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Abstract

Let A be an abelian group. We call a graph G = (V, E) A-magic if there

_exists a labeling f: E(G) — A® such that the induced vertex set labeling
T V(G) = A, defined by f*(v) = Zf(u,v) where (z,v) € E(G), is a
constant map. In this paper, we present some algebraic properties of A~
magic graphs. Using them, various results are obtained for group-magic
! eulerian graphs.

1 Introduction.

Let G be a connected (multi)graph, with no loops. For any abelian group

A (written additively), let A* = A — {0}. A function f : E(G) — A* is called

; a labeling of G. Any such labeling induces a map f* : V(G) — A, defined
% by f*(v) = Zf(u,v), where (u,v) € E(G). If there exists a labeling f whose
induced map on V(G) is a constant map, we say that f is an A-magic labeling

and that G is an A-magic graph. The integer-magic spectrum of a graph G is

{ the set {k: G is Zx—magic and k > 2}.

In this article, we will use the following notation. Let [G, A] denote the
class of distinct A-magic labelings of G. Note that G is A-magic if and only if
[G,A] # 0. For any ring R with unity, U(R) denotes the multiplicative group

of units in R.
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Z-magic graphs were considered by Stanley [10,11], where he pointed out
that the theory of magic labelings could be studied in the general context of
linear homogeneous diophantine equations. Doob [1,2,3] has studied A-magic
graphs and Z,-magic were investigated in [5,6,7).

Within the mathematical literature, various definitions of magic graphs have
been introduced. The original concept of an A-magic graph is due to J. Sedlacek
8,9], who defined it to be a graph with real-valued edge labeling such that (i)
distinct edges have distinct nonnegative labels, and (ii) the sum of the labels of
the edges incident to a particular vertex is the same for all vertices. Previously,
Kotzig and Rosa [4] had introduced yet another definition of a magic graph.
Over the years, there has been great research interest in graph labeling problems.
The interested reader is directed to Wallis’ [12] recent monograph on magic
graphs.

2 A necessary condition for G to be Z3—magic.

It is straight-forward to determine a necessary and sufficient condition for
G to be Zp—-magic. Clearly, G is Zo-magic if and only if every vertex of G is of
the same parity. It seems that finding a similar condition for G to be Z3-magic
is much more difficult. We establish the following result:

Theorem 1. Let G be Zz~magic, with p vertices and q edges. Let f € (G, Z3)
induce the constant label x on the vertices of G, and |E;| denote the number of
edges labeled i. Then, pz = q + |Ey|, (mod 3).

Proof. With any Zz-magic labeling f of G, we can associate a multigraph G
with G. G is formed by replacing every edge in G which was labeled 2, with two
edges labeled 1. Note that G is a Z3-magic multi~graph with p vertices and
2|E;| + |E)| edges. In any (p, g)-graph, we have that ¥ deg(v;) = 2g. Since all
of the edges in G are labeled 1, this implies that pz = 4|E;| + 2|E;}, (mod 3).
From this, we see that pz = |Ey| + |Ey| + |E1|, (mod 3). Thus, px = q + |E|,
(mod 3). O

Several remarks should be made with regard to Theorem 1. First, note that
with similar calculations, one can easily derive an analogous result in terms
of |Eg| (ie: pz + g+ |E2| = 0, (mod 3)). Also, Theorem 1 might be used to
reduce the number of calculations performed, when trying to find a Zz-magic
labeling of G via computer search. In addition, similar necessary conditions can
be established for graphs G to be Z;—magic.

3 Algebraic properties of A-magic graphs.
After examining a few examples by hand, the observant reader will note a

sort of duality appearing in Theorem 1. The next two results give a reason as
to why this occurs.
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Theorem 2. Let A be a non-trivial denumerable abelian group, underlying
some ring R with unity. If d € U(A) and f € [G, A], then df € [G, A].

Proof. Suppose that f induces a constant label = on all of the vertices of G.
Consider an arbitrary vertex v and let |E;| denote the number of edges labeled
a;, which are adjacent to v. Then, z = X(a;|E;|); where a; varies through all
the elements of A*. Let us examine what effect df has on the labeling of v.
By multiplying every edge adjacent to v by d, we get the following relationship:
dz = d¥(a;|E;|). The new induced labeling on v is dz. Also, since d € U(A4),
each edge adjacent to v in this new labeling is not equal to 04. Thus, df is an
A-magic labeling of G. O

The following result is an immediate consequence of Theorem 2.
Corollary 1. Ifd € U(Zy) and f € [G, Zi], then df € |G, Zy).

