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Abstract
For any k € N, a graph G = (V, E) is said to be Zg-magic il
there exists a labeling 1 : E(G) — Z — {0} such that the induced
vertex set labeling I+ : V(G) — Z defined by

Fl)y= Y (uv)

u€N(v)

is a constant map. For a given graph G, the set of all k € Z
for which G is Z-magic is called the integer-magic spectrum of
G and is denoted by [AI(G). In this paper we will consider trees
whose diameters are at most 4 and will determine their int eger-magic
spectra.
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1 Introduction

For any abelian group A, written additively, any mapping { : BE(G) —
A—{0} is called a labeling, or edge-labeling. Given an edge-labeling of G
oue can introduce a vertex labeling 11 : V(G) — A as follows:

) = Z l(uv).

neEN(v)

where N (v) denotes the set of all vertices of G that are adjacent with v. A
graph G is said to be A-magic if there is a labeling 1: E(G) — A - {0}
such that for cach vertex v, the suin of the labels of the edges incident with
v are all equal to the same constant; that is, I*(v) = ¢ for some fixed
c€A Wewillcall < G. [ > an A-magic graph with sum ¢. In general, a
graph G may admit more than one labeling to become an A-magic graph:
for example. if |4] > 2 and [ : E(G) — A — {0} is a magic labeling of G
with sum ¢. then A : E(G) — A — {0}, the inverse labeling of 1. defined
by A(ur) = =Il{uv) will provide another magic labeling of G with sum —e.
The original concept of an A-magic graph is due to J. Sedlacek (21, 22].
who defined it to be a graph with a real-valued edge labeling such that

1. distinct edges have distinet nonnegative labels; and

2. the sum of the labels of the edges incident to a particular vertex is
the same for all vertices.

Given a graph G, the problem of deciding whether G admits a magic la-
beling is equivalent to the problem of deciding whether a set of lincar ho-
mogencous Diophantine equations has a solution {23]. At present, given
an abelian group, no general efficient algorithm is known for finding magic
labelings for general graphs.

When A = Z. the Z-magic graphs were considered in Stanley [23. 24].
he pointed out that the theory of magic labeling can be put into the more
general context of linear homogencous diophantine equations. When the
group is Zj., we shall refer to the Z x-magic graph as k-magic. Graphs
which are k-magic had been studied in [6, 9. 10. 12, 14, 16, 18]. For conve-
nience, we will use the notation 1-magic instead of Z-magic. Doob (2. 3, 4].
also considered A-magic graphs where A is an abelian group. He determined
which wheels are Z-magic.

A graph G = (V. E) is called fully magic [14, 16] if it is A-magic for every
abelian group A, and it is called non-magic if for every abelian group A it is
not A-magic. Also, a graph G is said to be IV-magic if there exists a labeling
l: E(G) — IN such that [*(v) is a constant, for every v € V(G). It is well-
known that a graph G is IN-magic if and only if cach edge of G is contained



in a 1-factor (a perfect matching) or a {1, 2}-factor [11, 20, 29]. Berge [1]
called a graph regularisable if a regular multigraph could be obtained from
G by adding edges parallel to the edges of G. In fact, a graph is regularisable
if and only if it is IN-magic. For IN-magic graphs, readers are referred to
{7. 8.9, 10, 12, 27, 24, 25, 26]. The notion of Z-magic is weaker than
IN-magic. Figure 1 shows a graph which is Z-magic but not IV-magic.

1 " 1
-1 -2 -1
2 l
2
-1 -2 -1
1 1

Figure 1: The graph Py x Py is Z-magic but is not IN-magic.

Observation 1.1. For any n > 3, the path of order v is non-magic.

Observation 1.2. Any graph with a pendant path of length two is non-
magic.

In this paper, we will denote the set of positive integers by IV, and for
any k > 0,

EIN={kn : neN}, also k+ N={k+n : nelN}

For a given graph G the set of all positive integers i for which G is Z,-
magic (or simply h-magic) is called the integer-magic spectrum of G and is
denoted by TM(G). Since any regular graph is fully magic, then it is A-magic
for all positive integers h > 2; therefore. IM(G) = IN. In what follows we
will consider trees whose diameters are at most 4 and will determine their
integer-magic spectra.

2 'Trees with diameters two; Stars

For any n > 1, the complete bipartite graph K'(1,n) is called a ster and is
denoted by ST(n). Note that K(1,1) is the same as Pa, the path of order
two, and it is fully magic. Also, K(1,2) is the same as Py, the path of order
three, which is non-magic. To study the integer-magic spectrum of ST'(n)
we will assume that n > 3.
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Figure 2: A typical labeling of ST(n).

.

