvi € {1,2,...,7} (zi-1,z;) € E. We refer to P as an zoz;-path of
length j. A cycle is an xox;-path together with the edge (z;, o). A digraph
which contains no cycles is said to be acyclic.

JCMCC 5(1989), pp. 55-60



2. Exclusive ( M, N)-transitivity is N P-hard.

Let M > N > 2 be positive integers, We consider the following decision
problem:

Exclusive ( M, N)-transitive closure.

Instance: A digraph (V, A) and a positive integer k < |[V|? = |V].

Question: Does there exist a set of edges A’ with [ 4’| < k such that (V, AU A')
is exclusive ( M, N)-transitive?

Theorem 1. The exclusive (3, 2) -transitive closure problem is N P-complete.

Proof: Clearly the problem is in NP since exclusive (M, N)-transitivity can
be checked in polynomial time. To establish the theorem we show a transfor-
mation from SATISFIABILITY (SAT) (see (4] and [6]) to EXCLUSIVE (3,2)-
TRANSITIVE CLOSURE.

LetU = {u1,u2,... ,up} be the set of variables and C = {c,...,¢c,} be the
set of clauses making up an instance of SAT. Dcfine an instance of EXCLUSIVE
(3,2)-TRANSITIVE CLOSURE as follows: The vertices, V, consist of the union
of the following sets: @

Figure 1
{so}U {us,mi,si, v, v |i=1,...,p}U{c;|j=1,...,q¢}.
For each variable 1, A includes the edges:
{Cso,u3), (s, m), (75, 80) , (i, 8) [i=1,...,p, b=t f}.

Thus, each variable provides a subdigraph as in Figure 1.
The complete digraph is formed so that the vertex sg is connected to each vertex
u; and if variable u; is contained in the clause c; then either vy; or vy;, depending
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on the sign of u; in clause c;, is connected to vertex c;. 7y is also connected to
vertex c;. This means that A also includes the edges:

{(vti, ¢j) | uq is aliteral in the clause ¢;}
{(vysi, ¢) | ~u; is a literal in the clause c;}
{(7i,¢;) | u; or —w; is a literal in the clause c;}.

Figure 2

Figure 2 provides an example with three variables and two clauses:

(—u; Vuz Vus) A(—ug Vus).

k is defined to be p, the number of variables. If there is an assignment of the
variables B: {u1,u2,...,up} — {t, f} which results in each of the clauses hav-
ing the value true, then the digraph obtained by adding the p edges {(so, vgi) |
i=1,...,pand g = B(u;)} is exclusive (3, 2)-transitive. Thus, the exclusive
(3,2)-transitive closurc will not require more than k edges for & = p.
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Conversely, suppose that (V, A U A') is the exclusive (3, 2) -transitive closure
of (V, A) with |A'| < p.

Since there exist at least p distinct paths of length 3 such that any two paths
have only s in common, at least p edges must be added to have the needed paths
of length 2. Therefore [A'| = p.

The exclusive (3, 2)-transitive closure of a digraph as in Figure 1 must contain
one of two extra edges for each i: (o, vy) or (o, vs;), S0 A’ must contain one
such edge for each i. Define an assignment of the variables u), uz,... ,up, that
is, B: {u1,u2,...,up} — {t, f} by
t;  if (so,vu) €A
f; if (80,\)/,') € A

Since (V, AU A') is exclusive (3, 2)-transitive, each path of length 3 from s
tog;,forj = 1,...,q requires a path of length 2 from sg to ;. Thus, each clause
in the instance of SAT will have the value true with the assignment B.

Since the above transformation can be done in polynomial time the exclusive
(3,2)-ransitive closure problem is N P-complete. [ ]

The above proof can be modified by inserting additional vertices on paths to
obtain the following:

Corollary 1. The EXCLUSIVE (M, N) -TRANSITIVE CLOSURE problem is
N P-complete forall M > N > 2.

Corollary 2. ForM > N > 2, computation of the exclusive (M, N) -transitive
closure of a general digraph is N P-hard.

mw={

Note that Theorem 1 and Corollaries 1 and 2 are true even for acyclic digraphs,
since the digraph constructed in the proof of Theorem 1 is acyclic.

3. Computing exclusive ( M, 1)-transitive closures for arbitrary digraphs.

When computing exclusive (M, 1)-transitive closures on arbitrary (possibly
cyclic) digraphs it becomes necessary to grow trees describing paths. For a given
node, say zo, of digraph D = (V, E) with |V| = n, we may grow a tree, T', of
depth M with z¢ as the root so that vertex k is achild of vertex 7 iff (, k) € Eand,
furthermore, k is not an ancestor of ;. This tree, which provides all paths of length
M from z¢, will be grown in a depth first, recursive manner. Each root-to-frontier
pathoflength M in T, then represents a path P = (xo,z1,... ,Ty) inthe digraph
which must be checked to see if there is a corresponding edge (zo, zy) in D. If
not, edge (zo, ) must be added to fulfill the exclusive (M, 1) -requirements for
P. This process of growing a tree with root zo and adding cdges if necessary will
be called GROW-TREE-AND-AUGMENT(zo) .

When growing the above tree on a digraph with # vertices there may be n— 1
branches from the root, and n — 2 branches from each vertex at depth 1, etc. In
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total, there may be P = (n— 1)-(n—2)- ... -(n— M) vertices to place on the
tree. P must be less than n so for a given root vertex, zo, the time complex-
ity of GROW-TREE-AND-AUGMENT(zy) is bounded by n¥. Of course, it is
possible that the tree from each vertex will need to be reconstructed several times
to reflect changes made by adding subsequent edges.

Algorithm 1: Computes G, the exclusive ( M, 1) -transitive closure for arbitrary
digraph G with n vertices, for M > 2.

begin
Gr—G
repeat
Apply GROW-TREE-AND-AUGMENT(4) to each vertex i of G
until no edges are added in loop
end of algorithm.

Theorem 2. Algorithm 1 computes the cxclusive (M, 1) -transitive closure for
any digraph.

Proof: Upon completion of Algorithm 1 Gr must be exclusive (M, 1) -transitive
or the algorithm would not have halted.

Suppose G is not the exclusive ( M, 1)-transitive closure of G. Thus, 3 edge
set B = {e; = (a;,b) |fori = 1,...,k} in E(Gr)—E(G) such that the digraph
G- obtained by removing E' from Gr is exclusive (M, 1)-transitive. Let e; be
the first such edge added to Gr by the algorithm. Let G7. be the version of G just
prior to adding e;. Note that G7. is a subdigraph of G7.. Thus, G1 contains a path
of length M from a; to b; but does not contain e; = (aj, b;), which contradicts
the exclusive ( M, 1) -transitivity of G7.. |

4, Summary.

This paper has defined the cxclusive (M, N)-transitive property for directed
graphs. It has established that, for M > N > 2, computation of an exclusive
(M, N)-transitive closure of a digraph is N P-hard and the related decision prob-
lem is N P-complete. An algorithm has been presented which computes the ex-
clusive ( M, 1) -transitive closure of an arbitrary digraph D = (V, E) in O(nM*?)
time, where [V| = n.
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