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Abstract

Self-dual codes is an important class of linear codes. Hadamard
matrices and weighing matrices have been used widely in the con-
struction of binary and ternary self-dual codes. Recently weighing
matrices and orthogonal designs have been used to construct self-
dual codes over larger fields. In this paper we further investigate
codes over F,, constructed from orthogonal designs. Necessary con-
ditions for these codes to be self-dual are established, and examples
are given for lengths up to 40. Self-dual codes of lengths 2n > 16 over
GF(31) and GF(37) are investigated here for the first time. We also
show that codes obtained from orthogonal designs can generally give
better results, with respect to their minimum Hamming distance,
than codes obtained from Hadamard matrices, weighing matrices or
conference matrices.
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1 Introduction and basic definitions

In this section, we recall some basic notions on orthogonal designs and
self-dual codes over Fj,.

1.1 Orthogonal designs

An orthogonal design of order n and type (sy, s2,...,8,) (s; > 0), denoted
OD(n;s1,582,. .., S.), on the commuting variables z;,z5,...,z, isannxn
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matrix D with entries from the set {0, +z,,+z2,...,+z,} such that

DDT = () sia?)l,

i=1

Alternatively, the rows of D are formally orthogonal and each row has
precisely s; entries of the type +z;. In (7], where this was first defined, it
was mentioned that

u
D™D =} sz))l,
i=1

and so our alternative description of D applies equally well to the columns
of D. It was also shown in (7] that u < p(n), where p(n) (Radon’s function)
is defined by p(n) = 8¢ + 2¢, when n = 2%b, bodd, a =4c+d, 0 < d < 4.
Although orthogonal designs of order n on n variables exist only for n =
1,2,4,8, there are many orthogonal designs on u variables, where u < p(n).

Example 1 Dg, is an orthogonal design of order eight on eight variables.

Ds, =0D(8;1,1,1,1,1,1,1,1) =

( a b ¢ d e f g h \
b a d -¢ f -e -h g
—c -d a b g h —-e ~f
-d ¢ -b a & I
—e —-f —g -h a b c d
-f e -h g ~-b a -d
-g h e —-f —¢ d a -b

K -h -9 f e -d — b a }

For more details and construction methods for orthogonal designs see
(8].

A weighing matrix W = W(n, k) is a square matrix with entries 0, +1
having & non-zero entries per row and column and inner product of distinct
rows zero. Hence W satisfies WW7 = kI,,, and W is equivalent to an
orthogonal design OD(n;k). The number k is called the weight of W.
If £ = n, that is, all the entries of W are +1 and WWT = nl,,, then
W is called an Hadamard matrix of order n. In this case n = 1,2 or
n = 0(mod 4). To make this clear we give the following example.

Example 2 If we replace all variables of Dg, by 1 we obtain a Hadamard
matrix H of order 8, if we replace one variable by zero (i.e a = 0) we have
an orthogonal design Dg, = OD(8;1,1,1,1,1,1,1), and if we replace one
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variable by zero (i.e a = 0) and all others by 1 we obtain a weighing matrix
W of order 8 and weight 7.

(11111111\
-1 1 1 -1 1 -1 -1 1
-1 -1 1 1 1 1 -1 =1
-1 1 -1 1 1 -1 1 -1

H

Hes= | ;7 1 121 1 1 1 1

-1 1 -1 1 -1 1 -1 1
-1 1 1 -1 -1 1 1 -1
\-1 -1 1 1 -1 -1 1 1)

Dgy =0OD(81,1,1,1,1,1,1) =

0 b ¢ d e f g h)\
-b 0 d —¢c f —-e - g
- —-d 0 b g9 h —-e -f
-d ¢ -b 0 h —g f -e
—e —~f —g -h 0 b c d
-f e -h g -b 0 -d c
-g h e —-f =c 0 -b

\-h -¢g f e -d — b 0)

