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Abstract

We give decomposition formulas of the multiedge and the multi-
path zeta function of a regular covering of a graph G with respect to
equivalence classes of prime, reduced cycles of G. Furthermore, we
give a decomposition formula of the weighted zeta function of a g-
cyclic I'cover of a symmetric digraph D with respect to equivalence
classes of prime cycles of D, for any finite group I and g € I".

Key word: graph covering, digraph covering, zeta function

1 Introduction

Graphs and digraphs treated here are finite and simple. Let G = (V(G),
E(G)) be a connected graph with vertex V(G) and arc set E(G), and D the
symmetric digraph corresponding to G. Note that E(G) = E(D). For e =
(u,v) € E(G), let o(e) = u and t(e) = v. The inverse arc of e is denoted by
. A path P of length n in D(or G) is a sequence P = (vo, v1,*+,Vp—1,¥n)
of n + 1 vertices and n arcs(or edges) such that consecutive vertices share
an arc(or edge) (we do not require that all vertices are distinct). Also, P
is called a (vo,v,)-path. If e; = (v;,v;41) for i = 1,---,n — 1, then we
can write P = (ej,+--,én_1). We say that a path has a backtracking if a
subsequence of the form -.-,z,y,z,- .- appears. A (v, w)-path is called a
cycle (or closed path) if v = w.
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We introduce an equivalence relation between cycles. Two cycles C; =
(v1,°++, vm) and C; = (w1, -+, wn,) are called equivalent if w; = v; 4 for
all j. Let [C] be the equivalnce class which contains a cycle C. Let B" be
the cycle obtained by going r times around a cycle B. Such a cycle is called
a multiple of B. A cycle C is said to be reduced if both C and C? have
no backtracking. A cycle C is prime if C # B" for some other cycle B and
r 2 2. The (lThara) zeta function of a graph G is defined to be a function
of u € C with u sufficiently small, by

Z(Gsu) = ZG'(u) = H(l - ulcl)_11
(i

where [C] runs over all equivalence classes of prime, reduced cycles of G,
and | C | is the length of C.

Zeta functions of graphs started from zeta functions of regular graphs
by Thara [6]. In [6], he showed that their reciprocals are explicit polynomi-
als. Hashimoto [5] treated multivariable zeta functions of bipartite graphs.
Bass [1] generalized Thara’s result on the zeta function of a regular graph to
an irregular graph, and showed that its reciprocal is a polynomial. Various
proof of Bass’s Theorem were given by (3,7,13]. Mizuno and Sato [9] ob-
tained a decomposition formula for the zeta function of a regular covering
of a graph.

Let G be a connected graph with 2m ares e, - -, €2m, and let the multi-
edge matrix W = W(G) of G be a 2m x 2m matrix with ij entry the
complex variable w;; if t(e;) = o(e;), e; # &, and w;; = 0 otherwise.
Furthermore, set w(e;, e;) = w;;. For a path C = (e;,,:,€;,) of G, the
multiedge norm Ng(C) of C is defined as follows: Ng(C) = w;,;,wig5 -+
wj,_,;,. The multiedge zeta function of G is defined by

¢e(W,6) = [J(1-Ne(©)™,
[l

where [C] runs over all equivalence classes of prime, reduced cycles in G.
Stark and Terras [14] showed that the reciprocal of the multiedge zeta func-
tion of a graph is a polynomial: (g(W, G)~! = det(I — W). Furthermore,
they obtained a factorization formula for the multiedge zeta function of a
regular covering of a graph G as a product of multiedge Artin L-functions.

Cycles, reduced cycles and prime cycles in a simple digraph which is not
symmetric are defined similarly to the case of a symmetric digraph. Let D
be a connected digraph. Then, the zeta function of D is defined to be a
function of u € C with u sufficiently small, by

Z(D,u) = Zp(v) = [J(1 - wH7,
Icl
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where [C] runs over all equivalence classes of prime cycles of D. Kotani and
Sunada [7], Mizuno and Sato [10] gave a determinant expression of the zeta
function of a connected digraph D: Z(D,u)~! = det(I — A(D)u), where
A(D) is the adjacency matrix of D.