Proof. Let A = Z,, the group of integers, modulo n. Now, apply Theorem
2. 0

It should be noted that in Theorem 2 and Corollary 1, f and df might yield
the same group-magic labeling on G. Also, a natural question to ask is the
following: If G is an A-magic graph, does there exist some labeling of G for
which all other possible A-magic labelings arise, by applying this group action?
In general, the answer is no. Consider the following two labelings for a Zg—magic
graph G:

Figure 1.

Let f € [G, Zg] and dy, dy € U(Zy) where d; f gives the i** labeling. By multi-
‘plying each edge in the first labeling by dgdl_l, we obtain the second labeling.
However, this is impossible.

We wish to continue to develop an algebraic framework from which group-
magic graphs can be analyzed. Some of the following results will give us addi-
tional tools for studying A-magic eulerian graphs.

Theorem 3. Let Ay be an abelian group which contains a subgroup isomorphic
to Ay. If graph G is Ay-magic, then G is A1-magic.
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Proof. Let H < A;. Suppose that f € [G, A2] and that ¢ : A — H is a group
isomorphism. Now, let f induce a constant label z on all of the vertices of G.
Consider an arbitrary vertex v and let |E;| denote the number of edges labeled
a;, which are adjacent to v. Then, z = ¥(a;|E;|)}; where a; varies through all
the elements of A;*. Now, apply ¢ to the edges which are adjacent to v. Under
this new labeling, we get the following relationship: ¢(z) = ¢[Z(a;i|Ei])] =
Y¢(ai)|E;]. Since a; # 04, and ¢ is a group isomorphism, no edge is labeled
04,. The new induced labeling on v is ¢(z). Hence, we have an A;-magic
labeling of G. O

Although the next result is an immediate corollary of Theorem 3, for the
sake of clarity, a detailed proof has been given.

Corollary 2. Let G be a Zyx-magic graph, with kln. Then, G is a Z,-magic
graph.

Proof. Suppose that we have a Z,—magic labeling on G. Let z be the constant
label on the vertices of G and suppose that kd = n. Now, consider an arbitrary
vertex v and let |E;| denote the number of edges labeled i, which are adjacent
to v. Then, z = E(i|E;|), mod k; where 7 varies from 1 to k — 1. By multiplying
every edge adjacent to v by d, we get the following relationship: dz = dX(i|E;]),
mod kd and hence dz = dX(i|E;|), mod n. The new induced labeling on v is
dz. Also, since 1 < i < k—-1and d # 0, we have that 0 < di < n. In
particular, di is not congruent to 0, mod n. Thus, in this new labeling, no edge
is labeled 0. Since v was taken to be an arbitrary vertex, we have shown that
G is Z,—magic. a

The reader should observe that the converse of Corollary 2 is not true. (ie. If
G is Z,-magic, with k|n, it does not follow that G is Z,-magic.) For example,
let G be the eulerian graph consisting of a C, block and a C3 block and sharing
one common vertex (p = 6, ¢ = 7). Now, G is Zs-magic. By Corollary 2, G is
Zeg—magic. However, it is straight—forward to verify that G is not Z3-magic.

Also, Corollary 2 allows us to obtain information about the integer-magic
spectrum of G. For example, if G is Z,-magic for all primes p, then G is
Zn—magic for all n > 2.

4 Results on eulerian graphs.

There are still many open questions with regard to the characterization of
A-magic eulerian graphs. In this section, an assortment of results is given.

Corollary 3. Every eulerian graph G is Z—magic, for k even.

Proof. This follows immediately from Corollary 2. O

Corollary 4. Let A be an abelian group containing an element of order 2.
Then, every eulerian graph G is A-magic.
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Proof. Suppose that z is an involution in A. Label every edge of G with z.
Then, every vertex of G has an induced labeling of 0. Hence, G is A-magic. [

Note that Corollary 4 also follows from Theorem 3.

Theorem 4. Let A be any non-trivial abelian group. Then, every eulerian
graph G with an even number of edges must be A-magic.

Proof. Suppose that a € A, with a # 0. Let ejezes - - - ez, be an eulerian circuit,
starting and ending at vertex v. The following labeling scheme will give an A-
magic labeling of G:

if 2 is even.

a, ifiisodd.
fles) = {—a

Note that every vertex has an induced labeling of 0. a

We have already seen an example of an eulerian graph with an odd number
of edges, which is not A-magic (e.g. G, consisting of a Cy block and a C3 block
and sharing one common vertex). In contrast to this, there are also eulerian
graphs with an odd number of edges, which are A-magic. For example, any odd
cycle is A-magic.

Let us now focus our attention on eulerian graphs with an odd number of
edges. First, we begin with a definition.