W=W(8,7)=
( 0 1 1 1 1 1 1 1Y\
-1 0 1 -1 1 -1 -1 1
-1 -1 0o 1 1 1 -1 -1
| -1 1 -1 0 1 -1 1 -1
- -1 -1 -1 -1 0 1 1 1
-1 1 -1 1 -1 0 -1 1
-1 1 1 -1 -1 1 0 -1

\-1 -1 1 1 -1 -1 1 0)

1.2 Self-dual codes

For our consideration we also need some facts from coding theory. Our
terminology and notation follow [10]. Let FF = GF(p) be the field with p
elements where p is a prime power. An [n, k| linear code C over F is a k-
dimensional vector subspace of F™. The clements of C are called codewords
and the weight of the codeword is the number of its non-zero coordinates.
The minimum weight is the smallest weight among non-zero codewords. An
[n, k] code with minimum weight d is called [n, k, d] code. Two binary codes
are equivalent if one can be obtained from the other by a permutation of
the coordinates.
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The dual code C+ of C isdefined as CL = {x € F*|z-y =0 forall y €
C}. If C C C4, C is called a self-orthogonal code. C is called self-dual if
Cc=CL

A self-dual code C is called extremal if C has the largest possible min-
imum weight. The known bounds of d for ¢ = 2,3,4 are given in [12] and
(13].

For more details on self-dual codes over finite fields GF(p) where p is a
prime power, we refer to [1, 2, 10]. In this paper we only consider self-dual
codes over GF(p), for p prime, and thus we will use F}, to denote the GF(p).

Recently Arasu and Gulliver [1] gave some examples of self- dual codes
constructed from Hadamard matrices and weighing matrices. The method
described in the next section is a generalization of the methods given in
(1] since Hadamard matrices and weighing matrices are special cases of
orthogonal designs.

2 Construction methods from orthogonal de-
signs

In this section, we give a method for constructing self-dual codes over F,
using orthogonal designs.

The following proposition is a direct method for constructing self-dual
codes using orthogonal designs and was given for the first time in [4, 5).

Theorem 1 Let R be the finite field F,,. Let D = OD(n; sy, s2,...,S,) be
an orthogonal design of order n and type (sy, sa,...,Sy) on the commuting
variables T,,x2,...,2,. We replace the variables with elements from R in
such a way that we obtain

(Zsiw?) +22=0inR, and z € R- {0}
i=1

and denote the derived matriz with A. Suppose that z is a unit of R. Then
the matriz
G=(zl,, A)

generates a self-dual code C over R of length 2n.

In order to illustrate the above method, consider the following orthog-
onal design D = 0D(4;1,1,1,1):

) Z2 z3 T4
—Z2 Ty —I4 I3
—Z3 T4 Ty —T2
—T4 —I3 T2 )

D=
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Then by appropriate replacement of the variables we obtain the following
matrix.

1 32 0

-3 10 2
Ar = -2 01 -3
0 -2 3 1

Matrix ( I4 , A; ) generate a self-dual code Cs over GF(5). It is not difficult
to see that the code Cs is equivalent to the code Fy in [9].

3 Codes constructed from orthogonal designs

Let D = OD(n;s;, s2,...,8,) be an orthogonal design of order n and
type (si1,82,...,54) on the commuting variables z,,zo,...,z,. Using the
construction of theorem 1 we can see that each row of the generator matrix
has at most

do=1+) s (1
i=1

non zero elements. Thus the minimum distance d of the derived code C
generated by G as it is shown in theorem 1 is upper bounded by dy (i.e.
d < dp). So, it is only necessary to consider orthogonal designs with none
(full orthogonal designs) or few zeros. Full orthogonal designs could give
codes with larger minimum distances and in this case the following lemma
is known.

Lemma 1 If a full orthogonal design of order n exists, then n = 1,2 or
n =0 (mod 4).

For example the bounds on minimum distance (if all variables are re-
placed by non zero elements) for the codes constructed from orthogonal
designs Dg, and Dg;, are 9 and 8 respectively.