Theorem 2.1. Let n > 3, and py' py* - -~ pp* be the prime factorization of
k.

n—1. Then IN(ST(n)) = U pilN.

i=1

Proof. In a typical magic labeling of ST(n). as illustrated in the Figure 2.
all the edges are labeled with the same clement @ of the group Z4,. The
required condition is I+ (¢) = ¥ (u) or

(n—=1)e =0 (nod h). (1)
If ged(n — 1. h) = 1. then Equation (1) will become 2 = 0 (mod h). which

is not an acceptable solution. Therefore, we need ged(n — 1,h) =48 > 1.
k

which implies h € U piIN. and Equation (1) will have a non-zero solution

i=]1
for z. On the other hand, let p be a prime factor of n — 1 and let h € pIN.

Then the choice of & = -"f will work: Because, [T (¢) = nz = (n — 1)’;’ + ’—' =
I

— (mod ). a
> ( )

Examples 2.2.
(a) IM(ST(33)) =2IN: heren — 1 =32 = 25,
(b) IM(ST(25)) = 2IN U3IN; here n— 1 = 24 = 23 x 3.
(c) IM(ST(361)) =2INU3INUSIN: here n — 1 = 360 = 23 x 32 x 5.

3 Trees with diameters three; Double-Stars

Trees with diameter 3 are called double-stars. These graphs have two cen-
tral vertices u and v plus leaves. We will use DS(m.n) to denote the
double-star whose two central vertices have degrees m and n, respectively.
By the Observation 1.1, if m = 2 or n = 2, then DS(n. n) is non-magic.



therefore the integer-magic spectrum will be ). As a result, in what fol-
lows, we will assume that m > n > 3. Moreover. being a tree, DS(mn, n) is
2-magic if and only if m and n are odd numbers.

Note that in any magic labeling of a graph the end-edges (edges incident
with the end-vertices) are labeled with the same clement of the group A.
Therefore, for any magic labeling of a double star, as illustrated in Figure
3, we use at most two non-zero group elements x and y.

Figure 3: A typical magic labeling of DS(m.n).

In particular, we need to have 1+ () = It () and [*(v) = 7 (w). These
equations, when we are using ZZ, will translate to:

(m —n)e =0 (mod h); (2)

(n—=2)x+y =0 (mod h). 3)

Theorem 3.1. The graph DS(m. n) is Z -magic (or 1-magic) if end only
ifm=n.

Proof. If DS(m,n) is Z-1magic, then Equation (2) would imply that (m —
n)x = 0. Since x is non-zero, then we will have i = n. Conversely, if e = n,
then the choices of & = 1 and y = 2 — m provide a magic labeling with
I+t =1. a

Theorem 3.2. IM(DS(m,m))=N—-{helN : h>18&h|(m-2)}.

Proof. By the Theorem 3.1, DS(m,m) is l-magic and if h > m — 2, then
the choices of £ = 1. y = h — m + 2 will work with /" = 1. Now assume
that 1 < /i < m —2.Since m = n. Equation (2) holds. It is cnough to show
that (3) is true. Note that DS(m, m) is h-magic if and only if h is not a
divisor of (m — 2). Because, if h|(m — 2), then (3) becomes y = 0 (mod h).
which is not an acceptable answer. On the other hand, if & does not divide
{mn — 2), then the choices of 2 = 1, y = 2 —m (mod h) will work with
It =1. ]

Examples 3.3.



() IM(DS(3,3)) = IN; here m — 2 = 1 does not have any divisor bigger
than 1. In fact, DS(3,3) is the only double-star whose integer-magic
spectrim is IN.

(b) IM(DS(11,11)) = N - {3.9}; here m — 2 = 9. and we need to
exclude its divisors that are bigger than one: namely, 3.9.

(¢) IM(DS(26,26)) = IN — {2,3.4,6,8.12,24}; here m — 2 = 24. and
we need to exclude its divisors that are bigger than 1.

Theorem 3.4. Let py'py?---pp* and p",?' pg"' . --pf:" be the prime factor-

izations of in — n and n — 2, respectively. Then IM(DS(m.n)) = U{?':lA,-,
where

A pTN ifai > 820
! ] if 3 > a; > 0.

Proof. We will prove the statement through four steps.

Step 1. Note that if in — 0 =1 or m — n be a divisor of n.— 2 or .. — 2. then
IM(DS(m.n)) = §. Because. m—n = 1 will convert Equation (2) to
x = 0, which is not an acceptable solution. Also. if i —2 = g(m —n).
then Equation (3) becomes y = —(m — 2)x = —g(mn — n)z = 0. again
an unacceptable solution. This is consistent with the statement of
the theorem, for in cither cases 3; > a;.

Therefore, we may assume that m —n > 1 and that m — n is not a
divisor of n — 2.