Kotani and Sunada [7] stated a connection between zeta functions of
graphs and that of strongly connected digraphs. Let G = (V, E) be a con-
nected non-circuit graph. Then the oriented line graph L(G) = (V1, EL) of
G is defined as follows: V, = E; EL = {(e1,e2) € E x E | &, # ez, t(e1) =
o(e2)}. There exist no reduced cycles in the oriented line graph. Thus,
there is a one-to-one correspondence between prime cycles in E(G) and
prime, reduced cycles in G, and so Z(G,u) = Z(L(G), v).

Let D be a connected digraph and V(D) = {vy,---,v,}. Then we con-
sider a n X n matrix W = (w;;)1<i,j<n With ij entry the complex variable
wij if (vi,v5) € E(G), and wi; = 0 otherwise. The matrix W is called the
weighted matrix of D. For each path P = (v;,,---,v;,) of D, let w(P) =
Wiy igWigis -+ * Wi,_,i,. Furthermore, let w(v;,v;) = wy;, v;,v; € V(D). The
weighted zeta function of D is defined by

Z(D,w) = [[(1 —w(C)7,

(€l

where [C] runs over all equivalence classes of prime cycles of D. Mizuno and
Sato [11] obtained a determinant expression of the weighted zeta function
of a connected digraph D: Z(D,w)~! = det(I - W).

For a general theory of the representation of groups, the reader is referred
to [2].

2 Multiedge zeta functions of regular cover-
ings of graphs

Let G be a connected graph, and let N(v) = {w € V(G) | (v,w) € E(G)}
for any vertex v in G. A graph H is called a covering of G with projection
7 : H — G if there is a surjection 7 : V(H) — V(G) such that 7|y, :
N(v') — N(v) is a bijection for all vertices v € V(G) and v’ € #~(v).
When a finite group II acts on a graph G, the quotient graph G/Il is a
simple graph whose vertices are the IT-orbits on V(G), with two vertices
adjacent in G/II if and only if some two of their representatives are adjacent
in G. A covering m: H — G is said to be regular if there is a subgroup B
of the automorphism group AutH of H acting freely on H such that the
quotient graph H/B is isomorphic to G.

Let G be a graph and T a finite group. Then a mapping o : E(G) — T’
is called an ordinary voltage assignment if a(v,u) = a(u,v)~! for each
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(u,v) € E(G). The pair (G,a) is called an ordinary voltage graph. The
derived graph G* of the ordinary voltage graph (G, a) is defined as fol-
lows: V(G*) = V(G) x T and ((u,h),(v,k)) € E(G*) if and only if
(u,v) € E(G) and k = ha(u,v). The natural projection 7 : G* — G
is defined by w(u,h) = u,(u,h) € V(G*). The graph G is called a
derived graph covering of G with voltages in I or a I'-covering of G. The
natural projection m commutes with the right multiplication action of the
a(e),e € E(G) and the left action of g € I' on the fibers: go (u,h) =
(u,gh),g € T, which is free and transitive. Thus, the I'-covering G* is
a | I' |-fold regular covering of G with covering transformation group I
Futhermore, every regular covering of a graph G is a I'-covering of G for
some group I'(see [4]).

Let G be a connected graph, I a finite group and o : E(G) — " an
ordinary voltage assignment. In the I'-covering G“, set v, = (v,g) and
eg = (e,9), where v € V(G),e € E(G),g € I'. For e = (u,v) € E(G), the
arc e, emanates from u, and terminates at vyo(e). Note that € = (€)gace)-

Let W = W(G) be the multiedge matrix of G. Then we define the
multiedge matrix W = W(G*) = (i@(e,, fr)) of G* derived from W as
Follows: wleg, fa) = wle, f) if t(e) = o(f), f # &h = gale) and dley, fr) =
0 otherwise.

Let G be a connected graph, I' a finite group and & : E(G) — I’ an
ordinary voltage assignment. Then we define the net voltage a(P) of each
path P = (v1,---,7) of G by a(P) = a(v1,v2) -+ a(v—1,v). We denote
the order of g € " by ord(g).

Theorem 1 Let G be a connected graph, I a finite group with n elements,
and o : E(G) — T' an ordinary voltage assignment. Let W = W(L(G)) be
the weighted matriz of G. Suppose that the I'-covering G* of G is connected.
Then the reciprocal of the multiedge zeta function of G* is

Ce(W,G*)"! = H(l — Ng(C)rda(ON)yn/orda(C)
(&

where [C] runs over all equivalence classes of prime, reduced cycles of G.