Definition 1. Given a connected graph G = (V, E), let T(G) denote the graph
which is obtained from G by adding a disjoint uv—path of length 2 between
every adjacent pair of vertices u,v in V(G).

Note that T(G) has |V(G)| + | E(G)| vertices and |E(G)| + 2| E(G)| edges. Also,
it is straight—forward to show that T'(G) is eulerian. We investigate the following
question: For which G with |E(G)| odd, is T(G) A-magic for all non-trivial,
finite abelian groups A?

Theorem 5. T(Py;) is A-magic, where Py is a path of order 2k and A is any
non—trivial, finite abelian group.

Proof. Let a € A, with a # 0. The following diagram gives an A-magic labeling
of T(ng)

Figure 2.
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Theorem 6. T(K; 2n41) is A-magic, for all non-trivial, finite abelian groups
A.

Proof. First, we show that T(Kj2n41) is Zp,—magic, for all prime p. Since
T(K1,2n+1) is eulerian (and thus is Z;-magic), let p > 3. Furthermore, let v
denote the vertex of degree 2(2n + 1) and E, be the set of edges incident to v
in T(K},2n41). There are two cases to consider: (i). 2(2n + 1) = 1, mod p and
(ii). 2(2n+1) # 1, mod p.

(i). 2(2n+1) = 1, mod p. From E,, label 2(2n + 1) — 2 edges with 1
and the remaining two edges, with p — 1. Now, v has an induced labeling
of 2(2n+1) — 2+ 2(p — 1) = p — 3, mod p. We label the remaining edges of
T(K1,2n+1) in the following manner: If the edge is adjacent to two edges labeled
1, then label it p —4, mod p; otherwise, label the edge p— 2, mod p. This yields
a Zy-magic labeling of T(K 2n41)-

(it). 2(2n +1) # 1, mod p. Label every edge in E, with 1. Note that v
has an induced labeling of 2(2n + 1) = 4n + 2, mod p. We label the remaining
edges of T'(X1 2n+1) with 4n+ 1, mod p. Since 4n+2 # 1, mod p, we have that
4n 41 # 0, mod p. Hence, we have a Z,-magic labeling of T'(K 2n+1)-

Therefore, T(Kj,2n+1) is Z,~magic, for all prime p. Now, every finite abelian
group A can be written as a direct sum of cyclic groups, each of order a power of
a prime. Also, every finite p-group has Z,, as a subgroup. Hence, by Theorem
3, T(K1,2n+1) is A—magic.

O

Here is another construction which yields eulerian graphs with an odd num-
ber of edges.

Definition 2. A graph H is homeomorphic from G if either H is isomorphic
to G or H is isomorphic to a graph obtained by subdividing some sequence of
edges of G.

Definition 3. A cycle-snake is any graph which is homeomorphic from T(FP).

The reader will note that by making subdivisions on the edges of T'(P%), for
k > 2, many eulerian graphs having an odd number of edges can be created.
We will show that certain types of cycle-snakes are A-magic, for all non-trivial,
abelian groups A. Before we do that, the following lemma is needed.

Lemma 1. Let graph G have an A-magic labeling with o vertex—induced label
x. Furthermore, let a € A*, where 2a = z, and E,(G) denote the edges of G
which are labeled a. Then, any graph obtained from G by subdividing edges in
E.(G) is A-magic.

Proof. Since edges in E,(G) are subdivided, they are replaced with paths of
length 2 in the new graph. Label the edges of the paths with a. The new graph
obtained will be A-magic, having the same vertex—induced label as G. O

Theorem 7. Let E4[T(Par)] denote the set of edges corresponding to the A-
magic labeling found in Figure 2. Then, any cycle-snake obtained from T(Pax)
by subdividing edges in E,[T(Pa)] is A-magic.
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Proof. This follows immediately from Theorem 5 and Lemma 1. O

Not all cycle-snakes are A-magic. For example, it is straight—forward to show
that the graph consisting of a C4 block and a C3 block and sharing one common
vertex, has integer-magic spectrum equaling 2N.

Up to this point, the integer-magic spectrum of the eulerian graphs that we
have come across has either been 2N or N — {1}. This might lead the reader to
believe that this is the case for all eulerian graphs. However, there are eulerian
graphs, whose integer-magic spectrum is neither 2N nor N — {1}. For example,
the following diagram gives a Z;-magic labeling of an eulerian graph. It is
straight-forward to show that this graph is not Z3—magic.

Figure 3.

5 Directions for further research.

Open Problem 1. Charactlerize the A-magic eulerian graphs with an odd num-
ber of edges.

Open Problem 2. Find necessary and sufficient conditions for a graph G to
be Zz—magic.
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