In [1] the authors gave in tables the parameters of the codes they have
found using Hadamard matrices, weighing matrices and conference matri-
ces. They study examples of sclf-dual codes in F}, for every p prime up to
23, but in some cases the minimum distance of the codes obtained by their
methods are poor. In this section we present the results we found using
orthogonal designs and finally we give an update to these tables improving
the distances in some cases. We also consider fields Fbg, F3; and F37. These
results are also given in tables below.

3.1 [4,2] codes

There is an orthogonal design of order 2 given by
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-b a

where @, b are commuting variables. Using this matrix witha =1,b =0,
and z = p — 1 we obtain a self dual code over F,, iff p— 1 = 22 (mod p),
foraz € Fp, ie. p=2,5,.... For p > 7 or p = 3 there exist a proper
replacement of the variables, as it is shown in Table 1, such that a self-dual
code [4,2,d,,] exists over F,, for all p < 37. For p < 23 same results have
been found using conference matrices by Arasu and Gulliver in [1].

D2=OD(2;1,1)=( e b)

3.2 [8,4] codes

There is an orthogonal design of order 4 given by

a b ¢ d
—d c -b a

where a, b, ¢,d are commuting variables. Using this matrix with a proper
replacement of the variables, as it is shown in Table 1, a self-dual code
[8,4,dn] exists over Fy,, for all p < 37. For 5 < p < 23 the same results
have been found using conference matrices by Arasu and Gulliver in [1].
A self-dual code [8,4,3] over F3 cannot be constructed using conference
matrices (see [1]) but it is easily constructed using orthogonal designs.

Table 1: Self-dual codes from orthogonal designs with 2n = 4,8

2n=4 2n=8
P a b m d;, a b ¢ d dm db
311 1 3 310 0 1 1 3 3
510 2 2 310 1 2 2 4 4
712 3 3 31 2 2 2 5 5
1111 3 3 311 1 4 5 5 5
13(3 4 3 31 2 6 6 5 5
1711 7 3 3|1 1 1 8 5 5
19|11 6 3 311 1 3 8 5 5
233 6 3 3 (1 1 2 4 5 5
292 13 3 311 2 4 6 5 5
31 (5 6 3 311 3 1 9 5 5
3713 8 3 31 1 3 5 5 5
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3.3 [12,6] codes

There is an orthogonal design of order 6 given by

b a
-5 b
Dg = OD(6;1,4) = _‘; :Z
0 —b
-5 0

-b
a
b
0

-b

-b

[~ BRSNS oo BN~ S S

Q oo OO O
f o O o

o O

where a, b are commuting variables. Using this matrix and a proper replace-
ment of the variables, as it is shown in Table 2, a self-dual code [12, 6, dp,]
exists over Fj, for all p < 37. For p = 3,7 and 23 the same results have
been found, using conference matrices, by Arasu and Gulliver in [1]. The
other self-dual codes of length 2n = 12 over F,, p # 3,7,23 given in Table
2 cannot be constructed from conference matrices (see [1]) but are easily

constructed using orthogonal designs.

Table 2: Self-dual codes from orthogonal designs with 2n = 12,20

2n=12 2n =20

p a b dm db a b dm db
311 1 6 6|1 2 6 6
510 1 4 6 {c=1 8 8-9
713 1 6 6|1 2 6 910
11|14 2 6 7|2 2 6 10
13|13 2 6 7 |c=6 8 10-11
1711 5 6 7]lec=7 8 10-11
911 3 6 7|3 9 6 11
2318 1 6 7|1 4 6 911
2918 7 6 7jc=4 8 1011
31113 2 6 712 9 6 10-11
3713 4 6 7 |[c=2 8 10-11

3.4 [16,8] codes

In this case we are going to use the orthogonal design Dg, = OD(8;1,1,1,1,
1,1,1,1) with a proper replacement of the variables, as it is shown in Table
3, a self-dual code [16, 8, d,,] exists over F}, for all p < 37. For p =3,7,11
and 13 the same results have been found, using conference matrices, by
Arasu and Gulliver in [1]. The other self-dual codes of length 2n = 16 over
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Fy, p =17,17,19,23,29,31,37 given in Table 3 are new since these codes
cannot be constructed from conference matrices (see [1]).