Proof. Let C be any prime, reduced cycle of G* and n(C) = C¥, where Co
is a prime, reduced cycle of G and 7 : G* — G is the natural projection.
Let m = ord(a(Cbp)). By [4, Theorem 2.1.3), the preimage 7~*(Cp) of C in
G¢ is the union of n/m disjoint cycles with length m | Co |, and so k =m.
Therefore, it follows that

(s(W,6%)™* = [](1 - Np(Co)reConyn/ordtatCon,
{Col
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where [Co] runs over all equivalence classes of prime, reduced cycles of G.
Q.E.D.
Let w;; = u unless w;; = 0. Then we obtain Theorem 1 in [12].

Corollary 1 (Sato) Let G be a connected graph, T' a finite group with
n elements, and a : E(G) — T an ordinary vollage assignment. Suppose
that the I'-covering G* of G is connected. Then the reciprocal of the zeta
function of G* is

Z(G“,u)—l — H(l _ uICIord(a(C)))n/ord(a(C)),
{Cl

where [C] runs over all equivalence classes of prime, reduced cycles of G.

3 Multipath zeta functions of regular cover-
ings of graphs

Let G = (V, E) be a connected graph and T a spanning tree of G. Then
there exist r = 1 | E | — | V | +1 undirected edges of G not contained
in 7. Let ei,---,ep, &1,---,& denote the arcs left out of T. Then the
fundamental group of G can be identified with the group generated by
{els"'seryély'"aér}‘

Set €,41 = &1,-+, €2 = &.. Let the multipath matrix Z = Z(G) of G
be a 2r x 2r matrix with ij entry the complex variable 2;; if e; # &;, and
z;; = 0 otherwise. Furthermore, set z(e;, e5) = 2.

Let G’ be the graph obtained from G by contracting T to a vertex.
Note that G’ is the bouquet with one vertex and r undirected edges.
We consider a prime, reduced cycles C = (ay,:--,a,) of G', where a; €
{e1,++*,€ryer41,* -+, €2,}. Note that C is a "reduced ” product in the gen-
erators of the fundamental group of G. Then the multipath norm Np(C)
of C is defined as follows: Np(C) = z(ai,a2)z(az,a3)--- 2(as,a1). The
multipath zeta function of G is defined by

¢p(2,G)=[J(1 -Ne(C)),
[o)]

where [C] runs over all equivalence classes of prime, reduced cycles in G'.
Stark and Terras [13] showed that the reciprocal of the multipath zeta
function of a graph is a polynomial: {p(Z,G)~! = det(I - Z).

Let G = (V, E) be a connected graph, T a spanning tree of G, I' a finite
group and a : E(G) — I’ an ordinary voltage assignment. Furthermore,
let G’ be the graph obtained from G by contracting T to a vertex. In (G')%,
[ T | ~1 of the lifted edges from G’ must be used to complete a spanning
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tree of (G')®. The remaining |T' |r— (| ' | =1) =| ' | (r — 1) + 1 edges
of the contracted (G*)' = ((G')*)’ give rise to the generating paths of the
fundamental group of G*.

Let Z be the multipath matrix of G. Then we define the multipath matrix
Z = Z(G*) = (Z(eg, fr)) of G* derived from Z as follows: Z(e,, fn) =
z(e, f) if f # &, and Z(ey, fr) = 0 otherwise. Here the edges (eg, fr) €
E(G*) are restricted to those of (G*)’, and so on.

Let = be a base vertex of T. For an ordinary voltage assignment « :
E(G) — T, the T-voltage ar of « is defined by ar(,v) = a(Py)a(u, v)
a(P,)? for each (u,v) € E(G), where P, is the unique path from z to
u in T, and so on. Note that ar is an ordinary voltage assignment, and
ar(C) = o(C) for any cycle C of G. Furthermore, we have ar(u,v) = 1
for each (u,v) € E(T).

For h € T, the permutation matriz P, = (p;;) of h in I is the square
matrix of order n such that p;; = 1if g;h = g;, and p;; = 0 otherwise, where
n=|T'|and T = {g, = 1,82,---,9a}. A cyclic permutation (hy hy--- hyp)
is the permutation such that hy — hg — -+ — hy, — hy.

Theorem 2 Let G be a connected graph, T' a finite group with n elements
and o : E(G) — T an ordinary voltage assignment. Furthermore, let Z
be the multipath matriz of G* derived from the multipath matriz Z of G.
Then the reciprocal of the multipath zeta function of G* is

CP(z, Ga)—l - H(l _ NP (C)ord(a(C)))n/ord(a(C)),
Ic}

where [C] runs over all equivalence classes of prime, reduced cycles of G.

