Integer-Magic Spectra of Trees with Diameters at most Four

Sin-Min Lee
Department of Computer Science
San Jose State University
San Jose, CA 95192

Ebrahim Salehi
Department of Mathematical Sciences
University of Nevada, Las Vegas
Las Vegas, NV 89154-4020

Hugo Sun
Department of Mathematics
California State University Fresno
Fresno, CA 93740

Abstract

For any $k \in \mathbb{N}$, a graph G = (V, E) is said to be \mathbb{Z}_k -magic if there exists a labeling $l: E(G) \longrightarrow \mathbb{Z}_k - \{0\}$ such that the induced vertex set labeling $l^+: V(G) \longrightarrow \mathbb{Z}_k$ defined by

$$l^+(v) = \sum_{u \in N(v)} l(uv)$$

is a constant map. For a given graph G, the set of all $k \in \mathbb{Z}_+$ for which G is \mathbb{Z}_k -magic is called the integer-magic spectrum of G and is denoted by IM(G). In this paper we will consider trees whose diameters are at most 4 and will determine their integer-magic spectra.

Keywords: Integer-magic Spectrum, Magic, and Non-magic graphs. AMS Subject Classification: 05C15.

1 Introduction

For any abelian group A, written additively, any mapping $l: E(G) \longrightarrow A - \{0\}$ is called a *labeling*, or edge-labeling. Given an edge-labeling of G one can introduce a vertex labeling $l^+: V(G) \longrightarrow A$ as follows:

$$l^+(v) = \sum_{u \in N(v)} l(uv),$$

where N(v) denotes the set of all vertices of G that are adjacent with v. A graph G is said to be A-magic if there is a labeling $l: E(G) \longrightarrow A - \{0\}$ such that for each vertex v, the sum of the labels of the edges incident with v are all equal to the same constant; that is, $l^+(v) = c$ for some fixed $c \in A$. We will call $|\langle G, l \rangle|$ an A-magic graph with sum c. In general, a graph G may admit more than one labeling to become an A-magic graph: for example, if |A| > 2 and $|l| : E(G) \longrightarrow A - \{0\}$ is a magic labeling of G with sum c, then $|\lambda| : E(G) \longrightarrow A - \{0\}$, the inverse labeling of I, defined by $|\lambda|(uv)| = -l(uv)$ will provide another magic labeling of G with sum |c| = -c.

The original concept of an A-magic graph is due to J. Sedlacek [21, 22], who defined it to be a graph with a real-valued edge labeling such that

- 1. distinct edges have distinct nonnegative labels; and
- the sum of the labels of the edges incident to a particular vertex is the same for all vertices.

Given a graph G, the problem of deciding whether G admits a magic labeling is equivalent to the problem of deciding whether a set of linear homogeneous Diophantine equations has a solution [23]. At present, given an abelian group, no general efficient algorithm is known for finding magic labelings for general graphs.

When $A = \mathbb{Z}$, the \mathbb{Z} -magic graphs were considered in Stanley [23, 24], he pointed out that the theory of magic labeling can be put into the more general context of linear homogeneous diophantine equations. When the group is \mathbb{Z}_k , we shall refer to the \mathbb{Z}_k -magic graph as k-magic. Graphs which are k-magic had been studied in [6, 9, 10, 12, 14, 16, 18]. For convenience, we will use the notation 1-magic instead of \mathbb{Z} -magic. Doob [2, 3, 4], also considered A-magic graphs where A is an abelian group. He determined which wheels are \mathbb{Z} -magic.

A graph G = (V, E) is called fully magic [14, 16] if it is A-magic for every abelian group A, and it is called non-magic if for every abelian group A it is not A-magic. Also, a graph G is said to be $I\!N$ -magic if there exists a labeling $l: E(G) \to I\!N$ such that $l^+(v)$ is a constant, for every $v \in V(G)$. It is well-known that a graph G is $I\!N$ -magic if and only if each edge of G is contained

in a 1-factor (a perfect matching) or a $\{1,2\}$ -factor [11, 20, 29]. Berge [1] called a graph regularisable if a regular multigraph could be obtained from G by adding edges parallel to the edges of G. In fact, a graph is regularisable if and only if it is \mathbb{N} -magic. For \mathbb{N} -magic graphs, readers are referred to [7, 8, 9, 10, 12, 27, 24, 25, 26]. The notion of \mathbb{Z} -magic is weaker than \mathbb{N} -magic. Figure 1 shows a graph which is \mathbb{Z} -magic but not \mathbb{N} -magic.