Table 3: Self-dual codes from orthogonal designs with 2n = 16

2n =16
pla b ¢c d e f g h d, dp
3J]1 1 1 1 1 1 1 1 6 6
511 2 2 2 2 2 2 2 7 7-8
711 1 1 1 2 1 3 3 6 7-8
1171 1 1 1 1 1 5 1 7 7-8
3j]11 11 2 1 5 2 7 7-9
17|11 2 3 3 7 5 6 6 8 8-9
19i1 1 1 1 4 2 8 5 8 8-9
2311 1.1 1 3 1 8 6 8 8-9
29(1 1 11 2 1 12 7 8 8-9
31f1 1.1 1 21 9 8 8 8-9
3711 1.1 1 2 1 14 4 8 8-9

3.5 [20,10] codes
There is an orthogonal design Do, of order 10 given by

Dioo = OD(10;4,4) =

( a b a -b 0 a b —-a b 0
0 a b a -b 0 a b —a b

-b 0 a b a b 0 a b -a

a -=b 0 a b -a b 0 a b

_ b a -=b 0 a b —-a b 0 a
“"l-a 0 =b a -b a 0 —-b a b
-b -—a 0 -b a b a 0 -b a

a —-b -a 0 -b a b a 0 -b

b a -b -a 0 -b a b a 0
\ 0 b a -b —-a 0 -b a b a

where a, b are commuting variables and an orthogonal design D;g, given in
[6]. Using these matrices and a proper replacement of the variables, as it is
shown in Table 2, a self-dual code (20, 10, d,,,] exists over F},, for all p < 37.
For p = 5 the same result has been found, using conference matrices, by
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Arasu and Gulliver in {1].

DlOb = OD(].O; 9) =

{ c c

c c —c c ¢c —¢ 0 - \

—c c c c c -c c c —-c 0

c -c c ¢c 0 —¢ ¢ ¢ —c

c c —c c c —¢ 0 —c c c

_ c c c —c c c —-c 0 —c c
"¢ e 0 ¢ —¢ ¢ —¢c ¢ ¢ c
—c —¢c ¢ 0 c c ¢ —¢ ¢ c

¢c —c -c c O c c ¢ —c c

0 c —¢ -—c c ¢ ¢ ¢ ¢ —c

\ c O ¢ —¢ —¢c —c c c c c)

The other self-dual codes of length 2n = 20 over F,, p # 5 given in Table
2 cannot be constructed from conference matrices (see [1]) but are easily
constructed using orthogonal designs.

3.6 [24,12] codes

There are 12 different cases of orthogonal designs, given in [8, p. 348}, of or-
der 12 on four commuting variables a, b, ¢, d. We shall use D121, D122, ...,
Dja_12 to denote these designs in the order that are given in (8, p. 348].
Using these matrices and a proper replacement of the variables, as it is
shown in Table 4, a self-dual code (24,12, d,,,] exists over F}, for all p < 37.
For p = 3,5 and 7 the same results have been found, using conference ma-
trices, by Arasu and Gulliver in [1]. The other self-dual codes of length 24
over F,, p # 3,5,7 given in Table 4 cannot be constructed from confer-
ence matrices (see [1]) but are easily constructed using orthogonal designs.
These codes improve the distance bounds as these were given by Arasu
and Gulliver in [1]. Note that for p = 23 a [24, 12,13] code exists (see [10,
Theorem 9, p.323)).