Step 2. Let p be a prime number, o > 3, p®|(m — n). and p?|(n — 2), but
p%*+! does not divide (n—2). Then the graph DS(m,n) is p?*+'-magic.
Here, since m — n. = 0 (inod p®), Equation (2) holds. Choose x = 1.
Note that y = 2—n = 2—m (inod p?#*+1) is non-zero and these labels
work with I* = 1; I*(v) =m—-14+2—-n=m-n+1= 1(mod p3+!).

Step 3. If the graph DS(m,n) is h-magic, then for every r € IN the graph
is hr-magic. To sce this, we simply observe that if x, y are the non-
zcro labels modulo A, then ra, ry will be non-zero modulo Ar and will
be valid magic labelings. Combination of these steps shows that the
integer-magic spectrum of DS(m. n) contains p?+1 N,

Step 4. The previous steps show that US| A; ¢ IM(DS(m.n)). To show
that

IM(DS(m,n)) C UL, A;,

suppose DS(m,n) is h-magic. Then from Equation (3). & does not
divide (1 — 2)i; otherwise, y will be zero. But from Equation (2),



h|(m — n)z. Therefore, in the prime factorization of h there exists a
prime factor p? with the property that p|(m — n)x, while p7 does
not divide (n — 2)x. Choose # > 0 such that p?+!|(m — n), but pf+!
does not. divide n. — 2. By step 2. the graph DS(m. n) is p”*+l-magic,
and by step 3, h € p?+1IN. This completes the proof of the theorem.

O
Corollary 3.5. IM(DS(mn.n)) =0 if and only if (in — n)|(n — 2).

Proof. I INM(DS(in.n)) =0, then by 3.4. 8; > a; (1 €7 <k) and hence
(m—mn)j(n—2). Conversely, if (m—n) divides n—2. theny = —(n-2)x =0,
not an acceptable solution. 0

Corollary 3.6. If | —n| = 1. then DS(m.n) is non-magic.

Examples 3.7.
(n) IAM[(DS(9.3)) =2INUI3N: here m—n =6=2x3. whilen -2=1.
(b) IM(DS(6.4)) = O: here m — n= 2 is a divisor of 1 =2 = 2.

Figure 4: IM(DS(6,4)) = .

(¢) IM(DS(28,4)) = 4INU3IN; here m—n = 24 = 233, whilen-2 = 2.
(d) IM(DS(16,10)) = 3N; here m — =6 = 2 x 3. while n — 2 = 23,
(¢) IM(DS(20.14)) = @; here m. — n =6 is a divisor of n — 2 = 12.

4 'Trees of diameter four

Definition 4.1. A tree of diauncter four, denoted by TF(n;ay.ag, -+ -, ay,).
consists of n stars ST(ay), ST(az),- - - , ST(a, ) one of their edges is incident
with a common vertex. The common vertex will be called the center of the
tree and will be denoted by c.

In other words, TF(n;ay,as, - - - . ay,) is a trec with center-vertex ¢, in which
n edges {cuy, cug. - -+ , cu, } are emanated from e, and deg(w;) = a; for each



i=1,2.---,n, as illustrated in the Figure 5. In order to have a tree of
diameter four, one needs n > 2 and «a; > 2 for at least two values of 4.

Uy
U
o- 4 c °
Uz
(%]

Figure 5: TF(4; 1,5,6,4); An example of a tree of diameter 4.

Observation 4.2. Ifone ofay,aq,--- .4, is2. then IM(TF(n; «y.ag9,--- .@,)) =

0.

Observation 4.3. Let by, bo, - by, be any permutation of ay,ag,--+ .y
Then TF(n; ay,ap,--- ,ayp) is isomorphic with TF(n; by, be,--- ,by,).

As a result of these two observations, in any tree TF(n; aj,a2, - . an)
with diameter four, we mnay assume that 1 <n, ¢; < a3 < --- < a,, and

a; # 2.
yr, (xp .

Theorem 4.4. Supposc 3 < m < n and let m +n— 3 = pi'py* -+ pi* be
the prime foctorization of m +n — 3. Then

k
IM(TF(2:m,n)) = U p,»ﬂV—{ d|d is e divisor of m—1, m-2, n-1, or
i=1

Proof. For any magic labeling of this graph, as illustrated in the Figure 6.
one needs two distinet non-zero clements .y € Z,,.
The condition {*(u) = x implies

(m =V +y =2 (mod h). (4)
Since @ # y, h cannot be a divisor of m — 1. Also Equation (4) can be
written as y = —(m—2)x (mmod h), which implies that i cannot be a divisor

of 1. — 2 cither. Similarly, from I*(v) = © we will have

(n—Lx+x—y=x (mod h). (3)

10
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Figure 6: A typical magic labeling of SF(2; 4,5). Here x # y.

If we add the two Equations (4) and (5) we get
(i 4+ n —3)a: =0 (mod ). (6)
This last equation has a non-zero solution for .« if and ouly if ged(m + 1 —

3.h) > L:that is, h € Ule pilN. O

a0 11

Corollary 4.5. Let m > 3, and 2m = 3 = p{'py? - pp* be the prime
‘.

factorization of 2m ~ 3. Then IN(TF(2: m.m)) = U »IN.