Figure 1: The graph $P_3 \times P_3$ is \mathbb{Z} -magic but is not \mathbb{N} -magic.

Observation 1.1. For any $n \geq 3$, the path of order n is non-magic.

Observation 1.2. Any graph with a pendant path of length two is non-magic.

In this paper, we will denote the set of positive integers by $I\!\!N$, and for any k>0,

$$k \mathbb{N} = \{ kn : n \in \mathbb{N} \}, \text{ also } k + \mathbb{N} = \{ k + n : n \in \mathbb{N} \}.$$

For a given graph G the set of all positive integers h for which G is \mathbb{Z}_h -magic (or simply h-magic) is called the *integer-magic spectrum* of G and is denoted by IM(G). Since any regular graph is fully magic, then it is h-magic for all positive integers $h \geq 2$; therefore, $IM(G) = \mathbb{N}$. In what follows we will consider trees whose diameters are at most 4 and will determine their integer-magic spectra.

2 Trees with diameters two; Stars

For any $n \geq 1$, the complete bipartite graph K(1,n) is called a *star* and is denoted by ST(n). Note that K(1,1) is the same as P_2 , the path of order two, and it is fully magic. Also, K(1,2) is the same as P_3 , the path of order three, which is non-magic. To study the integer-magic spectrum of ST(n) we will assume that $n \geq 3$.

Figure 2: A typical labeling of ST(n).

Theorem 2.1. Let $n \geq 3$, and $p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_k^{\alpha_k}$ be the prime factorization of n-1. Then $IM(ST(n)) = \bigcup_{i=1}^k p_i \mathbb{N}$.

Proof. In a typical magic labeling of ST(n), as illustrated in the Figure 2, all the edges are labeled with the same element x of the group \mathbb{Z}_h . The required condition is $l^+(c) = l^+(u)$ or

$$(n-1)x \equiv 0 \pmod{h}. \tag{1}$$

If $\gcd(n-1,h)=1$, then Equation (1) will become $x\equiv 0\pmod{h}$, which is not an acceptable solution. Therefore, we need $\gcd(n-1,h)=\delta>1$, which implies $h\in\bigcup_{i=1}^k p_i\mathbb{N}$, and Equation (1) will have a non-zero solution for x. On the other hand, let p be a prime factor of n-1 and let $h\in p\mathbb{N}$. Then the choice of $x=\frac{h}{p}$ will work; Because, $l^+(c)=nx=(n-1)\frac{h}{p}+\frac{h}{p}\equiv\frac{h}{p}\pmod{h}$.

Examples 2.2.

- (a) IM(ST(33)) = 2IN: here $n 1 = 32 = 2^5$.
- (b) $IM(ST(25)) = 2\mathbb{N} \cup 3\mathbb{N}$; here $n-1 = 24 = 2^3 \times 3$.
- (c) $IM(ST(361)) = 2IN \cup 3IN \cup 5IN$; here $n-1 = 360 = 2^3 \times 3^2 \times 5$.

3 Trees with diameters three; Double-Stars

Trees with diameter 3 are called double-stars. These graphs have two central vertices u and v plus leaves. We will use DS(m,n) to denote the double-star whose two central vertices have degrees m and n, respectively. By the Observation 1.1, if m = 2 or n = 2, then DS(m,n) is non-magic.

therefore the integer-magic spectrum will be \emptyset . As a result, in what follows, we will assume that $m \ge n \ge 3$. Moreover, being a tree, DS(m, n) is 2-magic if and only if m and n are odd numbers.

Note that in any magic labeling of a graph the end-edges (edges incident with the end-vertices) are labeled with the same element of the group A. Therefore, for any magic labeling of a double star, as illustrated in Figure 3, we use at most two non-zero group elements x and y.

Figure 3: A typical magic labeling of DS(m, n).