We give explicitly the two designs that give the best self-dual codes we
found. From now on we denote —z by Z.
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Di2-3=0D(121,1,1,9) =

/gddddgidc_ddd\
d addbddecdddd
ddabddecddddd
ddbaddddddde
d bddaddddded
_|bddddadddecdd
“|d d e dddaddddb
d eddddddaeaddobd
cdddddddabdd
d d dddcddbdbadd
d dddcddbddald
\JJch&EJdea)
D12-5 = 0D(12, 1, 1,2,8) =

(e ddddbddecdd d)
d addbddecddeéd
dda bddecddeédd
d dbaddddedde
d bddaeddédded
_|bd dddaécddcdd
“|dd éddcaddddb
d ¢ddcddaddyb d
ddecddddabdd
ddcddcddbdadd
d cdd cddbddad
\crfticddl-)cfdda?a}

3.7 [28,14] codes

There are many different cases of orthogonal designs, given in [11], of order
14 on one or two commuting variables a or a, b respectively. We shall use
some of these matrices with a proper replacement of the variables, as it is
shown in Table 5, to construct self-dual codes [28, 14, dm] over F, for all
p < 37. For p = 7 and 11 the same results have been found, using conference
matrices, by Arasu and Gulliver in [1]. The other self-dual codes of length
2n = 28 over F,, p # 7,11 given in Table 5 cannot be constructed from
conference matrices (see [1]) but are easily constructed using orthogonal
designs. These codes improve the distance bounds as these were given by
Arasu and Gulliver in [1].
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dy
9-10
10 — 12
9-12
10-13
10-13
10-13

13
10 - 13
10-13
10 -13

9
9
9
10
10
10
10
10
10
10

2n=24
dm

d
2
2
4
4
7
6
4
3
12
9

c
4
0 6 7
2
2
3

1
0 22
1
1
1
1

b

0
0
0
0
0
0
0
0

Dia_3
Dyy_3
Di2-3
Di2-5
13 | Dy2-3
17 | D12-3
19 | Di2-3
23 | D12-3
29 | Dia_3
Dia-3
37 | Di2-3

p | Design {2 b

5
7
11
31

Table 4: Self-dual codes from orthogonal designs with 2n = 24
We give explicitly the three designs that give the best self-dual codes

we found.

— SN
O_b_abOOOOObObOO

D IPLOOOCOCODODLOOOC
IO OO0 ONLOOOO
L oooomIBOLOoOOOO®

OO0 IOV VOO0OCOODO

0

OO IILOODOOCODO D

0

O I D OO OORNROLO

0

LoOoOLOoOoOOoOOCOK 3000

OV OCOO0OCOL DO OO

0

DOoOOoOOoCORL ILOoOOCO

b

COoOO0OLO ILvOoOOoOoOoOK

0

oo oLoLDLOoOOOCO g

OOV OCOOOOR gD

0 0

OV OVMOOO0OO0CO 80O
I

(

D14_1 = OD(14, 1,4)
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— RS
OO ORI SO JD DO OO0

DO IVODDODOD I
ORI IO O D OO I
DO IV OLOCODOL0 g0 o
0 SO O OIS O OO JIO DO
abO_,.bO_.b_bO.b D DO D
DO ORI IO IO DO
OV OV DO YOO D O

l o000 30000000 I3
—~
P odd L0000 0O I8 D
o~
FOO SDODOO DO 18D D
-

'

Qo 30OV ODDOM D00

o

I SO ODODIOO IBODO D

9_..00..00..0_..0 SO IIDOODOODO
4( .
=

Q I

— TN
00.00..0..00..0..0_..0..0_..0_.00

OV OV VOOV VLI g0
DOV LV OO0 VDD Q00
OO D OO ODDIDIKD GO DI
O 0 OOV OIRVIN 8O DIV D
D OO0OODODIL 30 DD DD
OO OO OO D QD DI DI
DD DD D O FIDID OO

o o0 29 DD OO O O
~~

Q0 DD OO O O O O KD IO

-
LD DD ZIOD DD OO OIS O
Lam}

e
QOO IOV OO OO O

o

__ D FOO QIR0 0 O ORI O O

q_q SIDID DD D DO O OO
- S— e
=

Q 1

[32,16] codes
Since 16 = 24 there are many different cases of orthogonal designs, given in

(8], of order 16 on up to 9 variables. We shall use one of these matrices with

3.8

a proper replacement of the variables, as it is shown in Table 6, to construct

self-dual codes [32,16,d,,) over F, for all p < 37. For p = 5,7,11 and 13

the same results have been found, using conference matrices, by Arasu

and Gulliver in [1].