=1
Proof. Here m = n and
k
UpiﬂVﬂ{ d | d is adivisor of m—1lorm—2} =0.
i=1

O

Theorem 4.6. Consider the tree of diameter four G = TF(n; ay,az2,--- ,a,) (n >

3), and let £p7'p3? - --pp* be the prime fuctorization of 0 = 1 — 2n +
Yoiey @i Then the integer-magic spectrum. of G = TF(n; ay.ag, -+ .an) is
(] if o|(a; —2) for somei >k
IM(G)={ N-D if a=0

Uf= PilN — D otherwise,

where D = { d | d is a divisor of a; —2 for some i (k+1<i<n) }

Proof. First, note that if ¢; = 2 for some 4, then G is non-magic, and in
this case o|(a; — 2), which is consistent with the statement of the Theorem.
Therefore, we may assume that a; # 2. Let ) = a2 =--- = ar =1 and
a; 23 (k+1<i<n).

11



In labeling of G = TF(n; ay, a2, ,ay,), we will use z € Z,, for all the
leaves and if @; > 3, we will use y; € Z,, to label the edge cu; (Sce the
Figure 5). The condition {*(x;) = a implies (a; — 1)+ y; = 2 (nod &) or

yi=—(e;i—2)x (mod h) (A+1<i<n). N

Since y; is a non-zero element of the group Z,. h cannot be a divisor of
@;—2. Also, the condition [T (c) = « implics that ke+yr41+ykq2+- -4y, =
x (mod h), or

n
Z yi = (1 = k) (mod k). (8)
i=k+1
Now if we add the Equations (7) for i = b+ 1.k + 2.--- .n. we will got
n n
Z yi = - z (a; — 2)a (inod h), which together with () will give us
i=k+1 i=k+1

(1-2n+ 31, ;) =0 (mod Ih). or

or=0 (modh). (€)]

Now we will consider the following cases:

Case 1. If for some value of i. o|(a; — 2), then ¢; — 2 = go and Equation (7)
gives us y; = —go = 0 (mod h), which is not an acceptable answer.
Therefore, IM(G) = 0.

Case 2. If o = ). Equation (9) is satisfied for all values of ki, and one only
needs to exclude divisors of ¢; — 2 to assure that Equations (7) will
provide non-zero solutions for y;. Therefore, IAI(G) = IN — D.

Case 3. Suppose o # 0 and o is not divisor of any of a; — 2. Then Equation
(9) has non-zero solution for x if and only if ged(e, h) > 1; that
is. h € U:.;l piIN. However, we need to exelude divisors of a; — 2 to
make sure that Equations (7) will provide non-zero solations for ;.
Therefore, IM(G) = \Ji_, p;IN - D.

This complete the proof of the Theorem. O

Corollary 4.7. With the notation of Theorem 4.6, if ay > 3. then

k
IM(G) = U[),-W - { d | d is a divisor of a; -2 (1 <i<n) }.

i=1

Proof. We observe that if ¢y > 3, theno =1-2n+ 3L a; > 1-2n+
3(n — 1) + a; > a; — 2. Thercfore. o # 0 and it can not be a divisor of
a; —2. . a

12



Corollary 4.8. In TF(n: ay.aq.-+- ,a,) letay =ay =---=a, =m > J;
that is choose n copies of ST () and identify one of their end vertices. Also
letmn—2n+1 = p"py* - - pi* be the prime factorization of mn —2n + 1.
Then

k
IM(TF(u; mym.-- cm))={h| gedlmn—2n+1,h)>1}= Up,-W.

i=1
Examples 4.9.
(a) IM(TF(2: 4.4)) = 5IN: here 2m — 3 = 5.
(b) IM(TF(2:6.17)) =2INU3IN — {2.4.5.8.15,16}; here ay +ax -3 =

20, and we need to excelude the divisors of a; — 1, a; — 2.

(¢) IA[(TF(2:9.24)) =2INU3INUSGIY —{2.4,8.22}: here uy +ap —3 =
30.

(d) IM(TF(3:5,5,5))=2INUSIN: here 3mm -5=10=2 x 5.

(¢) IM(TF(3; 3,5,9)) =2NU3N — {3}; here ay +a + a3 — 5 = 12
and 3 is a divisor of as — 2.

(f) IN(TF(4: 1,1,3.5)) =0; hereo =ay +as + a3 +a3 — 7 =3 and
o =3 is a divisor of aq4 — 2.

(g) IM(TF(6: 1,1,1,3,3.4)) = ®; here 0 = ay + a2 +az + aq + a5 + a6 ~
11 = 2. which is a divisor of ¢g — 2.
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