In particular, we need to have $l^+(u) = l^+(v)$ and $l^+(v) = l^+(w)$. These equations, when we are using \mathbb{Z}_h will translate to:

$$(m-n)x \equiv 0 \pmod{h}; \tag{2}$$

$$(n-2)x + y \equiv 0 \pmod{h}. \tag{3}$$

Theorem 3.1. The graph DS(m,n) is \mathbb{Z} -magic (or 1-magic) if and only if m=n.

Proof. If DS(m, n) is \mathbb{Z} -magic, then Equation (2) would imply that (m-n)x = 0. Since x is non-zero, then we will have m = n. Conversely, if m = n, then the choices of x = 1 and y = 2 - m provide a magic labeling with $l^+ \equiv 1$.

Theorem 3.2.
$$IM(DS(m,m)) = \mathbb{N} - \{ h \in \mathbb{N} : h > 1 \& h | (m-2) \}.$$

Proof. By the Theorem 3.1, DS(m, m) is 1-magic and if h > m - 2, then the choices of x = 1. y = h - m + 2 will work with $l^+ \equiv 1$. Now assume that $1 < h \le m - 2$. Since m = n. Equation (2) holds. It is enough to show that (3) is true. Note that DS(m, m) is h-magic if and only if h is not a divisor of (m - 2). Because, if h|(m - 2), then (3) becomes $y \equiv 0 \pmod{h}$, which is not an acceptable answer. On the other hand, if h does not divide (m - 2), then the choices of x = 1, $y = 2 - m \pmod{h}$ will work with $l^+ \equiv 1$.

Examples 3.3.

- (a) IM(DS(3,3)) = IN; here m-2=1 does not have any divisor bigger than 1. In fact, DS(3,3) is the only double-star whose integer-magic spectrum is IN.
- (b) $IM(DS(11,11)) = IN \{3,9\}$; here m-2=9, and we need to exclude its divisors that are bigger than one; namely, 3, 9.
- (c) $IM(DS(26,26)) = IN \{2,3,4,6,8,12,24\}$; here m-2=24, and we need to exclude its divisors that are bigger than 1.

Theorem 3.4. Let $p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_k^{\alpha_k}$ and $p_1^{\beta_1} p_2^{\beta_2} \cdots p_k^{\beta_k}$ be the prime factorizations of m-n and n-2, respectively. Then $IM(DS(m,n)) = \bigcup_{i=1}^k A_i$, where

$$A_{i} = \begin{cases} p_{i}^{1+\beta_{i}} \mathbb{I} N & \text{if } \alpha_{i} > \beta_{i} \geq 0; \\ \emptyset & \text{if } \beta_{i} \geq \alpha_{i} \geq 0. \end{cases}$$

Proof. We will prove the statement through four steps.

Step 1. Note that if m-n=1 or m-n be a divisor of n-2 or m-2, then $IM(DS(m,n))=\emptyset$. Because, m-n=1 will convert Equation (2) to x=0, which is not an acceptable solution. Also, if m-2=q(m-n), then Equation (3) becomes y=-(m-2)x=-q(m-n)x=0, again an unacceptable solution. This is consistent with the statement of the theorem, for in either cases $\beta_i \geq \alpha_i$.

Therefore, we may assume that m-n>1 and that m-n is not a divisor of n-2.

- Step 2. Let p be a prime number, $\alpha > \beta$, $p^{\alpha}|(m-n)$, and $p^{\beta}|(n-2)$, but $p^{\beta+1}$ does not divide (n-2). Then the graph DS(m,n) is $p^{\beta+1}$ -magic. Here, since $m-n\equiv 0\pmod{p^{\alpha}}$, Equation (2) holds. Choose x=1. Note that $y\equiv 2-n\equiv 2-m\pmod{p^{\beta+1}}$ is non-zero and these labels work with $l^{+}\equiv 1$: $l^{+}(v)=m-1+2-n\equiv m-n+1\equiv 1\pmod{p^{\beta+1}}$.
- Step 3. If the graph DS(m,n) is h-magic, then for every $r \in \mathbb{N}$ the graph is hr-magic. To see this, we simply observe that if x,y are the non-zero labels modulo h, then rx,ry will be non-zero modulo hr and will be valid magic labelings. Combination of these steps shows that the integer-magic spectrum of DS(m,n) contains $p^{\beta+1}\mathbb{N}$.
- Step 4. The previous steps show that $\bigcup_{i=1}^k A_i \subset IM(DS(m,n))$. To show that