The other self-dual codes of length 32 over F,, p #
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Table 5: Self-dual codes from orthogonal designs with 2n = 28

2n = 28

p | Design |a b dp dy

3| Dy |1 1 6 8-9
5 | Diy—2 |1 2 8 8-13
7 | Dy-3|2 1 10 11-13
11| D33 4 10 10-14
13| Dy—34 1 11 11-15
17| Dyy—3 |1 8 11 11-15
19| Dyu—3 |1 2 11 11-15
23| Djy—3 {2 5 11 11-15
29 | D43 |2 14 11 11-15
31| Diy—3|4 6 11 11-15
37 | Diy—3 |3 15 11 11-15

5,7,11,13 given in Table 6 cannot be constructed from conference matrices
(see [1]) but are easily constructed using orthogonal designs. These codes
improve the distance bounds as these were given by Arasu and Gulliver
in [1]. Note that for p = 31 a [32,16,17] code exists (see [10, Theorem 9,
p.323)).

Orthogonal design OD(16;1,1,1,1,2,2,2,2,2) that gives the best self-
dual codes we have found is given explicitly in (8, p. 361].

3.9 [36,18] codes

Since 18 = 2.9 there are only few different cases of orthogonal designs, given
in [11], of order 18 on up to 2 variables. So the results obtained here are not
so good, as expected. We shall use three of these matrices with a proper
replacement of the variables, as it is shown in Table 7, to construct self-dual
codes {36, 18, d.,] over Fy, for all p < 37. Forp = 3,7,11,13 and 23 the same
results have been found, using conference matrices, by Arasu and Gulliver
in [1]. The other self-dual codes of length 36 over Fy,, p # 3,7,11,13,23
given in Table 7 cannot be constructed from conference matrices (see [1])
but are easily constructed using orthogonal designs. Unfortunately, these
codes have low distance. We give explicitly the three designs that give the
best self-dual codes we found.
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32

Table 6: Self-dual codes from orthogonal designs with 2n

2n = 32

dy

T2 T3 T4 Ts e T7 Ty X9

Z)

10-13
11-14

10

11

2

11-16

11-16
12 - 17

11
11

12

3
15

12 -17

12
12
12
12
12

14

7

15
0
13
25

15
10
14
21

12 - 17

9
6

12 - 17

13
3

11

2

17
12-17

7 14 14 20
18 17

16
11

8

18

18

11
13
17
19
23

29

31

37

D18_1 = OD(].S; 17) =

- —~
I RI[/IWIIII IWogwRyIssasaIrwewwag
SV IS IO} B I IS IS/
YWV I IPoWIIgIIga®II[?Q
I IWO I IV SRy WaW®® A
Y IO II IR®IIYISI IZIR(I SIS
Y [VIO W I IIWYISIRYIIIII ST
SIWOoOII I WY KY IS WYII¥IYISBS I SIS ST
Wo s gy k¥ W oWy aWIa g e
oK I/ I SIFTIIS YT T S8
I g I I g I TSIV SISO
I s gV WII I3 3I@YIO C
S g g k¥ ISIWIWISSIWso 3@
S I IRV VI IV VIS S I I WSO 3@
g ok IsSsIeW®Wso ssYC
I I IW I I IgWSOoO IS I T
I IV I I I I g Io oWy a g g
B YIYII S S I IRV IO I SIS SIS
SIS S g IR Io WIS aA
~— —
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a a

a

(a.O

TN —_ N

I IooWo I IWoo 83 OOV L IS I IWYWIDLDOO Q
I I I W I IVIOO I 8 8O DDV DI W IO IILDDIODO 3R
(=] S I I WWOoO0o I I sow DO FIIYIII IO IV DVILO I I
(=] I WIWIoo I oI R DIV II I OLDLDODLO I I8
N] I o0 g 3o @3 DI IOLDDVDIOODVDOO T IIWI
] S 3o g ssor®IWO IS IOV DVIDDDVLO TSI IO
I I VI ICcW}IIOO I3 I3 SIODDVDOD VPO I I ILDDO