Proof. Let T be a spanning tree of G. By Corollary of Theorem 11 in
{13] and the fact that ar(C) = a(C) for any cycle C, we have

¢p(Z,G*)"" = [[ [ det@ - plar(C))Np(C))
ic1 »

= [T T] det@ - p(a(C)Np(C)),

icl »

where p runs over all inequivalent irreducible representations of I' and f =
degp. The property of the right regular representation of a finite group
implies that

] det@ - p(a(C)Np(C))! = det(In — o(a(C))Np(C))
P

= det(I, — Pycy)Np(C)),
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where P}, is the permutation matrix of & in I', and o is the right regular
representation of I'(see [2]).

Let ¥ = a(C), H =< v > the subgroup of I' generated by v, m =
ord(y) and k = n/m. Furthermore, Let {hy = 1, ha,---, h;:} be a set of all
representatives of I'/H. Then the disjoint cycle decomposition of o(y) is

o(y)= (1 v+ Y™ )z hoy--- hay™ 1) (hg hey o Y™ ).
Thus, '
det(L, — P,Np(C)) = det(I,n — P:Np(C))* = (1 - Np(C)™)*,

where P, is the permutation matrix of y in H. Therefore, the result follows.
Q.E.D.

4 Weighted zeta functions of cyclic I'-covers

Let D be a symmetric digraph and I' a finite group. A function a :
E(D) — T is called alternating if a(y,z) = a(z,y)~! for each (z,y) €
E(D). For g € T, a g-cyclic I'-cover Dy(a) of D is the digraph defined as
follows(see [8]): V(Dg(a)) = V(D) x T, and ((v, h), (w, k)) € E(Dy(a)) if
and only if (v,w) € E(D) and k‘lha('v, w) = g. The natural projection
7 : Dy(a) — D is a function from V(D,(a)) onto V(D) which erases the
second coordinates. A digraph D’ is called a cyclic I'cover of D if D' is a
g-cyclic I'-cover of D for some g € I'. The pair (D,e) of D and a can be
considered as the ordinary voltage graph (D, a) of the underlying graph D
of D. Thus the 1-cyclic I'-cover D, (¢) corresponds to the I'-covering D¢,

where 1 is the unit of I'.

Let W = W(D) be the weighted matrix of D. Then we define the
weighted matrix W(Dg(a)) = (@(up,vk)) of Dy(a) derived from W es
follows: @(up,vx) = w(w,v) if (v,v) € E(D), k¥ = ha(y,v)g~!, and
w(up, vx) = 0 otherwise.

Let D be a connected symmetric digraph, I' a finite group and a :
E(D) — T an alternating function. Furhthermore, let g € I'. Then we de-
fine the function o, : E(D) — T as follows: a, (v, w) = a(v,w)g™?, (v, w) €
E(D). For each path P = (vy,---,2;) of D, let ay(P) = a(vy,v2)g7 -+~
a(v-1,9)g~". Note that, if g2 # 1, then o, is not alternating, and so
Dy(a) is not a I'-covering of the underlying graph of D.

Theorem 3 Let D be a connected symmetric digraph, I' a finite group
with n elements, g € T' and a : E(D) — T an alternating function.
Let W = W(D) be the weighted matriz of D. Then the reciprocal of the
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weighted zeta function of Dy(a) is
Z(Dy(a), 8)* = [ (1 - w(C)maes M r/ordtas(©),
i€l
where [C] runs over all equivalence classes of prime cycles of D.
Proof. By Corollary 5 in [11], we have
Z(Dy(a), w)™! = gﬂdet(l — p(ag(C))w(C)Y,
p

where p runs over all inequivalent irreducible representations of I' and f=
degp. Similarly to the proof of Theorem 2, the result follows. Q.E.D.
Let w;; =  unless w;; = 0. Then we obtain Theorem 2 in [12].

Corollary 2 (Sato) Let D be a connected symmetric digraph, T' a finite
group with n elements, g €' and a: E(D) — T an alternating function.
Then the reciprocal of the zeta function of Dg(a) is
Z(Dg(a), u)—l = H(l _ uIClord(ag(C)))n/ord(a,(C)),
a

where [C] runs over all equivalence classes of prime cycles of D.
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