$$IM(DS(m,n)) \subset \bigcup_{i=1}^k A_i$$

suppose DS(m,n) is h-magic. Then from Equation (3), h does not divide (n-2)x; otherwise, y will be zero. But from Equation (2),

h|(m-n)x. Therefore, in the prime factorization of h there exists a prime factor p^{γ} with the property that $p^{\gamma}|(m-n)x$, while p^{γ} does not divide (n-2)x. Choose $\beta \geq 0$ such that $p^{\beta+1}|(m-n)$, but $p^{\beta+1}$ does not divide n-2. By step 2, the graph DS(m,n) is $p^{\beta+1}$ -magic, and by step 3, $h \in p^{\beta+1}\mathbb{N}$. This completes the proof of the theorem.

Corollary 3.5. $IM(DS(m,n)) = \emptyset$ if and only if (m-n)|(n-2).

Proof. If $IM(DS(m,n)) = \emptyset$, then by 3.4. $\beta_i \ge \alpha_i$ $(1 \le i \le k)$ and hence (m-n)|(n-2). Conversely, if (m-n) divides n-2, then $y \equiv -(n-2)x \equiv 0$, not an acceptable solution.

Corollary 3.6. If |m-n|=1, then DS(m,n) is non-magic.

Examples 3.7.

- (a) $IM(DS(9,3)) = 2\mathbb{N} \cup 3\mathbb{N}$; here $m-n=6=2\times 3$, while n-2=1.
- (b) $IM(DS(6,4)) = \emptyset$: here m n = 2 is a divisor of n 2 = 2.

Figure 4: $IM(DS(6,4)) = \emptyset$.

- (c) $IM(DS(28,4)) = 4\mathbb{N} \cup 3\mathbb{N}$; here $m-n = 24 = 2^3 \times 3$, while n-2 = 2.
- (d) IM(DS(16, 10)) = 3N; here $m n = 6 = 2 \times 3$, while $n 2 = 2^3$.
- (e) $IM(DS(20, 14)) = \emptyset$; here m n = 6 is a divisor of n 2 = 12.

4 Trees of diameter four

Definition 4.1. A tree of diameter four, denoted by $TF(n; a_1, a_2, \dots, a_n)$. consists of n stars $ST(a_1), ST(a_2), \dots, ST(a_n)$ one of their edges is incident with a common vertex. The common vertex will be called the center of the tree and will be denoted by c.

In other words, $TF(n; a_1, a_2, \dots, a_n)$ is a tree with center-vertex c, in which n edges $\{cu_1, cu_2, \dots, cu_n\}$ are emanated from c, and $\deg(u_i) = a_i$ for each

 $i=1,2,\cdots,n$, as illustrated in the Figure 5. In order to have a tree of diameter four, one needs $n\geq 2$ and $a_i\geq 2$ for at least two values of i.

Figure 5: TF(4; 1, 5, 6, 4); An example of a tree of diameter 4.

Observation 4.2. If one of a_1, a_2, \dots, a_n is 2. then $IM(TF(n; a_1, a_2, \dots, a_n)) = \emptyset$.

Observation 4.3. Let b_1, b_2, \dots, b_n be any permutation of a_1, a_2, \dots, a_n . Then $TF(n; a_1, a_2, \dots, a_n)$ is isomorphic with $TF(n; b_1, b_2, \dots, b_n)$.

As a result of these two observations, in any tree $TF(n; a_1, a_2, \dots, a_n)$ with diameter four, we may assume that $1 < n, a_1 \le a_2 \le \dots \le a_n$, and $a_i \ne 2$.

Theorem 4.4. Suppose $3 \le m < n$ and let $m + n - 3 = p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_k^{\alpha_k}$ be the prime factorization of m + n - 3. Then

$$IM(TF(2; m, n)) = \bigcup_{i=1}^{k} p_i \mathbb{N} - \{ d \mid d \text{ is a divisor of } m-1, m-2, n-1, \text{ or } , n-2 \}$$

Proof. For any magic labeling of this graph, as illustrated in the Figure 6, one needs two distinct non-zero elements $x, y \in \mathbb{Z}_h$.