SO IO W IWOO S IOV OOPZIIIO ST IODDID

co gsoR®IYIWoo g SOV IZIIZIB I IV ILDDIDO
oOoOldocoo@¥¥IY I O VDL I IV I I T I JODVVIO O

S d3oR®¥WIISW/ IO O OO FTIS SISO S IOV O I

S IV IRV IOCOC D0 IV PO JODV/OD O™ I T
SOoOR®¥ W IYII IO0O __..O..Oa.aaao_bb_bb.b_bo_aaaa

cCOoO ™I ICOIBIZ 0P IS OO D DDIVIDO IS I I

O IR¥IY IO O 3B “aa_aaaO_bbbb.b_bO_aaaa_bb

I gWIoco® NI M\_aaaO_bbbba_bO_aaaa_bb_b

IV IS YOO IS SIS IS Qoo 38O I8 GG SO DRI

o oo B83R¥ ¥ IR _n_éao_.b..o.b.b I SIS S SO DO O

— o -

D18—2 = OD(IS; 13) =

I <) I
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Table 7: Self-dual codes from orthogonal designs with 2n = 36

2n = 36

p | Design| a b d, dy

3 | Dig.1 |1 - 12 12

5 Dis—3 | 2 2 8 10-16
7| Dig-1 |3 - 12 12-16
11| Dig—y | 8 - 12 12-18
13| Dyg—1 | 9 - 12 12-18
17| Dig—2 | 8 - 10 10-19
19| Dig—2 {4 - 10 10-19
23| Dygy | 2 - 12 12-19
29| Digo | 7 - 10 10-19
31| Dig—y |12 - 12 12-19
37| Dig—3 |17 17 8 8-19

3.10 [40,20] codes

There are many different cases of orthogonal designs, given in (8, p. 348],
of order 20 on four commuting variables a, b, ¢, d. Using these matrices with
a proper replacement of the variables, as it is shown in Table 8, a self-dual
code (40,20, d,,] exists over Fy, for all p < 37.

For p < 17 the same results have been found, using conference matri-
ces, by Arasu and Gulliver in [1]. The other sclf-dual codes of length 40
over Fy,, 19 < p < 37 given in Table 8 cannot be constructed from confer-
ence matrices (see [1]) but are easily constructed using orthogonal designs.
These codes improve the distance bounds as these were given by Arasu and
Gulliver in [1].

The computational time increases rapidly with the length n. So, length
40 is the computational limit of our search. We give explicitly the two
designs that give us the best self-dual codes we found. We search as many
designs as possible but it was impossible to search the totality of the or-
thogonal designs. It took us in about 400 hours of CPU time, on a Pentium
IV 1700Hz PC, to achieve distance d = 14 of [40, 20] code over Fj7.

We present the two orthogonal designs we used to obtain the codes.
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Table 8: Self-dual codes from orthogonal designs with 2n = 40
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Dzo-z = 0D(20; 1,5, 5, 9) =
/gbcésllcfdbéd-ccdlidddd_d-\
b a b ¢ ¢ d d b & b ¢c ¢ d b d d d d d d
¢ babcdbé bdcdbdocddddd
c € ba b b é bdddbdoccddddd
b ¢ 2 ba @ bdd b bdoc ¢cdddddd
bddbcabc e bddddddeedd
d d b c b bdbabdbc édddddoeeéeddd
d b ¢ bd é b abcdddddéedbdeé
b ¢ b ddc ¢babddddddbd e é
c b ddb b ccbadddddbdeéeced
d ¢ Edbdddddaeboc b bddyb &
c e¢d bddddddobdaboceddbec b
c d bdédddddébabcdb e b d
d b d e ¢ddddddocéebdbabbdbébdd
b d g éddddddubec ébaebddob
d dddddc ecdbbddbbcaboc &b
d d dddc ¢cdbdddbcb bab c &
d ddddcdbdedbec bdcbayb e
d d d dddbdccbcbddoc e ba b
\¢ d dddbdcecdcbddbbecoacdal
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