The condition $l^+(u) = x$ implies

$$(m-1)x + y \equiv x \pmod{h}. \tag{4}$$

Since $x \neq y$, h cannot be a divisor of m-1. Also Equation (4) can be written as $y \equiv -(m-2)x \pmod{h}$, which implies that h cannot be a divisor of m-2 either. Similarly, from $l^+(v) = x$ we will have

$$(n-1)x + x - y \equiv x \pmod{h}.$$
 (5)

Figure 6: A typical magic labeling of SF(2; 4, 5). Here $x \neq y$.

If we add the two Equations (4) and (5) we get

$$(m+n-3)x \equiv 0 \pmod{h}. \tag{6}$$

This last equation has a non-zero solution for x if and only if gcd(m+n-3, h) > 1; that is, $h \in \bigcup_{i=1}^k p_i \mathbb{N}$.

Corollary 4.5. Let $m \geq 3$, and $2m-3 = p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_k^{\alpha_k}$ be the prime factorization of 2m-3. Then $IM(TF(2; m, m)) = \bigcup_{i=1}^k p_i IN$.

Proof. Here m = n and

$$\bigcup_{i=1}^{k} p_i \mathbb{N} \bigcap \left\{ d \mid d \text{ is a divisor of } m-1 \text{ or } m-2 \right\} = \emptyset.$$

Theorem 4.6. Consider the tree of diameter four $G = TF(n; a_1, a_2, \dots, a_n)$ $(n \ge 3)$, and let $\pm p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_k^{\alpha_k}$ be the prime factorization of $\sigma = 1 - 2n + \sum_{i=1}^n a_i$. Then the integer-magic spectrum of $G = TF(n; a_1, a_2, \dots, a_n)$ is

$$IM(G) = \begin{cases} \emptyset & \text{if } \sigma | (a_i - 2) \text{ for some } i > k \\ \mathbb{N} - D & \text{if } \sigma = 0 \\ \bigcup_{i=1}^k p_i \mathbb{N} - D & \text{otherwise,} \end{cases}$$

where $D = \{ d \mid d \text{ is a divisor of } a_i - 2 \text{ for some } i (k+1 \le i \le n) \}.$

Proof. First, note that if $a_i = 2$ for some i, then G is non-magic, and in this case $\sigma|(a_i - 2)$, which is consistent with the statement of the Theorem. Therefore, we may assume that $a_i \neq 2$. Let $a_1 = a_2 = \cdots = a_k = 1$ and $a_i \geq 3$ $(k+1 \leq i \leq n)$.

In labeling of $G = TF(n; a_1, a_2, \dots, a_n)$, we will use $x \in \mathbb{Z}_h$ for all the leaves and if $a_i \geq 3$, we will use $y_i \in \mathbb{Z}_h$ to label the edge cu_i (See the Figure 5). The condition $l^+(u_i) = x$ implies $(a_i - 1)x + y_i \equiv x \pmod{h}$ or

$$y_i \equiv -(a_i - 2)x \pmod{h} \quad (k + 1 \le i \le n). \tag{7}$$

Since y_i is a non-zero element of the group \mathbb{Z}_h . h cannot be a divisor of a_i-2 . Also, the condition $l^+(c)=x$ implies that $kx+y_{k+1}+y_{k+2}+\cdots+y_n\equiv x\pmod{h}$, or

$$\sum_{i=k+1}^{n} y_i \equiv (1-k)x \pmod{h}.$$
 (8)

Now if we add the Equations (7) for $i = k + 1, k + 2, \dots, n$, we will get $\sum_{i=k+1}^{n} y_i \equiv -\sum_{i=k+1}^{n} (a_i - 2)x \pmod{h}, \text{ which together with (8) will give us}$ $(1 - 2n + \sum_{i=1}^{n} a_i)x \equiv 0 \pmod{h}, \text{ or}$

$$\sigma x \equiv 0 \pmod{h}. \tag{9}$$

Now we will consider the following cases:

- Case 1. If for some value of i. $\sigma|(a_i-2)$, then $a_i-2=q\sigma$ and Equation (7) gives us $y_i \equiv -q\sigma x \equiv 0 \pmod{h}$, which is not an acceptable answer. Therefore, $IM(G) = \emptyset$.
- Case 2. If $\sigma = 0$, Equation (9) is satisfied for all values of h, and one only needs to exclude divisors of $a_i 2$ to assure that Equations (7) will provide non-zero solutions for y_i . Therefore, $IM(G) = \mathbb{N} D$.
- Case 3. Suppose $\sigma \neq 0$ and σ is not divisor of any of $a_i 2$. Then Equation (9) has non-zero solution for x if and only if $\gcd(\sigma, h) > 1$; that is, $h \in \bigcup_{i=1}^k p_i \mathbb{N}$. However, we need to exclude divisors of $a_i 2$ to make sure that Equations (7) will provide non-zero solutions for y_i . Therefore, $IM(G) = \bigcup_{i=1}^k p_i \mathbb{N} D$.

This complete the proof of the Theorem.

Corollary 4.7. With the notation of Theorem 4.6, if $a_1 \geq 3$, then

$$IM(G) = \bigcup_{i=1}^{k} p_i \mathbb{N} - \left\{ d \mid d \text{ is a divisor of } a_i - 2 \ (1 \leq i \leq n) \right\}.$$

Proof. We observe that if $a_1 \geq 3$, then $\sigma = 1 - 2n + \sum_{i=1}^{n} a_i \geq 1 - 2n + 3(n-1) + a_i > a_i - 2$. Therefore, $\sigma \neq 0$ and it can not be a divisor of $a_i - 2$.

Corollary 4.8. In $TF(n; a_1, a_2, \dots, a_n)$ let $a_1 = a_2 = \dots = a_n = m \geq 3$; that is choose n copies of ST(m) and identify one of their end vertices. Also let $mn - 2n + 1 = p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_k^{\alpha_k}$ be the prime factorization of mn - 2n + 1. Then

$$IM(TF(n; m, m, \dots, m)) = \{h \mid \gcd(mn - 2n + 1, h) > 1\} = \bigcup_{i=1}^{k} p_i \mathbb{N}.$$

Examples 4.9.

- (a) $IM(TF(2; 4, 4)) = 5\mathbb{N}$; here 2m 3 = 5.
- (b) $IM(TF(2; 6, 17)) = 2N \cup 3N \{2, 4, 5, 8, 15, 16\}$; here $a_1 + a_2 3 = 20$, and we need to exclude the divisors of $a_i 1$, $a_i 2$.
- (c) $IM(TF(2; 9, 24)) = 2IN \cup 3IN \cup 5IN \{2, 4, 8, 22\}$; here $a_1 + a_2 3 = 30$.
- (d) $IM(TF(3; 5, 5, 5)) = 2\mathbb{N} \cup 5\mathbb{N}$; here $3m 5 = 10 = 2 \times 5$.
- (e) $IM(TF(3; 3, 5, 9)) = 2N \cup 3N \{3\}$; here $a_1 + a_2 + a_3 5 = 12$ and 3 is a divisor of $a_2 2$.
- (f) $IM(TF(4; 1, 1, 3, 5)) = \emptyset$; here $\sigma = a_1 + a_2 + a_3 + a_4 7 = 3$ and $\sigma = 3$ is a divisor of $a_4 2$.
- (g) $IM(TF(6; 1, 1, 1, 3, 3, 4)) = \emptyset$; here $\sigma = a_1 + a_2 + a_3 + a_4 + a_5 + a_6 11 = 2$, which is a divisor of $a_6 2$.

References

- [1] C. Berge, Regularisable graphs, Annals of Discrete Mathematics 3 (1978), 11-19.
- [2] M. Doob, On the construction of magic graphs, Proceedings of the Fifth Southeast Conference on Combinatorics, Graph Theory, and Computing (1974), 361-374.
- [3] M. Doob, Generalizations of magic graphs, Journal of Combinatorial Theory, Series B 17 (1974), 205-217.
- [4] M. Doob, Characterizations of regular magic graphs, *Journal of Combinatorial Theory*, Series B 25 (1978), 94-104.
- [5] F. Gobel and C. Hoede, Magic labelings of graphs, Ars Combinatoria 51 (1999), 3-19.

- [6] Y.S. Ho and Sin-Min Lee, An initial results of supermagicness of regular complete k-partite graphs, Journal of Combinatorial Mathematics and Combinatorial Computing 39 (2001), 3-17.
- [7] N. Hartsfield and G. Ringel, Supermagic and antimagic graphs, *Journal of Recreational Mathematics* **21** (1989), 107-115.
- [8] R.H. Jeurissen, The incidence matrix and labelings of a graph, Journal of Combinatorial Theory, Series B 30 (1981), 290-301.
- [9] R.H. Jeurissen, Disconnected graphs with magic labelings, *Discrete Mathematics* 43 (1983), 47-53.
- [10] R.H. Jeurissen, Pseudo-magic graphs, Discrete Mathematics 43 (1983), 207-214.
- [11] S. Jezny and M. Trenkler, Characterization of magic graphs, Czechoslovak Mathematical Journal 33 (1983), 435-438.
- [12] M.C.Kong, S-M Lee, and Hugo Sun, On magic strength of graphs. Ars Combinatoria 45 (1997), 193-200.
- [13] A. Kotzig and A. Rosa, Magic valuations of finite graphs. Canadian Mathematics Bulletin 13 (1970), 451-461.
- [14] S-M Lee, Alexander Nien-Tsu Lee, Hugo Sun, and Ixin Wen, On integer-magic spectra of graphs, JCMCC, 42 (2002), 177-185.
- [15] S-M Lee, F. Saba, Ebrahim Salehi, Hugo Sun, On the V_4 -magic graphs, Congressus Numerantium 156 (2002), 59-67.
- [16] S-M Lee, F. Saba, and G. C. Sun, Magic strength of the k-th power of paths, Congressus Numerantium, 92 (1993), 177-184.
- [17] S-M Lee, Ebrahim Salchi, Integer-magic spectra of amalgamations of stars and cycles, ARS Combinatoria 67 (2003), 199-212.
- [18] S-M Lee, Hugo Sun, and Ixin Wen. On group magic graphs, Journal of Combinatorial Mathematics and Combinatorial Computing 38 (2001), 197-207.
- [19] S-M Lee, L. Valdes, and Yong-Song Ho. On group magic trees, double trees, and abbreviated trees, to appear in the JCMCC.
- [20] L. Sandorova and M. Trenkler, On a generalization of magic graphs, in "Combinatorics 1987", Proc. 7th Hungary Colloq. Eger/Hung. Colloquia Mathematica Societatis Janos Bolyai, 52 (1988), 447-452.

- [21] J. Sedlacek, On magic graphs, Math. Slov. 26 (1976).329-335.
- [22] J. Sedlacek, Some properties of magic graphs, in Graphs, Hypergraph, Bloc Syst. 1976, Proc. Symp. Comb. Anal., Zielona Gora (1976), 247-253.
- [23] R.P. Stanley, Linear homogeneous diophantine equations and magic labelings of graphs, *Duke Mathematics Journal*, **40** (1973), 607-632.
- [24] R.P. Stanley, Magic labeling of graphs, symmetric magic squares, systems of parameters and Cohen-Macaulay rings, *Duke Mathematics Journal* 40 (1976), 511-531.
- [25] B.M. Stewart, Magic graphs, Canadian Journal of Mathematics, 18 (1966), 1031-1059.
- [26] B.M. Stewart, Supermagic complete graphs, Canadian Journal of Mathematics, 19 (1967), 427-438.
- [27] G.C. Sun, J. Guan, and Sin-Min Lee, A labeling algorithm for magic graph, Congressus Numerantium 102 (1994), 129-137.
- [28] G.C. Sun and Sin-Min Lee, Constructions of magic graphs. Congressus Numerantium 103 (1994), 243-251.
- [29] M. Trenkler, Some results on magic graphs, in "Graphs and other Combinatorial Topics", Proceeding Of the third Czechoslovak Symposium Prague, 1983, edited by M. Fieldler, Teubner-Texte zur Mathematik Band, Leipzig 59 (1983), 328-332.